JPS6313113B2 - - Google Patents

Info

Publication number
JPS6313113B2
JPS6313113B2 JP57095782A JP9578282A JPS6313113B2 JP S6313113 B2 JPS6313113 B2 JP S6313113B2 JP 57095782 A JP57095782 A JP 57095782A JP 9578282 A JP9578282 A JP 9578282A JP S6313113 B2 JPS6313113 B2 JP S6313113B2
Authority
JP
Japan
Prior art keywords
heat
collector
temperature
low
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57095782A
Other languages
Japanese (ja)
Other versions
JPS58213157A (en
Inventor
Takashi Sawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57095782A priority Critical patent/JPS58213157A/en
Publication of JPS58213157A publication Critical patent/JPS58213157A/en
Publication of JPS6313113B2 publication Critical patent/JPS6313113B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B33/00Steam-generation plants, e.g. comprising steam boilers of different types in mutual association
    • F22B33/14Combinations of low and high pressure boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B3/00Other methods of steam generation; Steam boilers not provided for in other groups of this subclass
    • F22B3/04Other methods of steam generation; Steam boilers not provided for in other groups of this subclass by drop in pressure of high-pressure hot water within pressure- reducing chambers, e.g. in accumulators
    • F22B3/045Other methods of steam generation; Steam boilers not provided for in other groups of this subclass by drop in pressure of high-pressure hot water within pressure- reducing chambers, e.g. in accumulators the drop in pressure being achieved by compressors, e.g. with steam jet pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)

Description

【発明の詳細な説明】 本発明は、集熱器と貯湯槽を分離し、例えばフ
ロンのような潜熱媒体を内部に封入した閉回路を
構成することにより集熱器で熱媒体を蒸発し、貯
湯槽で熱媒体蒸気を凝縮することにより、太陽熱
を集熱、搬送する太陽熱温水器に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention separates a heat collector and a hot water storage tank and forms a closed circuit in which a latent heat medium such as fluorocarbon is sealed inside, thereby evaporating the heat medium in the heat collector. This invention relates to a solar water heater that collects and transports solar heat by condensing heat medium vapor in a hot water storage tank.

従来のこの種の太陽熱温水器は第1図及び第2
図に示すように構成されている。即ち、熱交換器
1を内設して断熱された貯湯槽2の下方に集熱器
3を接続している。集熱器3は第2図に示すよう
に、太陽光を良く透過する透過板4で上部を覆つ
たケーシング5の中に、フイン6に集熱管7を溶
接し太陽光を良く吸収するように表面処理してな
る集熱板8と、集熱板8の底部を断熱する断熱材
9を設けて構成されている。この場合、集熱器3
の集熱管7と熱交換器1を接続し、閉回路を構成
すると同時に、閉回路内部を低圧にしてフロン等
の潜熱媒体を作動媒体として封入している。集熱
時は集熱管7内の熱媒体液が太陽熱により加熱さ
れて蒸発し、蒸気となつて熱交換器1に入り、そ
こで凝縮し、そのときの凝縮熱が貯湯槽2内の水
温を上昇することにより蓄熱される。一方、太陽
熱温水器の性能は、X軸に集熱時における集熱板
平均温度と平均外気温との差を日積算日射量で割
つた値をとり、Y軸に集熱効率をとると、第3図
のように表わすことができる。第2図に示すよう
な平板形の集熱器3を用いた場合、X軸の値が
0.04℃m2・日/kcalでは約40%程度の集熱効率し
か得ることができなかつた。又、真空管形のよう
な高温集熱器を用いた場合、価格は倍以上になる
にもかかわらず、集熱効率は高々50%程度にしか
ならないという欠点があつた。
Conventional solar water heaters of this type are shown in Figures 1 and 2.
It is configured as shown in the figure. That is, a heat collector 3 is connected below a hot water storage tank 2 which is insulated and has a heat exchanger 1 installed therein. As shown in Fig. 2, the heat collector 3 has a casing 5 whose upper part is covered with a transparent plate 4 that transmits sunlight well, and a heat collection pipe 7 is welded to the fins 6 to absorb sunlight well. It is constructed by providing a heat collecting plate 8 whose surface has been treated and a heat insulating material 9 which insulates the bottom of the heat collecting plate 8. In this case, heat collector 3
The heat collecting pipe 7 and the heat exchanger 1 are connected to form a closed circuit, and at the same time, the pressure inside the closed circuit is kept low and a latent heat medium such as fluorocarbon is enclosed as a working medium. During heat collection, the heat medium liquid in the heat collection pipe 7 is heated by solar heat and evaporates, becomes steam and enters the heat exchanger 1, where it condenses, and the condensed heat at that time increases the water temperature in the hot water storage tank 2. Heat is stored by doing so. On the other hand, the performance of a solar water heater is determined by taking the difference between the average temperature of the heat collecting plate during heat collection and the average outside air temperature divided by the daily cumulative solar radiation on the X-axis, and the heat collection efficiency on the Y-axis. It can be expressed as shown in Figure 3. When using a flat heat collector 3 as shown in Fig. 2, the value of the X axis is
At 0.04℃ m2・day/kcal, a heat collection efficiency of only about 40% could be obtained. Furthermore, when a high-temperature heat collector such as a vacuum tube type is used, the heat collection efficiency is only about 50% at most, although the price is more than double.

本発明はこのような従来の欠点を解消するため
に為されたもので、外部より動力を得ることな
く、太陽熱によつて駆動するヒートポンプサイク
ルを構成し、潜熱媒体の一部を低温にして低温集
熱をすることにより、大幅なコストアツプをする
ことなく太陽熱温水器全体の集熱効率を向上させ
ることを目的とするものである。
The present invention was made in order to eliminate such conventional drawbacks, and it constitutes a heat pump cycle that is driven by solar heat without obtaining power from the outside, and lowers a part of the latent heat medium to a low temperature. By collecting heat, the objective is to improve the heat collection efficiency of the entire solar water heater without significantly increasing costs.

上記目的を達成するために本発明は、熱交換器
を内設する貯湯槽の下方に熱媒体による蒸気発生
用の高温集熱器と低温集熱器を設け、前記熱交換
器出口の配管を2方向に分岐し、一方を高温集熱
器の入口に、他方を膨張手段を介して低温集熱器
の入口にそれぞれ接続し、高温集熱器の出口にエ
ジエクターの入口を接続し、エジエクターの低圧
発生用の吸込口を低温集熱器の出口に接続し、エ
ジエクターの出口を熱交換器の入口に接続したも
のである。
In order to achieve the above object, the present invention provides a high-temperature collector and a low-temperature collector for steam generation using a heat medium below a hot water storage tank in which a heat exchanger is installed, and connects piping at the outlet of the heat exchanger. It branches into two directions, one side is connected to the inlet of the high-temperature collector, the other is connected to the inlet of the low-temperature collector via an expansion means, the inlet of the ejector is connected to the outlet of the high-temperature collector, and the The suction port for generating low pressure is connected to the outlet of the low-temperature collector, and the outlet of the ejector is connected to the inlet of the heat exchanger.

本発明は上記構成とすることによつて、高温集
熱器で発生した高温高圧蒸気がエジエクター内の
ノズルを通過するとき高速蒸気になることによ
り、吸込口に接続された低温集熱器を低圧にする
と同時に熱交換器で凝縮した熱媒体が膨張手段を
通ることにより断熱膨張し、低温となる。それ
故、低温集熱器では貯湯槽水温より低い温度で集
熱することになり、かつヒートポンプサイクルが
構成されるため、従来の太陽熱温水器より大幅に
集熱効率が向上すると同時に、低温集熱器は安価
なフイン付き集熱管だけの構成でも可能になる。
By having the above configuration, the present invention turns high-temperature, high-pressure steam generated in the high-temperature collector into high-speed steam when it passes through the nozzle in the ejector, thereby lowering the pressure of the low-temperature collector connected to the suction port. At the same time, the heat medium condensed in the heat exchanger passes through the expansion means, expands adiabatically, and becomes low temperature. Therefore, a low-temperature collector collects heat at a temperature lower than the water temperature of the hot water storage tank, and because it has a heat pump cycle, the heat collection efficiency is significantly improved compared to conventional solar water heaters. This is possible even with a configuration consisting only of inexpensive heat collecting tubes with fins.

以下、本発明の一実施例を第4図〜第6図に基
づき説明する。先ず第4図において、高温集熱器
11及び低温集熱器12は熱交換器13を内設す
る貯湯槽14の下方に設けられ、前記高温集熱器
11の出口にはエジエクター15が接続されてい
る。更にエジエクター15の出口は熱交換器13
の入口に、吸込口は低温集熱器12の出口にそれ
ぞれ接続されている。又熱交換器13の出口は2
方向に分岐配管されており、一方は高温集熱器1
1の入口に、他方は膨張弁16を介して低温集熱
器12の入口にそれぞれ接続されている。エジエ
クター15の構成は第5図に示すように、入口管
17の先端にノズル18が設けられ、このノズル
18は吸込口19を有する混合室20内において
出口管21に接続されている。又前記高温集熱器
11には真空管形集熱器又は二重透過体を有する
平板形集熱器が用いられ、低温集熱器12には第
2図に示すような集熱板8〔フイン6、集熱管
7〕が単体で用いられる。
Hereinafter, one embodiment of the present invention will be described based on FIGS. 4 to 6. First, in FIG. 4, a high-temperature heat collector 11 and a low-temperature heat collector 12 are provided below a hot water storage tank 14 in which a heat exchanger 13 is installed, and an ejector 15 is connected to the outlet of the high-temperature heat collector 11. ing. Furthermore, the outlet of the ejector 15 is connected to the heat exchanger 13.
, and the suction inlet is connected to the outlet of the cryogenic collector 12, respectively. Also, the outlet of the heat exchanger 13 is 2.
The pipes are branched in the direction, and one side is connected to the high temperature collector 1.
1 and the other is connected to the inlet of the low-temperature collector 12 via an expansion valve 16, respectively. As shown in FIG. 5, the structure of the ejector 15 is such that a nozzle 18 is provided at the tip of an inlet pipe 17, and this nozzle 18 is connected to an outlet pipe 21 within a mixing chamber 20 having a suction port 19. Further, the high temperature collector 11 is a vacuum tube type collector or a flat plate type collector having a double transmitting body, and the low temperature collector 12 is a heat collector plate 8 (finned) as shown in FIG. 6, heat collecting pipe 7] is used alone.

上記構成において、閉回路を構成する配管内に
はフロンのような潜熱媒体が封入されている。以
下に、上記構成における作動状況を説明する。通
常、液化している熱媒体は自重により高温集熱器
11又は低温集熱器12の底部に溜つているが、
太陽光が照射すると高温集熱器11では熱媒体が
蒸発して高温高圧の蒸気になり、エジエクター1
5に流入し、ノズル18で高速蒸気流になつて吸
込口19に接続されている低温集熱器12を減圧
し、内部の蒸気を混合室20に導く。混合した蒸
気流は出口管21を通つて熱交換器13に入り、
凝縮液化し、その凝縮熱が貯湯槽14内の水温を
上昇させ、蓄熱される。液化した熱媒体は2方向
に分岐し、一方は高温集熱器11に入り、位置水
頭分即ち高さ分だけ加圧される。他方は膨張弁1
6により断熱膨張し、低温熱媒液として低温集熱
器12に入り、太陽熱により加熱されて蒸発し、
再びエジエクター15の吸込口19より混合室2
0に導かれるヒートポンプサイクルが構成され
る。このように、低温集熱器12には貯湯槽14
の貯水よりも低い温度の熱媒体が入り、かつヒー
トポンプサイクルが構成されて低温集熱が行なわ
れるため、集熱効率が向上する。即ち第6図のよ
うに、高温集熱器11の性能はAの実線、低温集
熱器12はBの1点鎖線、第2図に示す従来の集
熱器は破線Cで示されるが、従来の集熱効率が前
述したように40%程度であるのに対して、上記本
発明の構成では高温集熱器11は50%程度で作動
し、低温集熱器12は低温集熱、即ち熱媒体が外
気温度近くで集熱するため、90%程度の集熱効率
を得ることができ、全体として70%程度の集熱効
率を得ることができる。
In the above configuration, a latent heat medium such as fluorocarbon is sealed in the piping that constitutes the closed circuit. The operating conditions in the above configuration will be explained below. Normally, the liquefied heat medium accumulates at the bottom of the high-temperature heat collector 11 or the low-temperature heat collector 12 due to its own weight.
When sunlight irradiates, the heat medium evaporates in the high-temperature collector 11 and becomes high-temperature, high-pressure steam,
5, becomes a high-speed steam flow at a nozzle 18, depressurizes a low-temperature collector 12 connected to an inlet 19, and guides the internal steam to a mixing chamber 20. The mixed vapor stream enters the heat exchanger 13 through the outlet pipe 21;
The water is condensed and liquefied, and the heat of condensation raises the water temperature in the hot water storage tank 14 and is stored as heat. The liquefied heat medium branches into two directions, one enters the high temperature heat collector 11, and is pressurized by the positional head, that is, the height. The other is expansion valve 1
6, it expands adiabatically, enters the low temperature collector 12 as a low temperature heat transfer liquid, is heated by solar heat and evaporates,
Mixing chamber 2 again from the suction port 19 of the ejector 15
A heat pump cycle led to zero is constructed. In this way, the hot water storage tank 14 is installed in the low temperature heat collector 12.
A heat medium with a temperature lower than that of the stored water is introduced, and a heat pump cycle is configured to perform low-temperature heat collection, improving heat collection efficiency. That is, as shown in FIG. 6, the performance of the high temperature collector 11 is shown by the solid line A, the low temperature collector 12 is shown by the dashed line B, and the conventional heat collector shown in FIG. 2 is shown by the broken line C. While the conventional heat collection efficiency is about 40% as described above, in the configuration of the present invention, the high temperature heat collector 11 operates at about 50%, and the low temperature heat collector 12 collects low temperature heat, that is, heat collection efficiency is about 50%. Since the medium collects heat near the outside temperature, it is possible to obtain a heat collection efficiency of approximately 90%, and an overall heat collection efficiency of approximately 70%.

以上のように本発明によれば、安価な低温集熱
器を高温集熱器と組み合せて、用いることができ
ると同時に、可動部のあるコンプレツサーではな
く可動部のないエジエクターを用いて外部動力を
必要としないヒートポンプでサイクルを構成する
ことができるため、大幅なコストアツプをするこ
となく、信頼性の高い高効率の太陽熱温水器を実
現することができる。
As described above, according to the present invention, an inexpensive low-temperature heat collector can be used in combination with a high-temperature heat collector, and at the same time, an ejector without moving parts is used instead of a compressor with moving parts to generate external power. Since the cycle can be configured with a heat pump that is not required, a highly reliable and highly efficient solar water heater can be realized without significantly increasing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の太陽熱温水器の部分断面図、第
2図は従来の太陽熱温水器に用いられる集熱器の
断面図、第3図は従来の太陽熱温水器の集熱器の
性能を示すグラフ、第4図〜第6図は本発明の一
実施例を示し、第4図は太陽熱温水器の部分断面
図、第5図はエジエクターの断面図、第6図は本
発明における太陽熱温水器の集熱器の性能を示す
グラフである。 11……高温集熱器、12……低温集熱器、1
3……熱交換器、14……貯湯槽、15……エジ
エクター、16……膨張弁、17……入口管、1
8……ノズル、19……吸込口、20……混合
室、21……出口管。
Figure 1 is a partial cross-sectional view of a conventional solar water heater, Figure 2 is a cross-sectional view of a collector used in a conventional solar water heater, and Figure 3 shows the performance of the collector of a conventional solar water heater. The graphs and FIGS. 4 to 6 show an embodiment of the present invention, in which FIG. 4 is a partial cross-sectional view of a solar water heater, FIG. 5 is a cross-sectional view of an ejector, and FIG. 6 is a solar water heater according to the present invention. It is a graph showing the performance of the heat collector. 11...High temperature collector, 12...Low temperature collector, 1
3...Heat exchanger, 14...Hot water storage tank, 15...Ejector, 16...Expansion valve, 17...Inlet pipe, 1
8... Nozzle, 19... Suction port, 20... Mixing chamber, 21... Outlet pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 熱交換器を内設する貯湯槽の下方に熱媒体に
よる蒸気発生用の高温集熱器と低温集熱器を設
け、前記熱交換器出口の配管を2方向に分岐し、
一方を高温集熱器の入口に、他方を膨張手段を介
して低温集熱器の入口にそれぞれ接続し、高温集
熱器の出口にエジエクターの入口を接続し、エジ
エクターの低圧発生用の吸込口を低温集熱器の出
口に接続し、エジエクターの出口を熱交換器の入
口に接続した太陽熱温水器。
1. A high-temperature collector and a low-temperature collector for steam generation using a heat medium are provided below a hot water storage tank in which a heat exchanger is installed, and the piping at the outlet of the heat exchanger is branched into two directions,
One side is connected to the inlet of the high temperature collector, the other side is connected to the inlet of the low temperature collector through an expansion means, the inlet of the ejector is connected to the outlet of the high temperature collector, and the suction port for generating low pressure of the ejector is connected. is connected to the outlet of the low-temperature collector, and the outlet of the ejector is connected to the inlet of the heat exchanger.
JP57095782A 1982-06-03 1982-06-03 Water heater utilizing solar-heat Granted JPS58213157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57095782A JPS58213157A (en) 1982-06-03 1982-06-03 Water heater utilizing solar-heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57095782A JPS58213157A (en) 1982-06-03 1982-06-03 Water heater utilizing solar-heat

Publications (2)

Publication Number Publication Date
JPS58213157A JPS58213157A (en) 1983-12-12
JPS6313113B2 true JPS6313113B2 (en) 1988-03-24

Family

ID=14147039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57095782A Granted JPS58213157A (en) 1982-06-03 1982-06-03 Water heater utilizing solar-heat

Country Status (1)

Country Link
JP (1) JPS58213157A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004866A1 (en) 2009-07-10 2011-01-13 株式会社Ihi Vapor supply device
US11651398B2 (en) 2012-06-29 2023-05-16 Ebay Inc. Contextual menus based on image recognition
US11694427B2 (en) 2008-03-05 2023-07-04 Ebay Inc. Identification of items depicted in images
US11727054B2 (en) 2008-03-05 2023-08-15 Ebay Inc. Method and apparatus for image recognition services

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11694427B2 (en) 2008-03-05 2023-07-04 Ebay Inc. Identification of items depicted in images
US11727054B2 (en) 2008-03-05 2023-08-15 Ebay Inc. Method and apparatus for image recognition services
WO2011004866A1 (en) 2009-07-10 2011-01-13 株式会社Ihi Vapor supply device
US11651398B2 (en) 2012-06-29 2023-05-16 Ebay Inc. Contextual menus based on image recognition

Also Published As

Publication number Publication date
JPS58213157A (en) 1983-12-12

Similar Documents

Publication Publication Date Title
CN101936669B (en) Hybrid composite condensation method and condenser
US4207744A (en) Solar refrigeration system
CN213657178U (en) Small-size movable low temperature evaporation plant
JPS6313113B2 (en)
US2707239A (en) Apparatus for utilizing waste heat
JPS58198648A (en) Loop type heat pipe system solar heat water heater
WO2010070702A1 (en) Power generator utilizing natural energy
CN201945201U (en) Air & steam parallelly connected one-piece high efficiency compound condenser
CN206144725U (en) Solar energy steam heat electric system
CN104314780A (en) Novel power generation system with function of converting solar heat into heat energy of steam
CN108561281A (en) A kind of steam circulation generator with Fresnel mirror and honeycomb regenerator
CN106194615A (en) Solar steam heat and power system
US4014183A (en) Absorption refrigerator of natural circulation type
US4416116A (en) Thermal engine arrangement
JPS6217119B2 (en)
JPS60168582A (en) Steam compression type water distillation apparatus
JPH0137660B2 (en)
WO2024140317A1 (en) Comprehensive utilization system of low-grade thermal energy
CN213713693U (en) Cooling circulating device of vacuum pump
JPS6337638Y2 (en)
JPS6027317Y2 (en) Solar thermal steam generator
JPS57127484A (en) Vacuum distillation device
JPS5872842A (en) Solar heat collecting equipment
JPS58110951A (en) Hot-water supplying apparatus
JPS6337639Y2 (en)