JPS6312920A - Removing method for fog drip from detector optical path - Google Patents

Removing method for fog drip from detector optical path

Info

Publication number
JPS6312920A
JPS6312920A JP15749886A JP15749886A JPS6312920A JP S6312920 A JPS6312920 A JP S6312920A JP 15749886 A JP15749886 A JP 15749886A JP 15749886 A JP15749886 A JP 15749886A JP S6312920 A JPS6312920 A JP S6312920A
Authority
JP
Japan
Prior art keywords
optical path
detector
far infrared
infrared ray
fog
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15749886A
Other languages
Japanese (ja)
Inventor
Katsumi Matsumura
勝己 松村
Hiroaki Itaoka
板岡 宏明
Kengo Kuraoka
倉岡 健悟
Yukio Araki
荒木 幸男
Yasuo Hashimoto
橋本 安生
Tadashi Yoshikawa
正 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP15749886A priority Critical patent/JPS6312920A/en
Publication of JPS6312920A publication Critical patent/JPS6312920A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

PURPOSE:To remove fog drips from even a hot rolling line, etc., and to reduce power consumption without any evil influence upon detection accuracy by irradiating the optical path of a detector with a far infrared ray, and heating and vaporizing fog drips in the optical path. CONSTITUTION:The detection optical path 2 is irradiated with the far infrared ray from a far infrared ray spot heater 3 arranged nearby the detector 1 and heat and vaporize fog drips suspended in the optical path 2 and the irradiation range 4. At this time, the wavelength of the far infrared ray is 3-10mum and almost all of organic materials such as water and oil constituting the fog drips have absorption spectra almost in a 3-25mum wavelength range. Consequently, the heat absorptivity is extremely high and foggy particles entering the optical path 2 almost continuously are vaporized completely and removed from the optical path 2. Further, an air blowing fan 8 installed nearby the detector 1 purges fog drips dew except in the range 4. Further, part of the far infrared ray reaching the surface of a material 7 is reflected to enter the visual field of the detector 1, but the spectral sensitivity of the detector 1 is only in a <=3mum range and the detection performance is not affected.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は検出器光路の霧滴除去方法に関し、光学的な
検出を行う場合に妨げになる霧滴を効率良く除去させる
ことを目的とする。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for removing fog droplets from a detector optical path, and an object of the present invention is to efficiently remove fog droplets that obstruct optical detection. .

〈従来の技術〉 光学的な検出器を用いる場合、従来よりその光路にある
霧滴により、検出精度が低下するという問題があった。
<Prior Art> When using an optical detector, there has conventionally been a problem that detection accuracy is reduced due to fog droplets in the optical path of the detector.

これを圧延ラインを例にとって説明する。This will be explained using a rolling line as an example.

第3図は圧延機前後の検出器の配置を示すもので、圧延
機50の後段側に放射温度計53と材料の先後端検出器
の投光器54、受光器55が配置されている。投光器5
4、受光器55は第4図に示すように材料51によって
光路がg19iされることを利用して通過を検出する。
FIG. 3 shows the arrangement of detectors before and after the rolling mill, and a radiation thermometer 53, a light emitter 54 and a light receiver 55 for detecting the leading and trailing ends of the material are arranged on the downstream side of the rolling mill 50. Floodlight 5
4. As shown in FIG. 4, the light receiver 55 detects passage by utilizing the optical path g19i caused by the material 51.

一方、圧延機50の前後にはデスケーリング水の噴射ノ
ズル52.52が装備されている。
On the other hand, descaling water injection nozzles 52 and 52 are installed before and after the rolling mill 50.

この放射温度計53.投光器54.受光器55の光路に
は噴射ノズル52の噴射水の飛沫が侵入し、材料通過後
も霧状に漂っているのが通常である。この霧滴は放射温
度計53の視野内で材料からの放射エネルギーを吸収し
てしまうため、正確な測定が出来なくなる。また、材料
が視野内にない場合でも、材料からの放射光がその表面
で反射するため、放射温度計53を通過検出器として使
用するときには通過検出タイミングに誤差を生じる。ま
た投光器54、受光器55の構成で通過検出を行う場合
、材料がない状態で投光器54の光が散乱し、受光器5
5に必要な通過エネルギーが伝わらないことが有り、こ
の場合材料がないのに材料があるという誤った検出をす
ることになる。
This radiation thermometer 53. Floodlight 54. Usually, droplets of water jetted from the jetting nozzle 52 enter the optical path of the light receiver 55 and remain floating in the form of mist even after passing through the material. These mist droplets absorb radiation energy from the material within the field of view of the radiation thermometer 53, making accurate measurement impossible. Further, even when the material is not within the field of view, the emitted light from the material is reflected on its surface, which causes an error in the passage detection timing when the radiation thermometer 53 is used as a passage detector. In addition, when performing passage detection with the configuration of the light emitter 54 and the light receiver 55, the light from the light emitter 54 is scattered when there is no material, and the light receiver 55
5, the necessary passing energy may not be transmitted, and in this case, it will be erroneously detected that there is material when there is no material.

このような問題を解決するために、従来は検出器の光路
に存在する霧滴を送風ファン等で強制的に排除するか、
或は検出光路内に霧滴の発生を生じないように遮蔽板や
エヤーカーテン等で水の浸入を防ぐことが一般的に行わ
れてきた。
In order to solve this problem, conventional methods have been to forcibly remove the fog droplets that exist in the optical path of the detector using a blower fan, etc.
Alternatively, in order to prevent the generation of mist droplets in the detection optical path, it has been common practice to prevent water from entering with a shielding plate, an air curtain, or the like.

しかし送風ファンは消費電力が大きく圧延機前後のよう
に材料の形状変化の大きいところでは数kwの電力が必
要である。また、遮蔽板やエヤーカーテンは圧延機の直
前直後の10m以内では高圧デスケーリング水の噴射の
影響が大きく、鉄鋼の熱間圧延ラインでは効果がない。
However, the blower fan consumes a large amount of power, and requires several kilowatts of power in areas where the shape of the material changes significantly, such as before and after the rolling mill. In addition, shielding plates and air curtains are greatly affected by the injection of high-pressure descaling water within 10 meters immediately before and after the rolling mill, and are not effective in hot rolling lines for steel.

〈発明の概要〉 本発明は上記した従来技術の問題を解決するために成さ
れたもので、検出器の光路に遠赤外線を照射し、該光路
内の霧滴を加熱し、気化させることを基本的な特徴とす
るものである。
<Summary of the Invention> The present invention was made in order to solve the above-mentioned problems of the prior art, and involves irradiating the optical path of a detector with far infrared rays to heat and vaporize the mist droplets in the optical path. This is a basic feature.

〈実施例〉 以下本発明の一実施例を図面にJ&づいて説明する。<Example> An embodiment of the present invention will be described below with reference to the drawings.

第1図及び第2図において通過検出器1の場合につき説
明する。2はその検出光路である。本発明においてはこ
の検出光路2に遠赤外線を照射し光路2に漂う霧滴を加
熱気化させる。この実施例では検出器1の近傍に遠赤外
線スポット加熱器3を配置させここから遠赤外線を照射
している。4はその照射範囲であり、材料7上の検出器
の視野5に重なって材料表面を照射している。6はその
材料表面照射範囲を示している。
The case of the passage detector 1 will be explained in FIGS. 1 and 2. 2 is its detection optical path. In the present invention, this detection optical path 2 is irradiated with far infrared rays to heat and vaporize the mist droplets floating in the optical path 2. In this embodiment, a far-infrared spot heater 3 is arranged near the detector 1, and far-infrared rays are irradiated from there. 4 is its irradiation range, which overlaps the field of view 5 of the detector on the material 7 and irradiates the material surface. 6 indicates the irradiation range of the material surface.

この遠赤外線スポット加熱器3からの遠赤外線は照射範
囲4の空間に漂う霧滴に吸収されて、霧滴を加熱気化さ
せる。遠赤外線の波長は3μm −10μmであり、一
方霧滴を構成する水や浦の有機材料の殆どは3−25μ
m位の波長域に多くの吸収スペクトルを有しているため
、熱吸収効率は極めて高く、はぼ連続的に検出光路2内
に侵入する霧状の粒子を完全に帰化し検出光路2の霧を
はらすことが出来る。
The far infrared rays from the far infrared spot heater 3 are absorbed by the mist droplets floating in the space of the irradiation range 4, and heat and vaporize the mist droplets. The wavelength of far infrared rays is 3μm - 10μm, while most of the organic materials in the water and pools that make up the mist droplets are 3μm - 25μm.
Since it has many absorption spectra in the wavelength range of about m, the heat absorption efficiency is extremely high, completely naturalizing the mist-like particles that almost continuously enter the detection optical path 2, and eliminating the fog in the detection optical path 2. You can relieve yourself.

この実施例では検出器1の近傍に更に送風ファン8を設
置して照射範囲4以外の部分の霧滴をパージするように
している。
In this embodiment, a blower fan 8 is further installed near the detector 1 to purge mist droplets outside the irradiation range 4.

材料7表面に到達した遠赤外線の一部は反射して検出器
1の視デフ内に入るが、検出器lの分光感度は3ル未層
の領域にしか存在しないため検出性能には#饗しない。
A part of the far-infrared rays that reach the surface of material 7 are reflected and enter the visual differential of detector 1, but the spectral sensitivity of detector 1 exists only in the unlayered region, so the detection performance is affected. do not.

〈発明の効果〉 以上説明したように本発明によれば熱間圧延ライン等に
おいても霧滴を効果的に排除することが出来、しかも検
出精度に悪影響を及ぼすことがない、また、消費電力も
少ない等に効果・がある。
<Effects of the Invention> As explained above, according to the present invention, fog droplets can be effectively eliminated even in hot rolling lines, etc., without adversely affecting detection accuracy, and with reduced power consumption. It is effective in small quantities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法の一実施例を説明するための正面図、
第2図はその側面図、第3図は圧延機前後の検出器の配
置を示す配置図、第4図は従来の材料通過検出方法を示
す説明図である。 l・・・検出器、2・・・検出光路、3・・・遠赤外線
スポット加熱器、4・・・照射範囲、5・・・視野、6
・・・材料表面照射範囲、7・・・材料。
FIG. 1 is a front view for explaining one embodiment of the method of the present invention;
FIG. 2 is a side view thereof, FIG. 3 is a layout diagram showing the arrangement of detectors before and after the rolling mill, and FIG. 4 is an explanatory diagram showing a conventional material passage detection method. l...Detector, 2...Detection optical path, 3...Far infrared spot heater, 4...Irradiation range, 5...Field of view, 6
...Material surface irradiation range, 7...Material.

Claims (1)

【特許請求の範囲】[Claims] 検出器の光路に遠赤外線を照射し、該光路内の霧滴を加
熱し、気化させることを特徴とする検出器光路の霧滴除
去方法。
A method for removing fog droplets from a detector optical path, which comprises irradiating the optical path of a detector with far infrared rays to heat and vaporize the fog droplets in the optical path.
JP15749886A 1986-07-04 1986-07-04 Removing method for fog drip from detector optical path Pending JPS6312920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15749886A JPS6312920A (en) 1986-07-04 1986-07-04 Removing method for fog drip from detector optical path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15749886A JPS6312920A (en) 1986-07-04 1986-07-04 Removing method for fog drip from detector optical path

Publications (1)

Publication Number Publication Date
JPS6312920A true JPS6312920A (en) 1988-01-20

Family

ID=15650996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15749886A Pending JPS6312920A (en) 1986-07-04 1986-07-04 Removing method for fog drip from detector optical path

Country Status (1)

Country Link
JP (1) JPS6312920A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5716913A (en) * 1995-04-18 1998-02-10 Asahi Denka Kogyo Kabushiki Kaisha Metal working oil composition and method of working metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5716913A (en) * 1995-04-18 1998-02-10 Asahi Denka Kogyo Kabushiki Kaisha Metal working oil composition and method of working metal

Similar Documents

Publication Publication Date Title
US6741345B2 (en) Method and apparatus for in-process liquid analysis by laser induced plasma spectroscopy
DE69820308T2 (en) Microtechnological dissipative optical-thermal gas sensor
KR940020040A (en) How to characterize the radical formation process
KR20210083268A (en) Optical particle sensors, especially exhaust gas sensors
CN109520929B (en) Stray light suppression device for laser detection of oil and gas pollutants
US7262414B1 (en) Thermal luminescence surface contamination detection system
JP2013522651A (en) Beam scattering laser monitor
CN110018092B (en) Gas boiler flue gas particulate matter detection device
US3633031A (en) Can weld side-seam defect detector utilizing infrared detection means and collimator fiber optics
nnik Clausen Local measurement of gas temperature with an infrared fibre-optic probe
CN103969210A (en) Open type CO2/H2O monitoring device based on non-dispersive infrared principle
JPS6312920A (en) Removing method for fog drip from detector optical path
KR101960226B1 (en) Apparatus for measuring black carbon
Li et al. Time-resolved imaging for investigating laser-material interactions during laser irradiation cleaning on murals
US20060115778A1 (en) Modular infrared irradiation apparatus and its corresponding monitoring devices
KR102130341B1 (en) 2D Measurement of Concentration and Temperature of Fine Particle Precursor and Active Control Thereof
CN106596491A (en) Device and method for measuring hydroxyl content in ultraviolet-level fused quartz material
Pehrson et al. Wall-normal fleet velocimetry in a canonical hypersonic inlet
DE102008015133A1 (en) Apparatus for collecting process light during laser machining, comprises lens in machining head, narrow annular mirror over lens edge and reflective ellipse for directing light to detector
DE3925595C2 (en) Method and device for measuring the dew point of gases
US4155651A (en) Apparatus for measuring the total mass of particles suspended in a fluid
JPS5637551A (en) Ionization detector of electron capture
US3395285A (en) Method and means for preventing reflection of radiation
CN111337400A (en) Particulate matter measuring chamber structure of forward scattering method
JPS5927793A (en) Protective cover for optical path of laser light