JPS63126596A - Decoloring method for soluble dye by microorganism - Google Patents

Decoloring method for soluble dye by microorganism

Info

Publication number
JPS63126596A
JPS63126596A JP27258386A JP27258386A JPS63126596A JP S63126596 A JPS63126596 A JP S63126596A JP 27258386 A JP27258386 A JP 27258386A JP 27258386 A JP27258386 A JP 27258386A JP S63126596 A JPS63126596 A JP S63126596A
Authority
JP
Japan
Prior art keywords
soluble dye
culture
soluble
noc
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27258386A
Other languages
Japanese (ja)
Other versions
JPH0411275B2 (en
Inventor
Ryuichiro Kurane
隆一郎 倉根
Tomoo Suzuki
智雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP27258386A priority Critical patent/JPS63126596A/en
Priority to US07/031,373 priority patent/US4772333A/en
Publication of JPS63126596A publication Critical patent/JPS63126596A/en
Publication of JPH0411275B2 publication Critical patent/JPH0411275B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To easily decolor a soluble dye by bringing the soluble dye into contact with the cultured matter or culture treated obtd. by culturing microorganisms which belong to the Rhodococcus genus and have microorganism flocculating agent NOC-1 generatability in the presence of an inorg. salt. CONSTITUTION:The soluble dye is brought into contact with the cultured matter or culture-treated matter obtd. by culturing the microorganisms (e.g., Phodococcus Erythropores KR-S-1 strain) which belong to the Rhodococcus genus and have the microorganism flocculating agent NOC-1 generatability in the presence of the inorg. salt (e.g., calcium chloride). This soluble dye is a black dye resulted by compounding of the amino acid formed in the distillation residue of, for example, alcohol fermentation and reducing saccharides. The decoloration of the soluble dye which is considered most difficult is facilitated if the above-mentioned method is applied.

Description

【発明の詳細な説明】 1)産業上の利用分野 本発明は、微生物による可溶性色素の脱色方法に関する
ものであり、染色工場色素・顔料製造工場等の廃水処理
分野、各種の発酵液の処理、又各種の化学工場における
脱色工程、さらに食品製造における脱色等の広範囲にわ
たる利用が期待されるものである。
DETAILED DESCRIPTION OF THE INVENTION 1) Industrial Field of Application The present invention relates to a method for decolorizing soluble pigments using microorganisms, and is applicable to the field of wastewater treatment of dyeing factory dyes and pigment manufacturing factories, treatment of various fermentation liquids, It is also expected to be used in a wide range of applications, including decolorization processes in various chemical factories and in food manufacturing.

2)従来技術 可溶性色素を水系から脱色する脱色方法としては、従来
、有効なものはほとんどなく、わずかに活性炭に吸着さ
せて脱色する方法がとられていた。
2) Prior Art Conventionally, there have been few effective decolorization methods for decolorizing soluble dyes from aqueous systems, and a method of decolorizing them by slightly adsorbing them onto activated carbon has been used.

また、脱色そのものではないが、さらし粉等による漂白
がある。しかしながら前者は多量の活性炭を必要とし、
コストがかかるため特別な場合を除いては使われていな
い、また、後者は単に見掛は上、脱色させたに過ぎない
ものであり、依然として着色物質である可溶性色素の本
体は水に溶けている。
Although it is not bleaching itself, there is also bleaching using bleaching powder. However, the former requires a large amount of activated carbon;
Due to its high cost, it is not used except in special cases, and the latter is merely decolorized in appearance, and the main body of the soluble pigment, which is still a coloring substance, dissolves in water. There is.

他方、可溶性色素は遠心分離等の物理的方法では脱色除
去することは不可能であり、わずかに活性炭あるいはイ
オンカラムクロマトによる吸着する方法が考えられるに
すぎない、特に、公害関係においては、BOD (生物
的酸素要求量)の原因となる炭素源等の物質の除去、脱
色、脱臭の3つの課題があり現在では、活性汚泥法等に
よりBODの除去はほとんど完成の域に達しているが、
脱色については活性汚泥法では全くといってよいはど不
可能である。
On the other hand, it is impossible to decolorize and remove soluble pigments by physical methods such as centrifugation, and only a few methods of adsorption using activated carbon or ion column chromatography can be considered.Especially in the field of pollution, BOD ( There are three issues: removal of carbon sources and other substances that cause biological oxygen demand (biological oxygen demand), decolorization, and deodorization.Currently, BOD removal has almost been completed using activated sludge methods, etc.
Decolorization is almost completely impossible with the activated sludge method.

このため、大量に水を用いて着色した廃水を大希釈して
放流したり、あるいは着色した廃水・醗酵液などを膨大
なエネルギーとコストをかけて水分を蒸発させ着色液を
濃縮した後、船で外洋に運び外洋投棄したり、燃焼させ
たりする方法等がとられている。また、外洋投棄のよう
な方法では目に見えない形で処理しようとしているに過
ぎず、地球規模で汚染を考えた場合、ただ単に全面に薄
く広く拡散させているに過ぎず、着色物質をバラまいて
いることには変わりはない。
For this reason, large amounts of water are used to greatly dilute colored wastewater before being discharged, or colored wastewater and fermentation liquids are evaporated and the colored liquid is concentrated at a huge amount of energy and cost, and then shipped to ships. Methods include transporting the waste to the open ocean and dumping it in the open ocean, or burning it. In addition, methods such as dumping into the open ocean are simply attempting to dispose of the material in an invisible manner, and when considering global pollution, they are simply spreading the colored substances thinly and widely over the entire surface. There is no change in the fact that we are in trouble.

このように、いづれの方法を採用しても脱色方法として
満足しうるちはないのが実情である。
As described above, the reality is that no matter which method is adopted, there is no way to be satisfied as a decolorizing method.

3)発明が解決しようとする問題点 このような背景のもとに、本発明者らは可溶性色素を水
系より凝集沈澱させ、固液分離させることが可能になれ
ばその色素凝集沈澱物を集め、焼却処分することも容易
になり、経済的にもその利するところは大きいとの観点
から二次公害の恐れのない安全な可溶性色素の脱色方法
について、種々の研究開発を重ねたと′ころ、本発明者
らが先に開発したロードコツカス由来の微生物産生凝集
剤のNOC−1(特許第1096062号)がすぐれた
脱色効果を有することを見出し、本発明を完成させるに
至った。
3) Problems to be Solved by the Invention Based on this background, the present inventors have proposed that if it becomes possible to coagulate and precipitate soluble pigments from an aqueous system and perform solid-liquid separation, the pigment coagulates and precipitates will be collected. From the viewpoint that it is easy to dispose of by incineration and has great economic benefits, we have conducted various research and development on a safe method of decolorizing soluble dyes without the risk of secondary pollution. The present inventors discovered that NOC-1 (Patent No. 1,096,062), a microorganism-produced flocculant derived from Rhodococcoccus, which was previously developed by the present inventors, has an excellent decolorizing effect, leading to the completion of the present invention.

すなわち、本発明はロードコツカス属に属し、微生物凝
集剤NOC−1生産能を有する微生物を培養し得られた
培養物、又は培養処理物と無機塩の存在下で可溶性色素
と接触させ可溶性色素を脱色せしめる方法に関するもの
である。
That is, the present invention relates to a culture obtained by culturing a microorganism belonging to the genus Rhodococchus and having the ability to produce the microbial flocculant NOC-1, or a culture product obtained by contacting a soluble pigment with a soluble pigment in the presence of an inorganic salt to decolorize the soluble pigment. It is related to the method of forcing.

4)問題点を解決するための手段 本発明に使用される菌株は、ロードコツカス属に属し、
微生物凝集剤NOC−1生産能を有する菌株であればよ
いが、その代表例示菌株としてロードコツカス・エリス
ロポレス(旧:ノカルディア・エリスロポレス) ’!
IR−5−1株(FERM P3530号)が寄託され
ている。なお、旧名;ノカルディア・エリスロポレスは
1980年に国際微生物命名規約委員会により、ロード
コツカス・エリスロポレスに再整理・再分類されている
4) Means for solving the problems The bacterial strain used in the present invention belongs to the genus Rhodococchus,
Any strain can be used as long as it has the ability to produce the microbial flocculant NOC-1, but a representative example is Rhodococcus erythropores (formerly Nocardia erythropores)!
The IR-5-1 strain (FERM No. P3530) has been deposited. The former name Nocardia erythropores was reorganized and reclassified as Rhodococcus erythropores by the International Committee on Nomenclature of Microorganisms in 1980.

、i:のような菌株の培地としては、グルコース、フラ
クトース等の炭素源、尿素、硫安等の無機窒素源、酵素
エキス等の存機窒素源、その他、無機塩類、ビタミン類
等の栄aimが使用される。
The culture medium for the strain such as , i: contains carbon sources such as glucose and fructose, inorganic nitrogen sources such as urea and ammonium sulfate, residual nitrogen sources such as enzyme extracts, and nutrients such as inorganic salts and vitamins. used.

培養は液体培養でも個体培養でもよい、培養は、初発G
INがpu4〜11.温度20〜40℃の範囲で行われ
、通常は通気攪拌培養で行い、その際、通気量を培地量
に対する通気比で1以下にするのが望ましい、約3日間
〜1週間で培養を終了し、凝集能を有する培養物を得る
。遠心分離によって菌株を除去した上澄液によりエタノ
ール沈澱等および0.8&!和硫安塩析により凝集物質
を分M晴製し、培養処理物を回収できる。しかしながら
、本発明では、精製した培養処理物を使用するまでもな
く培養そのものを使用してもよく、また菌体自体も凝集
能を存するために、そのまま使用することができる。
The culture may be liquid culture or solid culture.
IN is pu4~11. The culture is carried out at a temperature in the range of 20 to 40°C, and is usually carried out by aeration with agitation. At this time, it is desirable to keep the aeration volume to the volume of the medium at a ratio of 1 or less, and the culture is completed in about 3 days to 1 week. , to obtain a culture with flocculation ability. The supernatant from which the bacterial strain was removed by centrifugation was used for ethanol precipitation, etc. and 0.8&! The aggregated substances can be isolated by ammonium sulfur salting out, and the cultured product can be recovered. However, in the present invention, the culture itself may be used without using the purified culture product, and since the bacterial cells themselves have a flocculating ability, they can be used as they are.

また、ここで使用されている無機塩としては、水中でカ
チオンを生成し得るものが望ましく、好ましくは2価以
上の多価カチオンを生成し得るものがよく、例えば塩化
カルシウム等のカルシウムイオンを生成するものが有利
に用いられる。しかし、これら無機塩の添加量は可溶性
色素の種類によって決めらるのが望ましく一般的に特に
制約されるものではない。
In addition, the inorganic salt used here is desirably one that can generate cations in water, preferably one that can generate polyvalent cations of divalent or higher valences, such as calcium chloride, which can generate calcium ions. Those that do are used to advantage. However, the amount of these inorganic salts added is desirably determined by the type of soluble dye and is generally not particularly restricted.

本発明において、脱色の対象となる可溶性色素の代表的
なものとして、例えばアルコール醗酵の蒸溜残液中に生
成するアミノ酸と還元性糖類が複合した黒色色素、糖蜜
中に生成するベンゼン核を有するアミノ酸由来の黒色色
素等メラノイジン系色素、各種の可溶性色素、及びバル
ブの製造におけるリグニン由来の有色色素等が例示され
、−C的には各々の廃水処理に際し、好適に実施される
In the present invention, representative soluble pigments to be decolorized include, for example, black pigments that are a complex of amino acids and reducing sugars produced in the distillation residue of alcohol fermentation, and amino acids with benzene nuclei produced in molasses. Examples include melanoidin-based pigments such as black pigments derived from natural pigments, various soluble pigments, and colored pigments derived from lignin in the manufacture of bulbs.

本発明の方法は、一般的には可溶性色素着色液に対し、
無機塩を添加し、次いで、本発明によるロードコツカス
属細閑の培養物、又は培養処理物を加えた後に、着色液
を中性から微アルカリ性にすることによって実施される
。その実施方法は特に制約されるものではない。
The method of the present invention generally comprises: a soluble dye coloring solution;
This is carried out by adding an inorganic salt and then adding the culture or culture treatment of Rhodococcus sp. according to the present invention, and then making the coloring solution from neutral to slightly alkaline. The implementation method is not particularly limited.

5)実施例 次に本発明を実施例により、さらに詳細に説明する。5) Examples Next, the present invention will be explained in more detail with reference to Examples.

なお、以下において示すように本発明による着色液の脱
色活性は、着色液の吸光度を測定することによって求め
た。
In addition, as shown below, the decolorizing activity of the colored liquid according to the present invention was determined by measuring the absorbance of the colored liquid.

(吸光度による脱色活性測定方法) 反応後一定時間(5分、30分又は60分)反応液を静
置し、処理液の上清部の吸光度を分光光学針を用いて測
定した。(可溶性色素の種類によっては静置せず、反応
後直ちに遠心(1,OOOgX 1秒)を行いその上澄
部の吸光度を測定して求めた。)なお、波長は可溶性色
素の最大吸収波長等で決めた。
(Method for Measuring Decolorizing Activity by Absorbance) After the reaction, the reaction solution was allowed to stand for a certain period of time (5 minutes, 30 minutes, or 60 minutes), and the absorbance of the supernatant of the treated solution was measured using a spectroscopic optical needle. (Depending on the type of soluble dye, the measurement was determined by centrifuging (1,00gX 1 second) immediately after the reaction instead of allowing it to stand still and measuring the absorbance of the supernatant.) The wavelength is the maximum absorption wavelength of the soluble dye, etc. I decided.

(培養処理物(微生物産生凝集剤NOC−1>の調製) グルコース10g 5KH−Po42g−にz 1lP
O45g 1Mg5O40,2g 、尿素0.5g、酵
母エキス0.5gを蒸留水に11に溶かし、培地pHを
pH7,5に調整した培地100 mlを、500m 
lの三角フラスコにとり、オートクレーブにより120
℃、15分間無菌殺菌した後、ロードコツカス・エリス
ロポレス(旧名;ノカルディア・エリスロポレス)にR
−3−1(FERM−P3530号)を1白金耳の量で
フラスコに移植し、30℃にて、ロータリー培養を行い
、4日間培養して培養物を得た。この培養物から冷却遠
心(10,000gXIO分)により菌体を除去し、0
.8飽和になるまで硫安を添加し、(又は60%になる
までエタノールを加え)、5℃にて一昼夜放置し、硫安
塩析(又はエタノール沈澱)を行い、沈澱部を得る。
(Preparation of cultured product (microorganism-produced flocculant NOC-1)) Glucose 10g 5KH-Po42g-z 1lP
500ml of a medium prepared by dissolving 5g of O4, 1Mg5O40.2g, 0.5g of urea, and 0.5g of yeast extract in distilled water and adjusting the medium pH to pH 7.5.
Transfer to a 120-liter Erlenmeyer flask and autoclave to 120
After aseptic sterilization at ℃ for 15 minutes, R.
-3-1 (FERM-P3530) was transplanted into a flask in an amount of 1 platinum loop, rotary cultured at 30°C, and cultured for 4 days to obtain a culture. Bacterial cells were removed from this culture by refrigerated centrifugation (10,000 g
.. 8 Add ammonium sulfate until saturation (or add ethanol until 60%), leave overnight at 5°C, perform ammonium sulfate salting out (or ethanol precipitation), and obtain a precipitate.

この沈澱部を蒸留水に溶解させた後ビスキングチューブ
を用いて蒸留水に対して透析を行い硫安(又はエタノー
ル)を除去し、凝集剤NOC−1含有水溶液を得た。こ
れらの操作を何回か繰り返し、さらに凍結乾燥等により
水分をとばして凝集剤NOC−1を得た。これらの操作
により培養液1(より凝集剤NOC−1を100mgを
得た。
This precipitate was dissolved in distilled water and then dialyzed against distilled water using a Visking tube to remove ammonium sulfate (or ethanol) to obtain an aqueous solution containing the flocculant NOC-1. These operations were repeated several times, and the water was removed by freeze-drying or the like to obtain a flocculant NOC-1. Through these operations, 100 mg of the flocculant NOC-1 was obtained from culture solution 1.

(実施例 1) 顔料廃水97−iに1%無機塩水溶液(Ca”又は八j
l”)2sj!を加え混合したものに、凝集剤NOC−
1水溶液1aj! (0,1mg NOC−1/ ml
>を加え混和する。比較のため、何らの脱色剤を加えな
い顔料廃水および顔料廃水に無機塩(又は凝集剤)を加
えたものについても測定した。なお、本廃水系の最大吸
収波長は425ruwにあり、処理水の吸光度は425
mmにて表示した。その結果を表−1に示す。
(Example 1) A 1% aqueous inorganic salt solution (Ca" or 8j) was added to pigment wastewater 97-i.
2sj! was added and mixed, the flocculant NOC-
1 aqueous solution 1aj! (0.1mg NOC-1/ml
Add > and mix. For comparison, measurements were also conducted on pigment wastewater to which no decolorizing agent was added and pigment wastewater to which an inorganic salt (or flocculant) was added. The maximum absorption wavelength of this wastewater system is 425ruw, and the absorbance of the treated water is 425ruw.
Displayed in mm. The results are shown in Table-1.

表1から明らかのように、本発明図では無機塩の併用下
で凝集剤NOC−1を添加すると可溶性色素は5分後に
は明らかに見える程の大きさのフロックを形成し凝集沈
澱する。このことにより可溶性色素により着色した顔料
廃水が脱色されていることが明らかとなった。
As is clear from Table 1, in the present invention, when the flocculant NOC-1 is added in combination with an inorganic salt, the soluble dye forms flocs of a clearly visible size and coagulates and precipitates after 5 minutes. This revealed that the pigment wastewater colored by the soluble dye was decolorized.

表−1 (実施例、(翁゛5 アルコール醗酵は廃塘密を原料(培地栄養源)として酵
母によりアルコール醗酵をさせる。アルコールを蒸留し
て得た後の残留部はアルコール醗酵母液と呼ばれ、廃糖
密由来のものが醗酵・蒸留等の過程でメラノジン色素と
呼ばれる強固な可溶性色素が形成される。このメラノイ
ジン色素は可溶性の黒褐色の色素として、また、はとん
どの処理方法を持ってしても水より脱色除去るすことが
不可能な着色色素として有名なものである。現在、この
メラノイジン色素を含有したアルコール醗酵母液は膨大
なエネルギーとコストをかけてtmlilされた後に、
外洋投棄等により処分されている。
Table 1 (Example, (翁゛5) Alcohol fermentation involves using yeast as a raw material (medium nutrient source) to carry out alcohol fermentation.The residue obtained by distilling alcohol is called alcoholic yeast liquid. A strong soluble pigment called melanoidin pigment is formed from waste molasses during fermentation, distillation, etc.This melanoidin pigment is a soluble dark brown pigment, and can be processed using most processing methods. It is famous as a colored pigment that cannot be removed by decolorization from water.Currently, alcoholic yeast liquid containing this melanoidin pigment is tmlilned, which requires a huge amount of energy and cost.
It is disposed of by dumping into the open ocean.

このアルコール醗酵母液を用いて、その処理が最も困難
とされている可溶性色素メラノジン色素への脱色方法の
適用を試みた。
Using this alcoholic yeast solution, we attempted to apply a decolorization method to the soluble pigment melanodin, which is considered to be the most difficult to treat.

アルコール醗酵母液をpH8に調整した後、念のため、
遠心(10,000g X10分)により沈澱部を除去
し、可溶性部分のみを得る。この可溶性のメラノイジン
色素含有のアルコール醗酵母液90+*j!に対して、
10%塩化カルシウム液51aIlと凝集剤N○c−i
水溶液(0,1mg NOC−1/ −t) 5mgを
混和させ、反応系をpH8に調整し、1時間放置する。
After adjusting the alcoholic yeast solution to pH 8, just to be sure,
The precipitated portion is removed by centrifugation (10,000 g x 10 minutes) to obtain only the soluble portion. This alcoholic yeast solution containing soluble melanoidin pigment 90+*j! For,
10% calcium chloride solution 51aIl and flocculant N○c-i
Mix 5 mg of an aqueous solution (0.1 mg NOC-1/-t), adjust the reaction system to pH 8, and leave it for 1 hour.

1時間放置後の上清部の吸光度を波長550n−にて、
また沈澱部体積(%)を求めて脱色活性とした。
After standing for 1 hour, the absorbance of the supernatant was measured at a wavelength of 550n.
In addition, the volume (%) of the precipitate was determined and used as the decolorizing activity.

結果を表−2に示す。The results are shown in Table-2.

この結果、本脱色方法をその処理が最も困難とされてい
るメラノイジン色素含存のアルコール醗酵母液に適用さ
せたところ、効率的に脱色できることが判明した。
As a result, when this decolorization method was applied to an alcoholic yeast solution containing melanoidin pigment, which is considered to be the most difficult to treat, it was found that it could be effectively decolorized.

表−2 (実施例 3) バルブ廃液は、アルコール醗酵母液とは成分的には異な
り、可溶性色素は木材から紙を製紙する過程で抽出され
てくるリグニン系のものが占めているといわれている。
Table 2 (Example 3) Valve waste liquid is different in composition from alcoholic yeast liquid, and it is said that the soluble pigments are dominated by lignin-based substances extracted during the process of making paper from wood. .

このバルブ廃液には黒液と呼ばれる廃水と、晒アルカリ
廃水と呼ばれる2種類の廃水がある。共にその着色のた
め、極力、工場以外には出さないように努めている廃水
の一つであり、着色物質の脱色除去が最も困難な廃水の
一つとされている。本脱色方法の適用を試みた。
There are two types of valve wastewater: wastewater called black liquor and bleached alkaline wastewater. Because of its color, it is one of the types of wastewater that we try our best not to release outside of factories, and it is said to be one of the most difficult types of wastewater to decolorize and remove colored substances. An attempt was made to apply this decolorization method.

この2種類のバルブ廃液90m gに対して、lO%塩
化塩化カルシウム−5■l集剤NOC−1水溶液5陽1
  (0,1mg  NOC−1/mAりを加えたく反
応液のpHニア、5〜7.8 )  1時間放置し、波
長415n、sにて上清部の吸光度を測定した。
For 90 mg of these two types of valve waste liquid, add 10% calcium chloride-5 l aqueous solution of collector NOC-1
(The pH of the reaction solution after adding 0.1 mg NOC-1/mA was 5 to 7.8.) After being left for 1 hour, the absorbance of the supernatant was measured at a wavelength of 415 nm and s.

また、可溶性色素のフロック化、および凝集沈澱を促進
する目的で、懸濁物質としてカオリン(粘土の一種)を
最終濃度が500ppmになるように添加した。結果を
表−3に示す。
Further, in order to promote flocculation and coagulation and precipitation of soluble pigments, kaolin (a type of clay) was added as a suspended substance to a final concentration of 500 ppm. The results are shown in Table-3.

表−3に示す如く、本脱色方法により2種類のバルブ廃
液である黒液す黒色は薄れ、また、晒アルカリ廃水の褐
色も薄くなり脱色されていることが認められた。さらに
懸濁物質を添加しておいた系では、フロックの形成も大
きくなり凝集沈澱速度も大幅に向上し、処理液(上清部
)脱色効率が促進された。
As shown in Table 3, by this decolorization method, the black liquor, which is the two types of valve waste liquids, faded, and the brown color of the bleached alkaline wastewater also became lighter, indicating that it was decolorized. Furthermore, in the system in which suspended matter was added, the formation of flocs became larger, the rate of coagulation and sedimentation was significantly improved, and the decolorization efficiency of the treated solution (supernatant) was promoted.

表−3 (実施例 4) 廃塘密(モラセス)は、サトウキビの煮汁から砂糖を精
製した残りの液である。この廃塘密にもまだかなりの量
の砂糖と、またミネラル分も多量に含有しているため、
醗酵工業における微生物培養の安価な培地源として多用
されており、現在の醗酵工業を経済的にささえている基
になっている。
Table 3 (Example 4) Molasses is the remaining liquid after refining sugar from sugarcane broth. This waste dump still contains a considerable amount of sugar and minerals, so
It is frequently used as an inexpensive medium source for microbial culture in the fermentation industry, and is the basis for economically supporting the current fermentation industry.

しかしながら、廃糖密はどす黒く、通常の方法では脱色
できず醗酵工業の泣き所になっているといって差支えな
い。
However, it is safe to say that waste molasses is a dark black color that cannot be decolorized using normal methods, and has become a weak point for the fermentation industry.

廃糖密を培養源として、酵母を培養した後の廃糖密廃水
に適用を試みた。廃糖密廃水95m+ 1に対して、1
0%塩化カルシウム?flE2.5mjlおよび凝集剤
NOC−1含有培養液2.5mjlを加え、反応系のP
Hを8に調整した。微小フロックが明らかに形成されて
いるが、沈降に時間を要するため遠心(1,oOQg 
X 1秒)により沈降を促進した。その上清部の吸光度
を55on−にて、また沈澱部体積(%)を求めた。結
果を表−4に示す。
Using waste molasses as a culture source, we tried to apply it to waste molasses wastewater after culturing yeast. 1 for 95m+ 1 of waste molasses wastewater
0% calcium chloride? Add 2.5 mjl of flE and 2.5 mjl of culture solution containing the flocculant NOC-1, and reduce the P of the reaction system.
H was adjusted to 8. Although micro flocs are clearly formed, since sedimentation takes time, centrifugation (1, oOQg
x 1 sec) to promote sedimentation. The absorbance of the supernatant was measured at 55 on-, and the volume (%) of the precipitate was determined. The results are shown in Table 4.

表−4に示すように、本発明図では無機塩存在下で培養
液を添加すると、廃w密由来の可溶性色素がフロックを
形成し、廃液の黒褐色が薄れ脱色されていることが判明
した。
As shown in Table 4, in the present invention, when the culture solution was added in the presence of inorganic salts, the soluble pigments derived from the waste liquid formed flocs, and the blackish brown color of the waste liquid faded and was decolorized.

表−4 4、発明の効果 以上に示した実験より明らかのように、本発明方法を適
用すると最もむずかしいといわれている可溶性色素の脱
色が容易にできることが判明した。
Table 4 4. Effects of the Invention As is clear from the experiments shown above, it has been found that the method of the present invention can easily decolorize soluble dyes, which are said to be the most difficult.

Claims (1)

【特許請求の範囲】[Claims] ロードコッカス属に属し、微生物凝集剤NOC−1生産
能を有する微生物を培養し得られた培養物又は培養処理
物と無機塩の存在下で、可溶性色素と接触させ可溶性色
素を脱色せしめることを特徴とする微生物による可溶性
色素の脱色方法。
The feature is that a microorganism belonging to the genus Rhodococcus and having the ability to produce the microbial flocculant NOC-1 is brought into contact with a soluble pigment in the presence of an inorganic salt and a culture or culture-treated product obtained by culturing the microorganism to decolorize the soluble pigment. A method for decolorizing soluble pigments using microorganisms.
JP27258386A 1986-11-14 1986-11-14 Decoloring method for soluble dye by microorganism Granted JPS63126596A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27258386A JPS63126596A (en) 1986-11-14 1986-11-14 Decoloring method for soluble dye by microorganism
US07/031,373 US4772333A (en) 1986-11-14 1987-03-30 Preparation and method for bioprecipitation of soluble pigment in aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27258386A JPS63126596A (en) 1986-11-14 1986-11-14 Decoloring method for soluble dye by microorganism

Publications (2)

Publication Number Publication Date
JPS63126596A true JPS63126596A (en) 1988-05-30
JPH0411275B2 JPH0411275B2 (en) 1992-02-27

Family

ID=17515940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27258386A Granted JPS63126596A (en) 1986-11-14 1986-11-14 Decoloring method for soluble dye by microorganism

Country Status (1)

Country Link
JP (1) JPS63126596A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290903A (en) * 1988-09-26 1990-03-30 Agency Of Ind Science & Technol Flocculant derived from microbe and flocculation method
JP2000140509A (en) * 1998-11-16 2000-05-23 Kansai Kako Kk Novel flocculant and sludge treatment using the same
JP2009066515A (en) * 2007-09-13 2009-04-02 Seiren Co Ltd Method, device, and agent for decoloring dye-containing wastewater
JP2010094593A (en) * 2008-10-15 2010-04-30 Nittetsu Kankyo Engineering Kk Organic waste liquid treatment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290903A (en) * 1988-09-26 1990-03-30 Agency Of Ind Science & Technol Flocculant derived from microbe and flocculation method
JP2000140509A (en) * 1998-11-16 2000-05-23 Kansai Kako Kk Novel flocculant and sludge treatment using the same
JP2009066515A (en) * 2007-09-13 2009-04-02 Seiren Co Ltd Method, device, and agent for decoloring dye-containing wastewater
JP2010094593A (en) * 2008-10-15 2010-04-30 Nittetsu Kankyo Engineering Kk Organic waste liquid treatment method

Also Published As

Publication number Publication date
JPH0411275B2 (en) 1992-02-27

Similar Documents

Publication Publication Date Title
Brown et al. Role of bacterial extracellular polymers in metal uptake in pure bacterial culture and activated sludge—II Effects of mean cell retention time
CN104193010A (en) Microbial composite flocculant
JPS63126596A (en) Decoloring method for soluble dye by microorganism
JPH0411276B2 (en)
Kakii et al. Isolation and characterization of a Ca++-dependent floc-forming bacterium
JP2751862B2 (en) Method for producing microbial flocculant by fermentation method
JPH0290903A (en) Flocculant derived from microbe and flocculation method
JPH08261A (en) Method for erasing or reducing color with azo dyestuff and agent for erasing or reducing color with azo dyestuff
CN101812435A (en) Preparation and extraction process of extracellular lactase
JP3861129B2 (en) Decolorizing method of coloring liquid
Ingols Studies on the Clarification Stage of the Activated Sludge Process: VIII. Uptake of Soluble Organic Substances
JPH0356102A (en) Polysaccharide produced by alkaligenese cupidas and flocculant using the polysaccharide and flocculation
KR100368290B1 (en) Bacillus sp., poly saccharide producing therefrom and wastewater treatment method
US4772333A (en) Preparation and method for bioprecipitation of soluble pigment in aqueous solution
JPS6342686A (en) Production of protease
JPS6147512B2 (en)
JPS62176510A (en) Method of agglomerating crude anthracene utilizing microbe producing agglomeration agent
JPH0730121B2 (en) Polysaccharides, agglomeration / bulking suppression / thickener mainly composed of the same, and method for producing the same
JPH0578309B2 (en)
JPS61219393A (en) Hydrolysis of high polymeric organic substance with enzyme
CN118120924A (en) Fucoidin calcium chelate as well as preparation method and application thereof
SU1527254A2 (en) Method of producing nutrient substrate for growing fodder yeast
SU595374A1 (en) Method of preparing nutrient medium for growing microorganisms
JPS597518B2 (en) Wastewater coagulation treatment method
RU2064455C1 (en) Method of sulfur-containing sewage clearing and discoloration

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term