JPH0411276B2 - - Google Patents

Info

Publication number
JPH0411276B2
JPH0411276B2 JP27258486A JP27258486A JPH0411276B2 JP H0411276 B2 JPH0411276 B2 JP H0411276B2 JP 27258486 A JP27258486 A JP 27258486A JP 27258486 A JP27258486 A JP 27258486A JP H0411276 B2 JPH0411276 B2 JP H0411276B2
Authority
JP
Japan
Prior art keywords
soluble
pigment
wastewater
decolorizing
noc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP27258486A
Other languages
Japanese (ja)
Other versions
JPS63126597A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP27258486A priority Critical patent/JPS63126597A/en
Priority to US07/031,373 priority patent/US4772333A/en
Publication of JPS63126597A publication Critical patent/JPS63126597A/en
Publication of JPH0411276B2 publication Critical patent/JPH0411276B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(1) 産業上の利用分野 本発明は、微生物による可溶性色素の脱色剤に
関するものであり、染色工場色素・顔料製造工場
等の廃水処理分野、各種の発酵液の処理、又各種
の化学工場における脱色工程、さらに食品製造に
おける脱色等の広範囲にわたり利用が期待される
ものである。 (2) 従来技術 可溶性色素を水系から脱色する脱色方法として
は、従来、有効なものはほとんどなく、わずかに
活性炭に吸着させて脱色する方法がとられてい
た。 また、脱色そのものではないが、さらし粉等に
よる漂白がある。しかしながら前者は多量の活性
炭を必要とし、コストがかかるため特別な場合を
除いては使われていない。また、後者は単に見か
け上、脱色させたに過ぎないものであり、依然と
して着色物質である可溶性色素の本体は水に溶け
ている。 他方、可溶性色素は遠心分離等の物理的方法で
は脱色除去することは不可能であるが、わずかに
活性炭あるいはイオンカラムクロマトによる吸着
する方法が考えられるにすぎない。特に、廃水処
理においては、BOD(生物的酸素要求量)の原因
となる炭素源等の物質の除去、脱色、脱臭の3つ
の課題があり現在では、活性泥汚法等により
BODの除去はほとんど完成の域に達しているが、
脱色についは活性汚泥法では全くといつてよいほ
ど不可能である。 このため、大量に水を用いて着色した廃水を大
希釈して放流したり、あるいは着色した廃水、醗
酵液などに膨大なエネルギーとコストをかけて水
分を蒸発させ着色液を濃縮した後、船で外洋に運
び外洋投棄したり、燃焼させたりする方法等がと
られている。また、外洋投棄のような方法では目
に見えない形で処理しようとしているに過ぎず、
地球規模で汚染を考えた場合、ただ単に全面に薄
く広く拡散させているに過ぎず、着色物質をバラ
まいていることには変わりはない。 このように、いづれの方法を採用しても脱色方
法として満足しうるものはないのが実情である。 (3) 発明が解決しようとする問題点 このような背景のもとに、本発明者らは可溶性
色素を水系より凝集沈澱させ、固液分離させるこ
とが可能になればその色素凝集沈澱物を集め、焼
却処分することも容易になり、経済的にもその利
するところは大きいとの観点から二次公害の恐れ
のない安全な可溶性色素の脱色剤について、種々
の研究開発を重ねたところ、本発明者らが先に開
発したロードコツカス由来の微生物産生凝集剤の
NOC−1(特許第1096062号)と無機塩との共存
下において、すぐれた脱色効果を有することを見
出し、本発明を完成させるに至つた。 すなわち、本発明はロードコツカス属細菌の産
生する微生物凝集剤NOC−1と無機塩を構成成
分としてなる可溶性色素脱色剤に関するものであ
る。 (4) 問題点を解決するための手段 本発明に使用される菌株は、ロードコツカス属
に属し、微生物凝集剤NOC−1生産能を有する
菌株であればよいが、その代表例示菌株としてロ
ードコツカス・エリスロポレス(旧;ノカルデイ
ア・エリスロポレス)KR−S−1株(FERM
P3530号)が寄託されている。なお、旧名;ノカ
ルデイア・エリスロポレスは1980年に国際微生物
命名規約委員会により、ロードコツカス・エリス
ロポレスに再整理・再分類されている。 このような菌株の培地としては、グルコース、
フラクトース等の炭素源、尿素、硫安等の無機窒
素源、酵素エキス等の有機窒素源、その他、無機
塩類、ビタミン類等の栄養源が使用される。 培養は液体培養でも固体培養でもよい。培養
は、初発PHがPH4〜11、温度20〜40℃の範囲で行
われ、通常は通気撹拌培養で行い、その際、通気
量を培地量に対する通気比で1以下にするのが望
ましい。約3日間〜1週間で培養を終了し、凝集
能を有する培養物を得る。遠心分離によつて菌株
を除去した上澄液によりエタノール沈澱等および
0.8飽和硫安塩析により凝集物質を分離精製し、
微生物凝集剤NOC−1を回収できる。しかしな
がら、精製した微生物凝集剤NOC−1を用いる
までもなく粗精製物でも十分である。 また、本脱色剤の一方の構成成分である無機塩
としては、水中でカチオンを生成し得るものが望
ましく、好ましくは2価以上の多価カチオンを生
成し得るものがよく、例えば塩化カルシウム等の
カルシウムイオンを生成するものが有利に用いら
れる。しかし、これら無機塩の添加量は可溶性色
素の種類によつて決めらるのが望ましく一般的に
特に制約されるものではない。 本脱色剤により、脱色の対象となる可溶性色素
の代表的なものとして、例えばアルコール醗酵の
蒸溜残液中に生成するアミノ酸と還元性糖類が複
合した黒色色素、糖蜜中に生成するベンゼン核を
有するアミノ酸由来の黒色色素等メラノイジン系
色素、各種の可溶性色素、及びパルプの製造にお
けるリグニン由来の有色色素等が例示され、一般
的には各々の廃水処理に際し、好適に実施され
る。 本脱色剤の調製は、微生物凝集剤NOC−1に
無機塩を適宣混合することにより行われる。 (5) 実施例 次に本発明を実施例により、さらに詳細に説明
する。 なお、以下において示すように本脱色剤による
着色液の脱色活性は、着色液の吸光度を測定する
ことによつて求めた。 (吸光度による脱色活性測定方法) 反応後一定時間(5分、30分又は60分)反応液
を静置し、処理液の上清部の吸光度を分光光学計
を用いて測定した。(可溶性色素の種類によつて
は静置せず、反応後直ちに遠心(1000g×1秒)
を行いその上澄部の吸光度を測定して求めた。)
なお、波長は可溶性色素の最大吸収波長等で決め
た。 (微生物凝集剤NOC−1の調製) グルコース10g、KHzPO42g、K2HPO45g、
MgSO40.2g、尿素0.5g、酵母エキス0.5gを蒸
留水に1に溶かし、培地PHをPH7.5に調整した
培地100mlを、500mlの三角フラスコにとり、オー
トクレーブにより120℃、15分間無菌殺菌した後、
ロードコツカス・エリスロポレス(旧名;ノカル
デイア・エリスロポレス)KR−S−1(FERM
−P3530号)を1白金耳の量でフラスコに移植
し、30℃にて、ロータリー培養を行い、4日間培
養して培養物を得た。この培養物から冷却遠心
(10000g×10分)により菌体を除去し、0.8飽和
になるまで硫安を添加し、(又は60%になるまで
エタノールを加え)、5℃にて一昼夜放置し、硫
安塩析(又はエタノール沈澱)を行い、沈澱部を
得る。 この沈澱部を蒸留水に溶解させた後ビスキング
チユーブを用いて蒸留水に対して透析を行い硫安
(又はエタノール)を除去し、凝集剤NOC−1含
有水溶液を得た。これらの操作を何回か繰り返
し、さらに凍結乾燥等により水分をとばして凝集
剤NOC−1を得た。これらの操作により培養液
1より凝集剤NOC−1を100mgを得た。 実施例 1 あらかじめ、微生物凝集剤NOC−1 0.1mgと
塩化カルシウム(又は塩化アルミニウム)0.02g
を混合した脱色剤を顔料廃水100mlに添加し溶解
させる。比較のため何らの脱色剤を加えてない顔
料廃水及び顔料廃水に凝集剤NOC−1(又は無機
塩)を加えたものについても測定した。なお、本
顔料廃水の最大吸収波長は425nmにあり、吸光
度は波長425nmにて表示した。 その結果を表−1に示す。 表−1から明らかのように、対照区では凝集剤
NOC−1添加の系でわずかに吸光度が下がり着
色が薄れ脱色されているのにすぎない。これに対
し、本発明区の脱色剤添加区では可溶性色素はわ
ずか5分後には明らかにフロツクが目に見えるほ
どの大きさで形成され、凝集沈澱し、顔料色素に
よる着色した顔料廃水が脱色されていることが明
らかになつた。
(1) Field of industrial application The present invention relates to a decolorizing agent for soluble pigments using microorganisms, and is suitable for use in the wastewater treatment field of dyeing factories, dyes, pigment manufacturing factories, etc., the treatment of various fermentation liquids, and various chemical factories. It is expected to be used in a wide range of applications, including decolorization processes and food manufacturing. (2) Prior Art Conventionally, there have been few effective decolorization methods for decolorizing soluble pigments from aqueous systems, and a method of decolorizing them by slightly adsorbing them onto activated carbon has been used. Although it is not bleaching itself, there is also bleaching using bleaching powder. However, the former requires a large amount of activated carbon and is expensive, so it is not used except in special cases. Moreover, the latter is merely decolorized in appearance, and the main body of the soluble pigment, which is the coloring substance, is still dissolved in water. On the other hand, it is impossible to decolorize and remove soluble dyes by physical methods such as centrifugation, but only a few methods of adsorption using activated carbon or ion column chromatography can be considered. In particular, there are three issues in wastewater treatment: removal of substances such as carbon sources that cause BOD (biological oxygen demand), decolorization, and deodorization.
Although BOD removal has almost reached the stage of completion,
Decolorization is completely impossible with the activated sludge method. For this reason, large amounts of water are used to greatly dilute colored wastewater before it is discharged, or a large amount of energy and cost is spent on colored wastewater and fermentation liquid to evaporate water and concentrate the colored liquid before transporting it to a ship. Methods include transporting the waste to the open ocean and dumping it in the open ocean, or burning it. Furthermore, methods such as dumping into the open sea are simply an attempt to dispose of the waste in an invisible manner.
If we consider pollution on a global scale, we are simply dispersing it thinly and widely over the entire surface, and there is no change in the fact that we are distributing colored substances. As described above, the reality is that no matter which method is adopted, none of them is satisfactory as a decolorizing method. (3) Problems to be Solved by the Invention Based on this background, the present inventors have proposed that if it becomes possible to coagulate and precipitate soluble pigments from an aqueous system and perform solid-liquid separation, the coagulated and precipitated pigments can be separated. From the viewpoint that it is easy to collect and dispose of by incineration, and has great economic benefits, we have conducted various research and development on a safe soluble color decolorizer that does not cause secondary pollution. The microorganism-produced flocculant derived from Rhodococcus that the present inventors previously developed
The present inventors have discovered that NOC-1 (Patent No. 1096062) and inorganic salts have an excellent decolorizing effect in coexistence, and have completed the present invention. That is, the present invention relates to a soluble dye decolorizing agent comprising a microbial flocculant NOC-1 produced by Rhodococcoccus bacteria and an inorganic salt as constituent components. (4) Means for Solving the Problems The strain used in the present invention may be any strain that belongs to the genus Rhodococcus and has the ability to produce the microbial flocculant NOC-1. (formerly Nocardia erythropores) KR-S-1 strain (FERM
P3530) has been deposited. The former name, Nocardia erythropores, was reorganized and reclassified as Rhodococcus erythropores in 1980 by the International Committee on Microbial Nomenclature. Culture media for such strains include glucose,
Carbon sources such as fructose, inorganic nitrogen sources such as urea and ammonium sulfate, organic nitrogen sources such as enzyme extracts, and other nutritional sources such as inorganic salts and vitamins are used. Culture may be liquid culture or solid culture. Cultivation is carried out at an initial pH of 4 to 11 and a temperature of 20 to 40°C, and is usually carried out by aeration and agitation. At this time, it is desirable to keep the aeration volume to the volume of the medium at a ratio of 1 or less. The culture is completed in about 3 days to 1 week to obtain a culture having agglutinating ability. The supernatant liquid from which bacterial strains were removed by centrifugation is used for ethanol precipitation, etc.
Separate and purify the aggregated substances by 0.8 saturated ammonium sulfate salting out,
Microbial flocculant NOC-1 can be recovered. However, there is no need to use the purified microbial flocculant NOC-1, and a crudely purified product is sufficient. In addition, the inorganic salt that is one of the components of the present decolorizing agent is desirably one that can generate cations in water, preferably one that can generate polyvalent cations of divalent or higher valences, such as calcium chloride. Those which produce calcium ions are advantageously used. However, the amount of these inorganic salts to be added is desirably determined by the type of soluble dye and is generally not particularly restricted. Typical soluble pigments that can be bleached using this bleaching agent include, for example, black pigments that are a complex of amino acids and reducing sugars that are produced in the distillation residue of alcohol fermentation, and benzene nuclei that are produced in molasses. Examples include melanoidin pigments such as black pigments derived from amino acids, various soluble pigments, and colored pigments derived from lignin in pulp production, and are generally suitably carried out in each wastewater treatment. The present decolorizing agent is prepared by mixing an appropriate amount of an inorganic salt with the microbial flocculant NOC-1. (5) Examples Next, the present invention will be explained in more detail using examples. In addition, as shown below, the decolorizing activity of the colored liquid by this decolorizing agent was determined by measuring the absorbance of the colored liquid. (Decolorizing activity measurement method using absorbance) After the reaction, the reaction solution was allowed to stand for a certain period of time (5 minutes, 30 minutes, or 60 minutes), and the absorbance of the supernatant of the treated solution was measured using a spectrophotometer. (Depending on the type of soluble dye, do not let it stand, but centrifuge immediately after the reaction (1000g x 1 second).
This was determined by measuring the absorbance of the supernatant. )
Note that the wavelength was determined based on the maximum absorption wavelength of the soluble dye. (Preparation of microbial flocculant NOC-1) Glucose 10g, KHzPO 4 2g, K 2 HPO 4 5g,
0.2g of MgSO 4 , 0.5g of urea, and 0.5g of yeast extract were dissolved in distilled water to 100ml, and the pH of the medium was adjusted to 7.5. 100ml of the medium was placed in a 500ml Erlenmeyer flask and sterilized in an autoclave at 120°C for 15 minutes. rear,
Lordococcus erythropores (former name: Nocardia erythropores) KR-S-1 (FERM
-P3530) was transplanted into a flask in an amount of 1 platinum loop, and rotary culture was performed at 30°C for 4 days to obtain a culture. Cells were removed from this culture by refrigerated centrifugation (10,000 g x 10 minutes), ammonium sulfate was added to saturation of 0.8 (or ethanol was added to 60%), and the mixture was left at 5°C overnight. Perform salting out (or ethanol precipitation) to obtain a precipitate. This precipitate was dissolved in distilled water, and then dialyzed against distilled water using a Bisking tube to remove ammonium sulfate (or ethanol) to obtain an aqueous solution containing the flocculant NOC-1. These operations were repeated several times, and the water was removed by freeze-drying to obtain a flocculant NOC-1. Through these operations, 100 mg of flocculant NOC-1 was obtained from culture solution 1. Example 1 In advance, 0.1 mg of microbial flocculant NOC-1 and 0.02 g of calcium chloride (or aluminum chloride)
Add the decolorizing agent mixed with 100ml of pigment wastewater and dissolve. For comparison, measurements were also conducted on pigment wastewater to which no decolorizing agent was added and pigment wastewater to which the flocculant NOC-1 (or inorganic salt) was added. The maximum absorption wavelength of this pigment wastewater is 425 nm, and the absorbance is expressed at the wavelength of 425 nm. The results are shown in Table-1. As is clear from Table 1, in the control plot, flocculant
In the system in which NOC-1 was added, the absorbance decreased slightly and the coloring faded and was simply decolored. On the other hand, in the decolorizing agent-added area of the invention, the soluble pigment clearly forms flocs in a size that is visible after just 5 minutes, coagulates and precipitates, and the pigment wastewater colored by the pigment dye is decolorized. It became clear that

【表】【table】

【表】 実施例 2 アルコール醗酵は廃糖密を原料(培地栄養源)
として酵母によりアルコール醗酵をさせる。アル
コールを蒸留して得た後の残留部はアルコール醗
酵母液と呼ばれ、廃糖密由来のものが醗酵・蒸留
等の過程でメラノジン色素と呼ばれる強固な可溶
性色素が形成される。このメラノイジン色素は可
溶性の黒褐色の色素として、又ほとんどの処理方
法をもつてしても水より脱色除去るすことが不可
能な着色色素として有名なものである。現在、こ
のメラノイジン色素を含有したアルコール醗酵母
液は膨大なエネルギーとコストをかけて濃縮され
た後に、外洋投棄等により処分されている。 このアルコール醗酵母液を用いて、その処理が
最も困難とされている可溶性色素メラノジン色素
への脱色方法の適用を試みた。 アルコール醗酵母液をPH8に調整した後、念の
ため、遠心(10000g×10分)により沈澱部を除
去し、可溶性部分のみを得る。この可溶性のメラ
ノイジン色素含有のアルコール醗酵望液100mlに
対して、あらかじめ調整しておいた凝集剤NOC
−1 0.5mgと塩化カルシウム0.2gを混合した本
脱色剤を混和させ、反応系をPH8に調整し、1時
間放置する。1時間放置後の上清部の吸光度を波
長550nmにて、また沈澱部体積(%)を求めて
脱色活性とした。結果を表−2に示す。 この結果、本脱色剤をその処理が最も困難とさ
れているメラノイジン色素含有のアルコール醗酵
母液に適用させたところ、効率的に脱色できるこ
とが判明した。
[Table] Example 2 Alcohol fermentation uses waste molasses as raw material (nutrient source of culture medium)
Alcohol fermentation is carried out using yeast. The residue obtained by distilling alcohol is called alcoholic yeast liquor, and during fermentation and distillation processes derived from waste molasses, a strong soluble pigment called melanodin pigment is formed. This melanoidin pigment is famous as a soluble black-brown pigment and as a colored pigment that cannot be removed by bleaching with water even with most treatment methods. Currently, alcoholic yeast liquid containing melanoidin pigments is concentrated, consuming a huge amount of energy and cost, and then disposed of by dumping into the open ocean. Using this alcoholic yeast solution, we attempted to apply a decolorization method to the soluble pigment melanodin, which is considered to be the most difficult to treat. After adjusting the alcoholic yeast solution to pH 8, the precipitated portion is removed by centrifugation (10,000 g x 10 minutes) to obtain only the soluble portion. For 100 ml of this alcoholic fermentation liquid containing soluble melanoidin pigment, add the flocculant NOC prepared in advance.
-1 0.5 mg of this decolorizer and 0.2 g of calcium chloride are mixed together, the reaction system is adjusted to pH 8, and the mixture is left for 1 hour. After standing for 1 hour, the absorbance of the supernatant at a wavelength of 550 nm and the volume (%) of the precipitate were determined to determine the decolorizing activity. The results are shown in Table-2. As a result, when this decolorizing agent was applied to an alcoholic yeast solution containing melanoidin pigment, which is considered to be the most difficult to treat, it was found that it could be effectively decolorized.

【表】 実施例 3 パルプ廃液は、アルコール醗酵母液とは成分的
には異なり、可溶性色素は木材から紙を製紙する
過程で抽出されてくるリグニン系のものが占めて
いるといわれている。このパルプ廃液には黒液と
呼ばれる廃水と、晒アルカリ廃水と呼ばれる2種
類の廃水がある。共にその着色のため、極力、工
場以外には出さないように努めている廃水の一つ
であり、着色物質の脱色除去が最も困難な廃水の
一つとされている。本脱色方法の適用を試みた。 この2種類のパルプ廃液100mlに対して、凝集
剤NOC−1 0.5mgと塩化カルシウム0.25gを混
和した脱色剤を加えた。(反応液のPH:7.5〜7.8)
1時間放置し、波長415nmにて上清部の吸光度
を測定した。 結果を表−3に示す。 表−3に示すように、本脱色剤により黒液及び
晒アルカリ廃水ともに脱色された黒色、褐色がそ
れぞれ薄くなることが判明した。
[Table] Example 3 Pulp waste liquid is different in composition from alcoholic yeast liquid, and it is said that the soluble pigments are dominated by lignin-based substances extracted during the process of making paper from wood. There are two types of pulp wastewater: black liquor and bleached alkaline wastewater. Because of its color, it is one of the types of wastewater that we try our best not to release outside of factories, and it is said to be one of the most difficult types of wastewater to decolorize and remove colored substances. We attempted to apply this decolorization method. A decolorizing agent containing 0.5 mg of flocculant NOC-1 and 0.25 g of calcium chloride was added to 100 ml of these two types of pulp waste liquid. (PH of reaction solution: 7.5-7.8)
After being left for 1 hour, the absorbance of the supernatant was measured at a wavelength of 415 nm. The results are shown in Table-3. As shown in Table 3, it was found that the decolorized black and brown colors of both black liquor and bleached alkaline wastewater became lighter with this decolorizing agent.

【表】 4 発明の効果 以上に示した実験結果から明らかのように、本
脱色剤を添加すると、通常はその処理が最もむず
かしいとされている可溶性色素を脱色できること
が明らかになつた。
[Table] 4 Effects of the Invention As is clear from the experimental results shown above, it has become clear that the addition of the present decolorizing agent can decolorize soluble pigments, which are normally considered to be the most difficult to treat.

Claims (1)

【特許請求の範囲】[Claims] 1 ロードコツカス属細菌の産生する微生物凝集
剤NOC−1と無機塩を構成成分としてなる可溶
性色素脱色剤。
1. A soluble pigment decolorizing agent consisting of a microbial flocculant NOC-1 produced by Rhodococcus bacteria and an inorganic salt.
JP27258486A 1986-11-14 1986-11-14 Soluble dye decoloring agent Granted JPS63126597A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27258486A JPS63126597A (en) 1986-11-14 1986-11-14 Soluble dye decoloring agent
US07/031,373 US4772333A (en) 1986-11-14 1987-03-30 Preparation and method for bioprecipitation of soluble pigment in aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27258486A JPS63126597A (en) 1986-11-14 1986-11-14 Soluble dye decoloring agent

Publications (2)

Publication Number Publication Date
JPS63126597A JPS63126597A (en) 1988-05-30
JPH0411276B2 true JPH0411276B2 (en) 1992-02-27

Family

ID=17515955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27258486A Granted JPS63126597A (en) 1986-11-14 1986-11-14 Soluble dye decoloring agent

Country Status (1)

Country Link
JP (1) JPS63126597A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661556B2 (en) * 1988-12-07 1994-08-17 工業技術院長 Organic wastewater treatment method
JP5263768B2 (en) * 2008-10-15 2013-08-14 日鉄住金環境株式会社 Organic waste liquid treatment method
TWI524840B (en) 2012-03-30 2016-03-01 台達電子工業股份有限公司 Heat dissipating module

Also Published As

Publication number Publication date
JPS63126597A (en) 1988-05-30

Similar Documents

Publication Publication Date Title
Kurade et al. Monitoring the gradual biodegradation of dyes in a simulated textile effluent and development of a novel triple layered fixed bed reactor using a bacterium-yeast consortium
Geed et al. Development of adsorption-biodegradation hybrid process for removal of methylene blue from wastewater
JPH0411276B2 (en)
Sachdev et al. Effects of organic fractions from secondary effluent on Selenastrum capicornutum (Kutz)
JPH0411275B2 (en)
Shah et al. Exopolysaccharide production by a marine cyanobacterium Cyanothece sp. Application in dye removal by its gelation phenomenon
FI77844B (en) FOERFARANDE FOER AOTERVINNING AV KALCIUMSALTER AV -HYDROXI- ELLER -AMINOKARBOXYLSYROR.
Jeffcoat et al. The metabolism of D-glucarate by Pseudomonas acidovorans
JP2998055B2 (en) A method and apparatus for decolorizing colored wastewater containing an azo dye.
Wu et al. Evaluation of light irradiation on decolorization of azo dyes by Tsukamurella sp. J8025
US4772333A (en) Preparation and method for bioprecipitation of soluble pigment in aqueous solution
DE2304780A1 (en) PLASMINOSTREPTINE AND THE PROCESS FOR ITS MANUFACTURING
Ingols Studies on the Clarification Stage of the Activated Sludge Process: VIII. Uptake of Soluble Organic Substances
KR950005197A (en) Method of Purifying Stevia Sweetener
JP3861129B2 (en) Decolorizing method of coloring liquid
JPH0290903A (en) Flocculant derived from microbe and flocculation method
DE1919854B2 (en) Obtaining an acidic carboxy peptidase of microbial origin
Underwood et al. Browning of Sugar Solutions. VI. Isolation and Characterization of the Brown Pigment in Maple Sirup a
JPS6342686A (en) Production of protease
JPH02215387A (en) Method for flocculating and recovering useful substance from fermentation residual suspension with flocculant produced by microorganism
JPH04141083A (en) Improver for productivity of microorganism
KAMIKUBO et al. Formation of cobalt-free corrinoids in Rhodopseudomonas spheroides
RU2064455C1 (en) Method of sulfur-containing sewage clearing and discoloration
JPH0328194B2 (en)
JPH0410362B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term