JPS63126159A - Lithium cell - Google Patents

Lithium cell

Info

Publication number
JPS63126159A
JPS63126159A JP61272402A JP27240286A JPS63126159A JP S63126159 A JPS63126159 A JP S63126159A JP 61272402 A JP61272402 A JP 61272402A JP 27240286 A JP27240286 A JP 27240286A JP S63126159 A JPS63126159 A JP S63126159A
Authority
JP
Japan
Prior art keywords
lithium
separator
lithium alloy
battery
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61272402A
Other languages
Japanese (ja)
Inventor
Osamu Okamoto
修 岡本
Hiroshi Sasama
笹間 拓
Kiyoshi Niso
二曽 清
Futayasu Iwamaru
岩丸 二康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP61272402A priority Critical patent/JPS63126159A/en
Publication of JPS63126159A publication Critical patent/JPS63126159A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To prevent the generation of a short-circuit and to produce a lithium cell with an excellent cell performance, by furnishing a lithium alloy layer made in the electrochemical alloying, at the side opposing to a separator of a lithium layer of a negative electrode, and using a minutely porous resin film. CONSTITUTION:By alloying electrochemically lithium with aluminum or the like in the presence of an electrolyte, a lithium alloy is made in a minute powder. Some of the smallest particles of the minute powder is 0.4 mum level, and when a conventional separator 3 is used as it is, the lithium alloy powder passes through the separator 3 to reach a positive electrode 4 causing an inner short- circuit. Therefore, a lithium alloy layer 2b alloyed electrochemically with lithium and some other metal is furnished at the side opposing to the separator 3 of the lithium layer 2a, to improve the cell performance, while a minutely porous resin film with the diameter of pores less than 0.3 mum is used as the separator 3. Therefore, the generation of a short-circuit owing to the minute powdering of the lithium alloy can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はリチウム電池に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to lithium batteries.

〔従来の技術〕[Conventional technology]

リチウム電池では、負極に金属リチウムが用いられてい
るが、リチウムは化学的に非常に活性であり、その化学
的活性が大きいことが電池としての種々の特長を生み出
すものの、その反面では活性が強すぎるために電池の使
用中あるいは貯蔵中に種々の問題を引き起こす。例えば
二次電池では、充電時の電着リチウムが特に活性が強く
電解液中の成分と反応して負極表面に不働態膜を生成し
、負極を劣化させて充放電サイクル特性の低下を引き起
こすことが報告されている。そのため、リチウムをアル
ミニウムと合金化し、充電時にリチウムとアルミニウム
との電気化学的合金化反応を利用して、活性な電着リチ
ウムの状態でとどまるのを極力少なくして、負極の劣化
を防止し、充放電サイクル特性を向上させることが提案
されている(例えば、米国特許第4,002,492号
明!m書)。しかし、上記のようなリチウムの合金化は
、二次電池では一次電池におけるほど放電8最の低下に
対して考慮を払う必要がなく、合金化による放電容量の
低下よりも充放電サイクル特性の向上の方がより望まし
いということに立脚しており、合金化の程度もリチウム
含有量がかなり低くなるまで合金化が行われ、例えば特
開昭61−208749号公報ではリチウム含有量が3
5〜58原子%(atomic%)で好ましい結果が得
られると記載されている。
In lithium batteries, metallic lithium is used for the negative electrode, but lithium is chemically very active, and although its high chemical activity gives rise to various features as a battery, on the other hand, it is highly active. This causes various problems during use or storage of the battery. For example, in secondary batteries, electrodeposited lithium during charging is particularly active and reacts with components in the electrolyte to form a passive film on the negative electrode surface, deteriorating the negative electrode and causing a decline in charge/discharge cycle characteristics. has been reported. Therefore, by alloying lithium with aluminum and utilizing the electrochemical alloying reaction between lithium and aluminum during charging, we minimize the amount of lithium remaining in the active electrodeposited state and prevent deterioration of the negative electrode. It has been proposed to improve charge-discharge cycle characteristics (eg, US Pat. No. 4,002,492). However, when alloying lithium as described above, it is not necessary to pay as much consideration to the decrease in discharge capacity in secondary batteries as in primary batteries, and the improvement in charge-discharge cycle characteristics is more important than the decrease in discharge capacity due to alloying. It is based on the idea that lithium content is more desirable, and alloying is carried out until the lithium content becomes considerably low.
It is stated that favorable results can be obtained at 5 to 58 atomic %.

また、−次電池においても、リチウム板のセパレータと
対向する側の面に、アルミニウム、鉛、亜鉛、錫、ビス
マス、インジウム、ガリウム、マグネシウムなどの薄板
を配置して、電解液の存在下にリチウムと上記金属とを
電気化学的に合金化させ、セパレータと対向する側の面
のリチウムの活性を低下させて電解液との反応を抑制し
、負極表面への不i6 i 19の生成を防止して、負
極の界面抵抗の増加を抑制し、貯蔵特性や閉路電圧特性
を向上させることが研究され、既に特許出願されている
(特開昭61−74264号公報)。
In addition, in secondary batteries, a thin plate of aluminum, lead, zinc, tin, bismuth, indium, gallium, magnesium, etc. is placed on the side of the lithium plate facing the separator, and lithium is placed in the presence of an electrolyte. and the above-mentioned metals are electrochemically alloyed to reduce the activity of lithium on the side facing the separator to suppress the reaction with the electrolyte and prevent the formation of Ni6i19 on the surface of the negative electrode. Therefore, research has been conducted on suppressing the increase in the interfacial resistance of the negative electrode and improving storage characteristics and closed circuit voltage characteristics, and a patent application has already been filed (Japanese Patent Application Laid-Open No. 74264/1983).

しかし、上記のようにリチウムと他の金属とを電解液の
存在下で電気化学的に合金化させた場合、合金が微粉末
化し、それがまた、負極の反応面積を増加させ、電解液
を保持して、パルス閉路電圧を高めるなど、電池性能を
向上させる要因となるが、その反面では、粉末化したリ
チウム合金がセパレータを通り抜け、正極側に達して短
絡を引き起こすという問題が発生した。
However, when lithium and other metals are electrochemically alloyed in the presence of an electrolyte as described above, the alloy becomes a fine powder, which also increases the reaction area of the negative electrode and displaces the electrolyte. This is a factor that improves battery performance by increasing the pulse closing voltage, but on the other hand, there is a problem in that the powdered lithium alloy passes through the separator and reaches the positive electrode side, causing a short circuit.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この発明は上記従来のリチウム電池が持っていたリチウ
ム合金粉末がセパレータを通り抜けて内部短絡を引き起
こすという問題点を解決し、短絡発生がなく、かつ電池
性能の優れたリチウム電池を提供することを目的とする
The purpose of this invention is to solve the problem of the lithium alloy powder of the conventional lithium battery passing through the separator and causing an internal short circuit, and to provide a lithium battery that is free from short circuits and has excellent battery performance. shall be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、リチウム層のセパレータと対向する側にリチ
ウムと他の金属との電気化学的合金化によるリチウム合
金層を設けて、電池性能の向上をはかるとともに、セパ
レータとして孔径が0.3μ翔以下の微孔性樹脂フィル
ムを用いることによって、リチウム合金の微粉末化によ
る短絡発生を防止したものである。
The present invention aims to improve battery performance by providing a lithium alloy layer formed by electrochemical alloying of lithium and other metals on the side of the lithium layer facing the separator, and also provides a separator with a pore diameter of 0.3μ or less. By using a microporous resin film, short circuits caused by the pulverization of the lithium alloy are prevented.

すなわち、リチウムをアルミニウムなどと電解液の存在
下に電気化学的に合金化させると、リチウム合金が微粉
末化する。この微粉末化の程度は、リチウムに対する他
の金属の合金化比率、合金化する金属の種類、合金化時
の温度などによって異なるが、最も小さい粒子は0.4
μ−程度のものがあり、使用するセパレータについて考
慮を払うことなく、従来使用のセパレータをそのまま使
用すると、リチウム合金粉末がセパレータを通り抜けて
正極に達して内部短絡を引き起こす。そこで、本発明で
は、セパレータとして孔径が0.3μm以下の微孔性樹
脂フィルムを用いることによって、リチウム合金粉末の
通り抜けを防止し、短絡発生のないリチウム電池を提供
したものである。
That is, when lithium is electrochemically alloyed with aluminum or the like in the presence of an electrolyte, the lithium alloy becomes fine powder. The degree of this pulverization varies depending on the alloying ratio of other metals to lithium, the type of metal to be alloyed, the temperature during alloying, etc., but the smallest particle is 0.4
If a conventionally used separator is used as it is without paying any consideration to the separator used, the lithium alloy powder will pass through the separator and reach the positive electrode, causing an internal short circuit. Therefore, in the present invention, a microporous resin film with a pore diameter of 0.3 μm or less is used as a separator to prevent the lithium alloy powder from passing through, thereby providing a lithium battery that does not cause short circuits.

本発明においてセパレータとして用いる微孔性樹脂フィ
ルムとしては、例えば微孔性ポリプロピレンフィルム、
微孔性ポリエチレンフィルム、微孔性ナイロンフィルム
などがあげられる。特に「ジュラガード」の商品名で市
販されている微孔性ポリプロピレンフィルムが好用され
る。そして、上記微孔性ポリプロピレンフィルムの中に
は、その微孔が真円形ではなく方向性を有していて、そ
の長軸方向の長さく長径)と短軸方向の長さく短径)が
異なっているものがあるが、そのように微孔が方向性を
有する場合は、たとえ長軸方向の長さく長径)が0.3
μmより大きい場合でも、短軸方向の長さく短径)が0
.3μm以下であれば、そのような方向性を持つ微孔を
設けた微孔性樹脂フィルムをその微孔の方向が直交する
ように2枚以上重ね合わせてセパレータに使用すること
により、セパレータの微孔の孔径を実質的に0.3μm
以下にすることができ、この場合も本発明の範囲に含ま
れる。セパレータの孔径は小さいほど短絡防止という観
点からは好ましいが、孔径が小さくなりすぎると、電池
の内部抵抗が大きくなるおそれがあるので、最大孔径が
0.3μm以下の範囲で0゜03μm以上のものを用い
るのが好ましい。
Examples of the microporous resin film used as a separator in the present invention include microporous polypropylene film,
Examples include microporous polyethylene film and microporous nylon film. In particular, a microporous polypropylene film commercially available under the trade name "Duraguard" is preferably used. In the above-mentioned microporous polypropylene film, the micropores are not perfectly circular but have directionality, and the length in the long axis direction (long axis) and the short axis direction (length in the short axis direction) are different. However, if the micropores have directionality, even if the length in the major axis direction (major axis) is 0.3
Even if it is larger than μm, the length in the minor axis direction (minor axis) is 0.
.. If it is 3 μm or less, the separator's fineness can be improved by stacking two or more microporous resin films with such directional micropores and using them for the separator so that the directions of the micropores are perpendicular to each other. The pore diameter is substantially 0.3 μm.
The following can be done, and this case is also within the scope of the present invention. The smaller the pore diameter of the separator, the better from the viewpoint of preventing short circuits, but if the pore diameter becomes too small, the internal resistance of the battery may increase, so the maximum pore diameter is 0.03 μm or more within the range of 0.3 μm or less. It is preferable to use

リチウム合金層を形成するために用いられるリチウムと
電気化学的に合金化する金属としては、例えばアルミニ
ウム、錫、亜鉛、鉛、ビスマス、ケイ素、アンチモン、
マグネシウム、インジウム、ガリウム、ゲルマニウムな
どがあげられる。特にアルミニウム、錫、亜鉛、鉛、ビ
スマス、ケイ素、アンチモン、マグネシウムなどはパル
ス閉li3電圧特性を向上させる効果が大きく、本発明
において好用される。
Examples of metals that electrochemically alloy with lithium used to form the lithium alloy layer include aluminum, tin, zinc, lead, bismuth, silicon, antimony,
Examples include magnesium, indium, gallium, and germanium. In particular, aluminum, tin, zinc, lead, bismuth, silicon, antimony, magnesium, etc. have a great effect on improving the pulsed closed Li3 voltage characteristics and are preferably used in the present invention.

リチウム合金層の形成は、通常、負極缶にリチウム板と
、アルミニウム板などのリチウムと電気化学的に合金化
する金属(以下、簡略化のためアルミニウムを代表的に
例にあげて説明する)の板を挿入し、電池組立をして、
電池内で電解液の存在下にリチウム板のアルミニウム板
近傍のリチウムとアルミニウムとを電気化学的に合金化
させることによって形成される。
The formation of the lithium alloy layer is usually done by placing a lithium plate in the negative electrode can and a metal that electrochemically alloys with lithium, such as an aluminum plate (hereinafter, for simplicity, we will explain using aluminum as a representative example). Insert the board, assemble the battery,
It is formed by electrochemically alloying lithium and aluminum near the aluminum plate of a lithium plate in the presence of an electrolyte in a battery.

リチウム合金層の厚さは、非常に薄いものでよ(、微粉
末化しているため正確な測定は困難であるが、5μm程
度以上あれば、貯蔵中におけるリチウムと水分や電解液
中の不純物との反応を抑制することができ、またリチウ
ム合金の微粉末化による負極の反応面積増加とリチウム
合金微粉末の電解液保持作用とによりパルス閉路電圧特
性などの電池性能を向上させる効果を発揮し得る。一方
、リチウム合金層が厚くなると、パルス閉路電圧特性な
どを向上させる上からは好都合であるが、リチウム合金
を構成するアルミニウムなどの合金元素が増えたぶん魚
種の電気容量が低下するので、アルミニウムなどの合金
元素は負極全体中、つまりリチウムとアルミニウムなど
の合金元素との総量中0.5〜10原子%(atomi
c%)、特に1〜7原子%、より望ましくは2〜4原子
%にするのが好ましい。
The thickness of the lithium alloy layer must be very thin (it is difficult to measure accurately because it is finely powdered, but if it is about 5 μm or more, it will be difficult to measure the thickness of the lithium alloy layer). In addition, by increasing the reaction area of the negative electrode by pulverizing the lithium alloy and by retaining the electrolyte of the lithium alloy powder, it can improve battery performance such as pulsed closed-circuit voltage characteristics. On the other hand, if the lithium alloy layer becomes thicker, it is advantageous in terms of improving the pulse closed circuit voltage characteristics, etc., but the amount of alloying elements such as aluminum that make up the lithium alloy increases, and the electrical capacity of the fish species probably decreases, so aluminum The alloying elements such as 0.5 to 10 atomic % (atomic
c%), particularly 1 to 7 atom%, more preferably 2 to 4 atom%.

電解液や正極活物質には、この種の電池に通常用いられ
るものをそのまま使用することができる。
As the electrolytic solution and the positive electrode active material, those commonly used in this type of battery can be used as they are.

電解液についてその具体例をあげると、例えば、1.2
−ジメトキシエタン、1.2−ジェトキシエタン、エチ
レンカーボネート、プロピレンカーボネート、γ−ブチ
ロラクトン、テトラヒドロフラン、1.3−ジオキソラ
ン、4−メチル−1,3−ジオキソランなどの単独また
は2種以上の混合溶媒に、例えばL i CI 04、
LiPF6、LiAsF6、Li5bF6、LiBF4
、L iB (C6H5) 4などの電解質の11また
は2種以上を熔解させることによって[1したものを使
用することができる。また、正極活物質としては、例え
ば硫化鉄、酸化銅、あるいは硫化鉄と酸化銅との混合物
などを用いることができる。
To give a specific example of the electrolyte, for example, 1.2
- dimethoxyethane, 1,2-jethoxyethane, ethylene carbonate, propylene carbonate, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, etc. alone or in a mixed solvent of two or more, for example. L i CI 04,
LiPF6, LiAsF6, Li5bF6, LiBF4
, LiB (C6H5) 4 and the like can be used. Further, as the positive electrode active material, for example, iron sulfide, copper oxide, or a mixture of iron sulfide and copper oxide can be used.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.

実施例1 負橿缶に直径6.2m、厚さ0.72開のリチウム板と
直径6.201m、厚さO,01m+mのアルミニウム
板とを重ね合わせて挿入し、正極には二硫化鉄(F e
 32)と酸化第二銅(Cu O)の混合物を活物質と
する成形合剤を用い、電解液にはプロピレンカーボネー
トと1.2−ジメトキシエタンとの容量比2:1の混合
溶媒に過塩素酸リチウム(L i Cl 04 )を1
モル/ j! /g解させた有機電解液を用い、セパレ
ータには厚さ25μmで長径0.4μm、短径0.04
μmの方向性を有する微孔を多数設けた微孔性ポリプロ
ピレンフィルムをその微孔の長袖方向が直交するように
2枚重ね合わせて用い、第1図に示すような構造で直径
9.5m、高さ2.05mmのリチウム電池を作製した
Example 1 A lithium plate with a diameter of 6.2 m and a thickness of 0.72 m and an aluminum plate with a diameter of 6.201 m and a thickness of 0.01 m + m were stacked and inserted into a negative can. Fe
32) and cupric oxide (CuO) as the active material, and the electrolyte was a mixed solvent of propylene carbonate and 1,2-dimethoxyethane in a volume ratio of 2:1, plus perchlorine. 1 lithium oxide (L i Cl 04 )
Mol/j! The separator has a thickness of 25 μm, a major axis of 0.4 μm, and a minor axis of 0.04 μm.
Two sheets of microporous polypropylene film having a large number of micropores with micrometer directionality are stacked so that the long sleeve directions of the micropores are perpendicular to each other, and the structure shown in Figure 1 is 9.5 m in diameter. A lithium battery with a height of 2.05 mm was manufactured.

第1図において、1はステンレスw4製で外面にニッケ
ルメッキを施してなる負極缶である。2は負極で、この
負極2はリチウム層2aとリチウム合金N2bとからな
る。本実施例において、上記リチウム合金N2bは前述
のように負極缶1に挿入したリチウム板のアルミニウム
板近傍のリチウムとアルミニウムとを電池内で電解液の
存在下に電気化学的に合金化させることによって形成し
たものであり、リチウムFt2aは前記リチウム板のア
ルミニウムと合金化しなかった部分で構成されるもので
ある。そして、リチウム合金層2bがセパレータ3に対
向する側に配置しており、負極2中のアルミニウム量は
2原子%に相当する。
In FIG. 1, reference numeral 1 denotes a negative electrode can made of stainless steel W4 and having its outer surface plated with nickel. 2 is a negative electrode, and this negative electrode 2 consists of a lithium layer 2a and a lithium alloy N2b. In this example, the lithium alloy N2b is produced by electrochemically alloying lithium and aluminum near the aluminum plate of the lithium plate inserted into the negative electrode can 1 in the presence of an electrolyte in the battery as described above. The lithium Ft2a is composed of the portion of the lithium plate that is not alloyed with aluminum. The lithium alloy layer 2b is disposed on the side facing the separator 3, and the amount of aluminum in the negative electrode 2 corresponds to 2 atomic %.

セパレータ3は、第1図では1屓で構成されているかの
ように図示されているが、実際には第2図に示すように
微孔性ポリプロピレンフィルム3aを2枚その微孔3a
1の長軸方向が直交するように重ね合わせたもので、微
孔3a1の短軸方向の長さく短径)が0.04μmであ
ることより、セパレータ3としての孔径はこの短軸方向
の長さによって支配され0.04μmになる。
Although the separator 3 is shown as being composed of one layer in FIG. 1, it is actually made up of two microporous polypropylene films 3a with micropores 3a as shown in FIG.
1 are stacked so that their long axes are perpendicular to each other, and since the length of the micropores 3a1 in the short axis direction (shorter diameter) is 0.04 μm, the hole diameter of the separator 3 is the length in the short axis direction. It is dominated by the thickness of 0.04 μm.

4は正極で、この正極4は二硫化鉄44111f量部、
酸化第二f144重量部、導電助剤としてのアセチレン
ブラック10重量部および結着剤としてのポリテトラフ
ルオロエチレン2重量部からなる組成の合剤をステンレ
ス鋼製の環状台座5が配置された金型に充填し、加圧成
形したものである。6はステンレス鋼製で外面にニッケ
ルメッキを施してなる正極缶、7はポリプロピレン製の
環状ガスケットである。
4 is a positive electrode, and this positive electrode 4 contains iron disulfide 44111f parts,
A mixture having a composition consisting of 144 parts by weight of F2 oxide, 10 parts by weight of acetylene black as a conductive aid, and 2 parts by weight of polytetrafluoroethylene as a binder was placed in a mold on which an annular pedestal 5 made of stainless steel was arranged. It was filled and pressure molded. 6 is a positive electrode can made of stainless steel with nickel plating on the outer surface, and 7 is an annular gasket made of polypropylene.

実施例2 セパレータとして孔径0.3μmで微孔形状がほぼ円形
をしている厚さ30μIの微孔性ポリプロピレンフィル
ムを1枚で用いたほかは実施例1と同様の構成からなる
リチウム電池を作製した。
Example 2 A lithium battery was produced with the same structure as in Example 1, except that a single microporous polypropylene film with a thickness of 30 μI and a pore diameter of 0.3 μm and a nearly circular pore shape was used as a separator. did.

比較例1 セパレータとして長径5μm1短径0.5μmの微孔を
多数設けた厚さ30μmの微孔性ポリプロピレンフィル
ムを1枚で用いたほかは実施例1と同様の構成からなる
リチウム電池を作製した。
Comparative Example 1 A lithium battery was produced with the same structure as in Example 1, except that a single 30 μm thick microporous polypropylene film with a large number of micropores with a major diameter of 5 μm and a minor diameter of 0.5 μm was used as a separator. .

上記実施例1〜2の電池および比較例1の電池の25℃
、交i!1kHzでの内部抵抗を測定した結果および上
記電池を25℃、負荷2にΩで連続放電させ放電電圧が
1.2■になるまでの放電持続時間を調べた結果を第1
表に示す、また、実施例1〜2の電池および比較例1に
ついて、JIS C5025に規定される電子部品振動
試験法に従い、振動周波数10〜55Hz、全振幅1.
5mmで6時間振動試験を行い、短絡の有無を調べた結
果を第1表に示す。試験に供された電池は各電池とも内
部抵抗および放電持続時間については50個ずつで、第
1表にはそれらの測定値を最小値から最大値までの範囲
で示しており、また振動試験については各電池とも1゜
000個ずつであって、第1表中の振動試験に関する欄
の分母は試験に供した電池個数を示し、分子は短絡した
電池個数を示している。
25°C of the batteries of Examples 1 and 2 and the battery of Comparative Example 1
, Interchange! The results of measuring the internal resistance at 1 kHz and the results of continuously discharging the above battery at 25°C and load 2 at Ω and examining the discharge duration until the discharge voltage reached 1.2■ are shown in the first table.
Also, the batteries of Examples 1 to 2 and Comparative Example 1 shown in the table were tested at a vibration frequency of 10 to 55 Hz and a total amplitude of 1.
A vibration test was conducted at 5 mm for 6 hours, and the results of examining the presence or absence of short circuits are shown in Table 1. The internal resistance and discharge duration of each battery tested were 50 each, and Table 1 shows the measured values in the range from the minimum value to the maximum value, and the vibration test. is 1.000 for each battery, the denominator in the column relating to the vibration test in Table 1 indicates the number of batteries subjected to the test, and the numerator indicates the number of short-circuited batteries.

第    1    表 第1表に示すように、実施例1〜2の電池は、振動試験
による短絡がなく、また、内部抵抗が小さく、放電持続
時間が長く、かつそれらが安定していた。これに対し、
比較例1の電池は、振動試験により短絡発生があり、ま
た放電持続時間も極端に短いものがあった。これはリチ
ウム合金粉末がセパレータを通り擢けて短絡を引き起こ
した結果によるものであると考えられる。
Table 1 As shown in Table 1, the batteries of Examples 1 and 2 had no short circuit in the vibration test, had low internal resistance, long discharge duration, and were stable. On the other hand,
In the battery of Comparative Example 1, a short circuit occurred in the vibration test, and the discharge duration was also extremely short. This is thought to be due to the lithium alloy powder passing through the separator and causing a short circuit.

また、上記実施例1および実施例2の電池とも、上記放
電の440時間後の一1O°C12にΩ、7.8m5e
cのパルス閉路電圧は1.3■を超えていたが、負極を
直径6.2+n+w、厚さ0.73m+mのリチウム板
のみで構成した電池では、同条件での閉路電圧は1゜2
3Vにすぎなかった。
In addition, for both the batteries of Example 1 and Example 2, the temperature was 7.8 m5e at -10°C 440 hours after the above discharge.
The pulse closing voltage of c exceeded 1.3■, but in a battery whose negative electrode was composed only of a lithium plate with a diameter of 6.2+n+w and a thickness of 0.73m+m, the closing voltage under the same conditions was 1°2.
It was only 3V.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、負極のリチウム層の
セパレータと対向する側に電気化学的合金化によるリチ
ウム合金層を設け、かつセパレータとして孔径が0.3
μm以下の微孔性樹脂フィルムを用いることによって、
短絡発生がなく、かつ電池性能の優れたリチウム電池を
提供することができた。
As explained above, in the present invention, a lithium alloy layer formed by electrochemical alloying is provided on the side facing the separator of the lithium layer of the negative electrode, and the pore size of the separator is 0.3.
By using microporous resin film of micrometer or less,
It was possible to provide a lithium battery that does not cause short circuits and has excellent battery performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るリチウム電池の一例を示す断面図
であり、第2図は本発明の電池に使用されるセパレータ
の一例を模式的に示す要部斜視部である。
FIG. 1 is a sectional view showing an example of a lithium battery according to the present invention, and FIG. 2 is a perspective view of essential parts schematically showing an example of a separator used in the battery of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)リチウムを負極活物質とするリチウム電池におい
て、リチウム層のセパレータと対向する側に、リチウム
と該リチウムに電気化学的に合金化する金属との電気化
学的合金化によるリチウム合金層を設け、かつセパレー
タとして孔径が0.3μm以下の微孔性樹脂フィルムを
用いたことを特徴とするリチウム電池。
(1) In a lithium battery using lithium as a negative electrode active material, a lithium alloy layer is provided on the side of the lithium layer facing the separator by electrochemical alloying of lithium and a metal that electrochemically alloys with the lithium. , and a lithium battery characterized in that a microporous resin film with a pore diameter of 0.3 μm or less is used as a separator.
(2)リチウムと電気化学的に合金化する金属がアルミ
ニウム、錫、亜鉛、鉛、ビスマス、ケイ素、アンチモン
およびマグネシウムよりなる群から選ばれた少なくとも
1種であることを特徴とする特許請求の範囲第1項記載
のリチウム電池。
(2) Claims characterized in that the metal electrochemically alloyed with lithium is at least one selected from the group consisting of aluminum, tin, zinc, lead, bismuth, silicon, antimony, and magnesium. The lithium battery according to item 1.
JP61272402A 1986-11-15 1986-11-15 Lithium cell Pending JPS63126159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61272402A JPS63126159A (en) 1986-11-15 1986-11-15 Lithium cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61272402A JPS63126159A (en) 1986-11-15 1986-11-15 Lithium cell

Publications (1)

Publication Number Publication Date
JPS63126159A true JPS63126159A (en) 1988-05-30

Family

ID=17513399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61272402A Pending JPS63126159A (en) 1986-11-15 1986-11-15 Lithium cell

Country Status (1)

Country Link
JP (1) JPS63126159A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166149A (en) * 1986-12-26 1988-07-09 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH04308654A (en) * 1991-04-08 1992-10-30 Fuji Elelctrochem Co Ltd Nonaqueous electrolytic secondary battery
US5173235A (en) * 1988-09-10 1992-12-22 Ube Industries, Ltd. Method of producing microporous film
KR101147207B1 (en) 2009-09-02 2012-05-25 삼성에스디아이 주식회사 Electrode assembly, and rechargeable battery using thereof
CN110676420A (en) * 2019-10-30 2020-01-10 复阳固态储能科技(溧阳)有限公司 Lithium ion battery's lithium diaphragm of mending

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5092429A (en) * 1973-12-20 1975-07-23
JPS60148052A (en) * 1984-01-11 1985-08-05 Matsushita Electric Ind Co Ltd Sealed lead storage battery
JPS6174264A (en) * 1984-09-17 1986-04-16 Hitachi Maxell Ltd Lithium cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5092429A (en) * 1973-12-20 1975-07-23
JPS60148052A (en) * 1984-01-11 1985-08-05 Matsushita Electric Ind Co Ltd Sealed lead storage battery
JPS6174264A (en) * 1984-09-17 1986-04-16 Hitachi Maxell Ltd Lithium cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166149A (en) * 1986-12-26 1988-07-09 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH07118315B2 (en) * 1986-12-26 1995-12-18 松下電器産業株式会社 Non-aqueous electrolyte secondary battery
US5173235A (en) * 1988-09-10 1992-12-22 Ube Industries, Ltd. Method of producing microporous film
JPH04308654A (en) * 1991-04-08 1992-10-30 Fuji Elelctrochem Co Ltd Nonaqueous electrolytic secondary battery
JP2574952B2 (en) * 1991-04-08 1997-01-22 富士電気化学株式会社 Non-aqueous electrolyte secondary battery
KR101147207B1 (en) 2009-09-02 2012-05-25 삼성에스디아이 주식회사 Electrode assembly, and rechargeable battery using thereof
US8568929B2 (en) 2009-09-02 2013-10-29 Samsung Sdi Co., Ltd. Electrode assembly including separators having crossing pores and rechargeable battery
CN110676420A (en) * 2019-10-30 2020-01-10 复阳固态储能科技(溧阳)有限公司 Lithium ion battery's lithium diaphragm of mending
CN110676420B (en) * 2019-10-30 2022-04-12 复阳固态储能科技(溧阳)有限公司 Lithium ion battery's lithium diaphragm of mending

Similar Documents

Publication Publication Date Title
US20040209166A1 (en) Nickel hydrogen secondary battery
JPS6166369A (en) Lithium secondary battery
JPS63126156A (en) Lithium cell
JPS63126159A (en) Lithium cell
JPH04294059A (en) Negative electrode for secondary battery with non-aqueous electrolyte
JPH08306390A (en) Nonaqueous electrolyte secondary battery
JPH0665044B2 (en) Lithium organic primary battery
JP3550230B2 (en) Negative electrode active material for secondary battery, electrode using the same, and secondary battery
JPH06310125A (en) Negative electrode for lithium secondary battery
JPS63175348A (en) Lithium cell
WO2000033403A1 (en) Non-aqueous electrolyte secondary cell and its charging method
JPS63307663A (en) Nonaqueous electrolyte secondary battery
JPH07105952A (en) Lithium secondary battery and its current collecting body
JPS63178449A (en) Nonaqueous electrolyte secondary battery
JPS63175350A (en) Lithium cell
JPS63143744A (en) Lithium battery
JPH01239761A (en) Thin lithium battery
JP2966697B2 (en) Alkaline secondary battery
JPH01294375A (en) Charging/discharging method for lithium secondary battery
JPS63126158A (en) Lithium cell
JPH0582128A (en) Lithium secondary battery
JPS63126157A (en) Lithium cell
JPS6166370A (en) Lithium secondary battery
JPS63133448A (en) Lithium battery
JP3268013B2 (en) Hydrogen storage alloy electrode