JP3550230B2 - Negative electrode active material for secondary battery, electrode using the same, and secondary battery - Google Patents

Negative electrode active material for secondary battery, electrode using the same, and secondary battery Download PDF

Info

Publication number
JP3550230B2
JP3550230B2 JP26780395A JP26780395A JP3550230B2 JP 3550230 B2 JP3550230 B2 JP 3550230B2 JP 26780395 A JP26780395 A JP 26780395A JP 26780395 A JP26780395 A JP 26780395A JP 3550230 B2 JP3550230 B2 JP 3550230B2
Authority
JP
Japan
Prior art keywords
active material
secondary battery
negative electrode
electrode active
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26780395A
Other languages
Japanese (ja)
Other versions
JPH0992277A (en
Inventor
利哉 北村
政光 加賀
樂 凌
由紀子 鈴木
亘 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP26780395A priority Critical patent/JP3550230B2/en
Publication of JPH0992277A publication Critical patent/JPH0992277A/en
Application granted granted Critical
Publication of JP3550230B2 publication Critical patent/JP3550230B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【産業上の利用分野】
本発明は、Ga−Sn−Zn三元系合金から成る二次電池用負極活物質およびそれを用いた二次電池用電極ならびに二次電池に関する。
【0002】
【従来の技術】
従来から二次電池用の負極活物質として種々の物質を単独あるいは組み合わせて用いる研究がなされてきたが、今日実用化された二次電池用負極活物質としては、鉛蓄電池用のPb、ニッケルーカドミウム電池用のCd、水素電池用の水素吸蔵合金、その他Zn、Li等を主成分とする物質に限られていた。
【0003】
このため、電池の基本性能を左右する負極活物質の種類が限られていたので実用になる二次電池の種類が少なく、それらの電池だけでは互いの電池が持つ欠点を十分に補っているとは言えない状況であった。
【0004】
こうした中で、本出願人は、先に特開平7−192731号公報「Gaを主成分とする負極活物質およびそれを用いる二次電池」で開示するように、上記従来の二次電池用活物質として、Cd、Pb、水素吸蔵合金、Li等の欠点を補い得る新規物質として、Ga主体とした負極活物質を使用できることを見いだしていた。
【0005】
【発明が解決しようとする課題】
しかしながら、Ga単独元素またはある合金組成からなる負極活物質は、高電位、高容量、高エネルギー容量等の、電池として非常に優れた特性を有する一方、高電流密度で放電を行うと、活物質であるGaの表面に不働態皮膜が生成するために、放電電位が1.8Vから1.6Vに電位が急に低下し、放電曲線が2段となることが分かった。
【0006】
このため高電流放電がしにくく、また放電のエネルギー容量も低くなるという欠点があることから、新規な活物質の開発により上記電池特性を生かしつつ、不導態皮膜が発生しない二次電池を得ることが望まれていた。
【0007】
【課題を解決するための手段】
本発明者等は、前記の課題を解決するために鋭意研究したところ、Ga−Sn−Znの三元系合金から成る負極活物質を用いることによって高電位、高容量、高エネルギー容量等の電池特性に優れた二次電池を開発することができた。
【0008】
本発明は次のとおりである。
【0009】
第1の発明は、(Ga=0.33 Sn=0.33 Zn=0.33 )、 (Ga=0.6 Sn=0.2 Zn=0.2) (Ga=0.2 Sn=0.6 Zn=0.2 )、 (Ga=0.2 Sn=0.2 Zn=0.6 )の組成で囲まれる範囲内のモル組成比を有するGa−Sn−Zn三元系合金から成ることを特徴とするアルカリ二次電池用負極活物質である。
【0010】
第2の発明は、第1記載の活物質を含有するシート体を用いることを特徴とするアルカリ二次電池用負極である
【0011】
第3の発明は、銅板面を第1記載の活物質を含有するシート体で覆い、さらにこのシート体を微小孔を有する樹脂体で覆う構造であることを特徴とするアルカリ二次電池用負極である。
【0012】
第4の発明は、第2または第3記載の負極を用いることを特徴とするアルカリ二次電池である。
【0013】
【作用】
本発明の負極活物質に用いるGa、Sn、Znの各元素は、共に酸性およびアルカリ性の両領域にて溶解する両性金属であることから、何れの元素もアルカリ性溶液中では負極活物質として機能する。
【0014】
特にZnについては、2次電池用負極活物質としての使用に向け、様々な研究が行われているが、GaとSnに関しては、Znに比べて電池用活物質としての使用や研究がほとんどなされていなかった。本発明者等は、特願平6−44887号や平成7年9月5日付出願の「二次電池用負極活物質およびそれを用いた電極ならびに二次電池」において、GaおよびSnもZnと同様に電池用負極活物質として機能し、かつ充放電可能な電極材となり得ることを開示した。
【0015】
これらの元素の電気化学当量は、Gaでは22.34、Snでは59.35(2価)または29.67(4価)、Znでは32.70であり、これらの値は従来からの二次電池用負極活物質であるCdの56.21やPbの103.6と比較してかなり小さいので、Ga、SnおよびZnが高容量の負極活物質となり得ることが分かる。
【0016】
また、Ga、SnおよびZnが高pHの電解液中へ溶解するときの酸化還元電位(vs NHE)は、それぞれ約−1.55V、約−1.15V、および約−1.50Vと、Cdや水素吸蔵合金に比較してかなり卑な電位にあるため、Ga、SnおよびZnを電池用負極に使用した場合、高電圧の電池が得られる。すなわちこれらの物質は、高エネルギー容量の負極活物質である。
【0017】
さらにこれらの3元素は、その酸化還元電位が水素発生電位より著しく卑であるにもかかわらず、水素過電圧が高いために自己放電も少ない上、これらの合金は共晶型の合金組成をとるために、開回路電極電位は最も卑なGaの電位を示すという特徴を有している。
【0018】
上述のように、Ga、SnおよびZnは電池用負極活物質として非常に良い特性を有する元素であるが、各元素単独で負極活物質を構成するには、それぞれの元素に特有の問題があった。
【0019】
我々は、その中でも高電圧、高容量、高エネルギー容量を有するGaに注目して試験を重ねてきたが、Gaにおいては、図2に示すように放電時に1.8Vと1.6Vの2段の電位が見られ、不安定な電位挙動が示されている。
【0020】
その理由は、図3のGaの分極測定結果に見られるように、電流密度がある値以上になると活物質であるGaの表面に不働態皮膜が生成し、その後のGaの溶解は不働態皮膜を通した溶解となるためであることが分かった。
【0021】
そこで、本発明においては、活物質であるGaをSnおよびZnと特定のモル比率で合金化することによって負極活物質を得、Gaの非不働態化および放電電位の安定化を図り、良好な結果を得ることができた。
【0022】
【実施例1】
GaへのSn添加の効果を調べるため、以下の方法により評価を行った。
【0023】
Cu板(1×1cm)上に所定量のSnとGaをSn、Gaの順に電析させた後、温度30℃、電解液(300g/l−KOH)中で分極測定を行う。Sn/Gaのモル比を0.1〜10まで変えてこの測定を行った。
【0024】
本測定結果の例として、Sn/Ga=1の時の分極曲線を図4に、Sn/Ga比と電流密度(at1.35V)の関係を図5に示した。
【0025】
図4より、図3のGaのみの場合と比較して、本実施例ではGaの不働態化する電流密度が10倍以上に向上していることが分かる。すなわち、Snを添加したGaを電池用負極活物質として使用した場合、安定した放電電位が得られると判断された。
【0026】
【実施例2】
GaへのZn添加の効果を調べるため、以下の方法により評価を行った。
【0027】
Cu板(1×1cm)上に所定量のZnとGaをZn、Gaの順に電析させた後、温度30℃、電解液(300g/l−KOH)中で分極測定を行う。Zn/Gaのモル比を0.1〜10まで変えてこの測定を行った。
【0028】
本測定結果の例としてZn/Ga=1の時の分極曲線を図6に、Zn/Ga比と電流密度(at1.35V)の関係を図7に示した。
【0029】
図6より、Gaの不働態化が起こると、Znの溶出が速やかに進行し、電位の急激な変化は起こらなくなり、Znを添加したGaを電池用負極活物質として使用した場合、安定した放電電位が得られると判断された。
【0030】
【実施例3】
GaへのSn、Zn2成分添加の効果を調べるため、以下の方法により評価を行った。
【0031】
Cu板(1×1cm)上に所定量のSn、ZnおよびGaをSn、Zn、Gaの順に電析させた後、温度30℃、電解液(300g/l−KOH)中で分極測定を行う。(Zn+Sn)/Gaのモル比を0.1〜10まで変えて(Zn=1、Sn=1に固定)この測定を行った。
【0032】
本測定結果の例としてZn=1、Sn=1、Ga=1の時の分極曲線を図8に、(Zn+Sn)/Ga比(Zn=1、Sn=1に固定)と電流密度(at1.35V)の関係を図9に示した。
【0033】
図8の分極曲線の形および図9の(Zn+Sn)/Ga比−電流密度図の形は、何れも実施例1と実施例2の結果を合成した形となった。
【0034】
すなわち、電池用負極活物質として使用した場合、安定した放電電位が得られると判断された。
【0035】
【実施例4】
実施例1、2および3より、GaとSn、Znの合金化は電池特性に良い影響を与えると判断されたので、いくつかのGa−Sn−Zn三元系の合金を合成し、さらに活物質として保持し易く電極として充分に作用する構造を考案した。この電極の作成は、例えば以下のような方法で行う。
【0036】
Ga Sn Zn (x+y+z=1、x=1.00〜0.05、y=0.00〜0.95、z=0.00〜0.95)の範囲内の組成比(モル比)に各金属を混合した後、不活性な窒素雰囲気下で600℃にて合金化させ、水中にてクエンチングする。さらにこれら合金が融解しない温度まで冷却し、粉砕する。
【0037】
この粉砕粉10gに対し、PTFEディスパージョン液(固形分濃度60%)0.3〜2ccと、適当量のエタノールを加えて混練し、適当な大きさの塊にして乾燥した後、0.4mm厚になるまで圧延し、シート化する。このシートを1×1cmに切り出し、集電体であるエキスパンド銅上に圧着し、これを電極とする。上記電極を負極板1とし、正極板2には水酸化ニッケル極を、電解液3には300g/l−KOHを用いて図10の様な電池を構成し、0.25C相当の充放電サイクル試験を行った。
【0038】
図1に(Ga=0.33、Sn=0.33、Zn=0.33)、(Ga=0.6、Sn=0.2、Zn=0.2)、(Ga=0.2、Sn=0.6、Zn=0.2)、(Ga=0.2、Sn=0.2、Zn=0.6)の組成について、第50サイクル目の充放電曲線を示す。
【0039】
何れの場合も、Gaのみの活物質に見られた電位の急激な落ち込みは見られなくなった。また、Sn添加量が増加するほど、放電電位および放電容量が向上することが分かった。
【0040】
【発明の効果】
GaにSnおよびZnを添加して合金化した3成分系負極活物質を電池に使用すると、Ga活物質特有の不働態皮膜生成に伴う電池電圧の落ち込みが消失する。これにより電池電圧が高電位で安定し、最大放電電流値も増加する。よって高容量、高電圧、高エネルギー容量および高電流放電の可能な電池が得られる。また、本活物質に使用される、Ga、Sn、Znには環境上問題となる毒性がない。
【図面の簡単な説明】
【図1】4種の異なる組成のGa−Sn−Zn合金からなる活物質を用いた本発明の二次電池における充放電曲線図である。
【図2】Ga単独で負極活物質を構成した場合の充放電曲線図である。
【図3】Ga単独の場合の分極曲線図である。
【図4】実施例1におけるSn/Ga=1の場合の分極曲線図である。
【図5】実施例1におけるSn/Ga比−電流密度図である。
【図6】実施例2におけるZn/Ga=1の場合の分極曲線図である。
【図7】実施例2におけるZn/Ga比−電流密度図である。
【図8】実施例3における(Zn+Sn)/Ga=1の場合の分極曲線図である。
【図9】実施例3における(Zn+Sn)/Ga比−電流密度図である。
【図10】実施例4におけるセル構造図である。
【符号の説明】
1 負極板
2 正極板
3 電解液
[0001]
[Industrial applications]
The present invention relates to a negative electrode active material for a secondary battery made of a Ga—Sn—Zn ternary alloy, an electrode for a secondary battery using the same, and a secondary battery using the same.
[0002]
[Prior art]
Conventionally, studies have been made on using various materials alone or in combination as a negative electrode active material for a secondary battery. However, as the negative electrode active material for a secondary battery that has been put into practical use today, Pb, nickel-based It has been limited to Cd for cadmium batteries, hydrogen storage alloys for hydrogen batteries, and other substances containing Zn, Li, and the like as main components.
[0003]
For this reason, the types of negative electrode active materials that affect the basic performance of batteries were limited, so there were few types of secondary batteries that could be used practically, and these batteries alone could sufficiently compensate for the disadvantages of each other's batteries. I could not say it.
[0004]
Under these circumstances, as disclosed in Japanese Patent Application Laid-Open No. 7-192731 entitled "Negative Electrode Active Material Containing Ga as a Main Component and Secondary Battery Using the Same", the applicant of the present invention discloses a conventional active material for a secondary battery. As a material, they have found that a Ga-based negative electrode active material can be used as a novel material that can compensate for defects such as Cd, Pb, a hydrogen storage alloy, and Li.
[0005]
[Problems to be solved by the invention]
However, a negative electrode active material composed of a single element of Ga or an alloy composition has very high characteristics as a battery, such as a high potential, a high capacity, and a high energy capacity. It was found that a passivation film was formed on the surface of Ga, which caused the discharge potential to drop suddenly from 1.8 V to 1.6 V, resulting in a two-step discharge curve.
[0006]
For this reason, high current discharge is difficult to perform, and there is a drawback that the energy capacity of discharge is low. Therefore, a secondary battery that does not generate a passivation film while obtaining the above battery characteristics by developing a new active material is obtained. It was desired.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and found that a battery having a high potential, a high capacity, a high energy capacity, and the like was obtained by using a negative electrode active material composed of a ternary alloy of Ga-Sn-Zn. A secondary battery with excellent characteristics was developed.
[0008]
The present invention is as follows.
[0009]
In the first invention, (Ga = 0.33 , Sn = 0.33 , Zn = 0.33 ), (Ga = 0.6 , Sn = 0.2 , Zn = 0.2) , (Ga = 0.2 , Sn = 0.6 , Zn = 0.2 ), (Ga = 0.2 , Sn = 0.2 , Zn = 0.6 ) is a Ga—Sn—Zn ternary alloy having a molar composition ratio within a range surrounded by a composition of the negative electrode active material for an alkaline secondary battery. .
[0010]
A second invention is a negative electrode for an alkaline secondary battery, characterized by using a sheet body containing the active material according to the first invention.
[0011]
A third invention is a negative electrode for an alkaline secondary battery, which has a structure in which a surface of a copper plate is covered with a sheet body containing the active material described in the first aspect, and the sheet body is further covered with a resin body having micropores. It is.
[0012]
A fourth invention is an alkaline secondary battery using the negative electrode according to the second or third invention.
[0013]
[Action]
Since each element of Ga, Sn, and Zn used in the negative electrode active material of the present invention is an amphoteric metal that dissolves in both acidic and alkaline regions, any element functions as a negative electrode active material in an alkaline solution. .
[0014]
In particular, various researches have been conducted on Zn for use as a negative electrode active material for secondary batteries, but Ga and Sn have been mostly used and researched as active materials for batteries compared to Zn. I didn't. The present inventors have disclosed in Japanese Patent Application No. 6-44887 and “Anode Active Material for Secondary Battery and Electrode and Secondary Battery Using It,” filed on Sep. 5, 1995, that Ga and Sn are also Zn and Similarly, it has been disclosed that the electrode material functions as a negative electrode active material for a battery and can be a chargeable / dischargeable electrode material.
[0015]
The electrochemical equivalents of these elements are 22.34 for Ga, 59.35 (divalent) or 29.67 (tetravalent) for Sn, and 32.70 for Zn. Since it is considerably smaller than 56.21 of Cd and 103.6 of Pb, which are negative electrode active materials for a battery, it is understood that Ga, Sn and Zn can be high-capacity negative electrode active materials.
[0016]
The oxidation-reduction potential (vs NHE) when Ga, Sn and Zn are dissolved in a high pH electrolytic solution are about −1.55 V, about −1.15 V and about −1.50 V, respectively, and Cd Since it has a considerably lower potential than that of a hydrogen storage alloy, a high-voltage battery can be obtained when Ga, Sn, and Zn are used for the battery negative electrode. That is, these materials are high energy capacity negative electrode active materials.
[0017]
Further, these three elements have low self-discharge due to high hydrogen overpotential despite their oxidation-reduction potential being significantly lower than the hydrogen generation potential, and these alloys have a eutectic alloy composition. In addition, the open-circuit electrode potential has the characteristic of showing the lowest potential of Ga.
[0018]
As described above, Ga, Sn, and Zn are elements having very good characteristics as a negative electrode active material for a battery. However, when each of these elements alone constitutes a negative electrode active material, there is a problem unique to each element. Was.
[0019]
We have repeatedly conducted tests focusing on Ga, which has high voltage, high capacity, and high energy capacity. Among Ga, as shown in FIG. 2, two stages of 1.8 V and 1.6 V during discharging are shown. And the unstable potential behavior is shown.
[0020]
The reason is that as shown in the polarization measurement result of Ga in FIG. 3, when the current density exceeds a certain value, a passive film is formed on the surface of Ga which is an active material, and the subsequent dissolution of Ga is performed by the passive film. It was found that this was due to dissolution through
[0021]
Therefore, in the present invention, a negative electrode active material is obtained by alloying Ga, which is an active material, with Sn and Zn at a specific molar ratio, thereby achieving passivation of Ga and stabilization of a discharge potential. The result was able to be obtained.
[0022]
Embodiment 1
In order to examine the effect of adding Sn to Ga, evaluation was performed by the following method.
[0023]
After depositing predetermined amounts of Sn and Ga on a Cu plate (1 × 1 cm 2 ) in the order of Sn and Ga, polarization measurement is performed at a temperature of 30 ° C. in an electrolytic solution (300 g / l-KOH). This measurement was performed by changing the Sn / Ga molar ratio from 0.1 to 10.
[0024]
As an example of the measurement result, FIG. 4 shows a polarization curve when Sn / Ga = 1, and FIG. 5 shows a relationship between the Sn / Ga ratio and the current density (at 1.35 V).
[0025]
From FIG. 4, it can be seen that the current density for passivating Ga is increased by a factor of 10 or more in this embodiment as compared with the case of only Ga in FIG. That is, it was determined that a stable discharge potential was obtained when Ga to which Sn was added was used as the negative electrode active material for a battery.
[0026]
Embodiment 2
In order to examine the effect of adding Zn to Ga, evaluation was performed by the following method.
[0027]
After a predetermined amount of Zn and Ga are deposited on a Cu plate (1 × 1 cm 2 ) in the order of Zn and Ga, polarization measurement is performed at a temperature of 30 ° C. in an electrolytic solution (300 g / l-KOH). This measurement was performed by changing the molar ratio of Zn / Ga from 0.1 to 10.
[0028]
As an example of the measurement results, a polarization curve when Zn / Ga = 1 is shown in FIG. 6, and a relationship between the Zn / Ga ratio and the current density (at 1.35 V) is shown in FIG.
[0029]
As shown in FIG. 6, when the passivation of Ga occurs, the elution of Zn progresses rapidly, and a rapid change in potential does not occur. When Ga to which Zn is added is used as a negative electrode active material for a battery, stable discharge occurs. It was determined that a potential was obtained.
[0030]
Embodiment 3
The following method was used to evaluate the effect of adding two components of Sn and Zn to Ga.
[0031]
After a predetermined amount of Sn, Zn, and Ga were deposited on a Cu plate (1 × 1 cm 2 ) in the order of Sn, Zn, and Ga, the polarization was measured in an electrolyte (300 g / l-KOH) at a temperature of 30 ° C. Do. This measurement was performed by changing the molar ratio of (Zn + Sn) / Ga from 0.1 to 10 (fixed at Zn = 1 and Sn = 1).
[0032]
As an example of the measurement result, FIG. 8 shows a polarization curve when Zn = 1, Sn = 1, and Ga = 1, and shows a (Zn + Sn) / Ga ratio (fixed to Zn = 1 and Sn = 1) and a current density (at1. 35V) is shown in FIG.
[0033]
The shape of the polarization curve in FIG. 8 and the shape of the (Zn + Sn) / Ga ratio-current density diagram in FIG. 9 are both shapes obtained by combining the results of Example 1 and Example 2.
[0034]
That is, it was determined that a stable discharge potential was obtained when used as a negative electrode active material for a battery.
[0035]
Embodiment 4
From Examples 1, 2 and 3, it was determined that alloying Ga with Sn and Zn had a good effect on battery characteristics. Therefore, several Ga-Sn-Zn ternary alloys were synthesized and further activated. A structure has been devised which can be easily held as a substance and sufficiently functions as an electrode. This electrode is formed, for example, by the following method.
[0036]
Ga x Sn y Zn z (x + y + z = 1, x = 1.00-0.05, y = 0.00-0.95, z = 0.00-0.95) composition ratio (molar ratio) ), Alloyed at 600 ° C. under an inert nitrogen atmosphere, and quenched in water. Further, the alloy is cooled to a temperature at which it does not melt and pulverized.
[0037]
To 10 g of the pulverized powder, 0.3 to 2 cc of a PTFE dispersion liquid (solid content: 60%) and an appropriate amount of ethanol are added, kneaded, dried into a lump of an appropriate size, and dried. Rolled to a thicker sheet. This sheet is cut into 1 × 1 cm 2 and pressed on expanded copper as a current collector to form an electrode. A battery as shown in FIG. 10 was constructed using the above-mentioned electrode as the negative electrode plate 1, the positive electrode plate 2 with a nickel hydroxide electrode, and the electrolyte solution 3 with 300 g / l-KOH, and a charge / discharge cycle equivalent to 0.25C. The test was performed.
[0038]
FIG. 1 shows (Ga = 0.33, Sn = 0.33, Zn = 0.33), (Ga = 0.6, Sn = 0.2, Zn = 0.2), (Ga = 0.2, For the compositions of Sn = 0.6, Zn = 0.2) and (Ga = 0.2, Sn = 0.2, Zn = 0.6), the charge / discharge curves of the 50th cycle are shown.
[0039]
In each case, the sharp drop in the potential observed in the Ga-only active material was not observed. In addition, it was found that the discharge potential and the discharge capacity were improved as the Sn addition amount was increased.
[0040]
【The invention's effect】
When a three-component negative electrode active material obtained by adding Sn and Zn to Ga and alloying is used for a battery, the drop in battery voltage accompanying the formation of a passive film unique to the Ga active material disappears. As a result, the battery voltage is stabilized at a high potential, and the maximum discharge current value also increases. Therefore, a battery capable of high capacity, high voltage, high energy capacity and high current discharge can be obtained. In addition, Ga, Sn, and Zn used in the present active material do not have environmentally toxic toxicity.
[Brief description of the drawings]
FIG. 1 is a charge / discharge curve diagram of a secondary battery of the present invention using an active material composed of four different types of Ga—Sn—Zn alloys.
FIG. 2 is a charge / discharge curve diagram when a negative electrode active material is composed of Ga alone.
FIG. 3 is a polarization curve diagram when Ga is used alone.
FIG. 4 is a polarization curve diagram in the case of Sn / Ga = 1 in Example 1.
5 is an Sn / Ga ratio-current density diagram in Example 1. FIG.
FIG. 6 is a polarization curve diagram when Zn / Ga = 1 in Example 2.
FIG. 7 is a diagram showing a Zn / Ga ratio-current density in Example 2.
FIG. 8 is a polarization curve diagram when (Zn + Sn) / Ga = 1 in Example 3.
FIG. 9 is a (Zn + Sn) / Ga ratio-current density diagram in Example 3.
FIG. 10 is a diagram illustrating a cell structure according to a fourth embodiment.
[Explanation of symbols]
1 negative electrode plate 2 positive electrode plate 3 electrolyte

Claims (4)

(Ga=0.33 Sn=0.33 Zn=0.33 )、 (Ga=0.6 Sn=0.2 Zn=0.2) (Ga=0.2 Sn=0.6 Zn=0.2 )、 (Ga=0.2 Sn=0.2 Zn=0.6 )の組成で囲まれる範囲内のモル組成比を有するGa−Sn−Zn三元系合金から成ることを特徴とするアルカリ二次電池用負極活物質。 (Ga = 0.33 , Sn = 0.33 , Zn = 0.33 ), (Ga = 0.6 , Sn = 0.2 , Zn = 0.2) , (Ga = 0.2 , Sn = 0.6 , Zn = 0.2 ), (Ga = 0.2 , Sn = 0.2 , Zn = 0.6 ) . A negative active material for an alkaline secondary battery, comprising a ternary alloy of Ga-Sn-Zn having a molar composition ratio within a range surrounded by a composition of Zn = 0.6 ) . 請求項1記載の活物質を含有するシート体を用いることを特徴とするアルカリ二次電池用負極 A negative electrode for an alkaline secondary battery, comprising a sheet body containing the active material according to claim 1 . 銅板面を請求項1記載の活物質を含有するシート体で覆い、さらにこのシート体を微小孔を有する樹脂体で覆う構造であることを特徴とするアルカリ二次電池用負極A negative electrode for an alkaline secondary battery, comprising a structure in which a copper plate surface is covered with a sheet body containing the active material according to claim 1 , and the sheet body is further covered with a resin body having micropores. 請求項2または請求項3記載の負極を用いることを特徴とするアルカリ二次電池。An alkaline secondary battery using the negative electrode according to claim 2 or 3.
JP26780395A 1995-09-21 1995-09-21 Negative electrode active material for secondary battery, electrode using the same, and secondary battery Expired - Fee Related JP3550230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26780395A JP3550230B2 (en) 1995-09-21 1995-09-21 Negative electrode active material for secondary battery, electrode using the same, and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26780395A JP3550230B2 (en) 1995-09-21 1995-09-21 Negative electrode active material for secondary battery, electrode using the same, and secondary battery

Publications (2)

Publication Number Publication Date
JPH0992277A JPH0992277A (en) 1997-04-04
JP3550230B2 true JP3550230B2 (en) 2004-08-04

Family

ID=17449821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26780395A Expired - Fee Related JP3550230B2 (en) 1995-09-21 1995-09-21 Negative electrode active material for secondary battery, electrode using the same, and secondary battery

Country Status (1)

Country Link
JP (1) JP3550230B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3726958B2 (en) 2002-04-11 2005-12-14 ソニー株式会社 battery
KR100786864B1 (en) * 2006-02-10 2007-12-20 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery comprising same
JP5342165B2 (en) * 2008-04-25 2013-11-13 株式会社コベルコ科研 Air secondary battery
WO2009048146A1 (en) * 2007-10-10 2009-04-16 Kobelco Research Institute, Inc. Negative electrode active material for rechargeable battery, rechargeble battery using the negative electrode active material, and air rechargeable battery
JP5329066B2 (en) * 2007-10-10 2013-10-30 株式会社コベルコ科研 Negative electrode active material for secondary battery and secondary battery using the same
CN108060328A (en) * 2017-12-14 2018-05-22 蔡郅林 One kind has writing function alloy and preparation method

Also Published As

Publication number Publication date
JPH0992277A (en) 1997-04-04

Similar Documents

Publication Publication Date Title
KR100308313B1 (en) Battery
JP3550230B2 (en) Negative electrode active material for secondary battery, electrode using the same, and secondary battery
US3202544A (en) Alkaline accumulator
JP2733227B2 (en) Nickel-metal hydride battery
US9525169B2 (en) Nickel-hydrogen storage battery
JP3788484B2 (en) Nickel electrode for alkaline storage battery
JP3200822B2 (en) Nickel-metal hydride storage battery
JPH0562428B2 (en)
JPH0574464A (en) Sealed lead-acid storage battery
JP3461923B2 (en) Negative electrode material for battery and method of manufacturing the same, negative electrode body and secondary battery using the same
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH08148179A (en) Nickel-hydrogen storage battery
JPH04328252A (en) Hydrogen storage alloy electrode
JP2750793B2 (en) Nickel-metal hydride battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP2561200B2 (en) Hydrogen storage electrode
JPH01117272A (en) Lead-acid battery
JPH0732014B2 (en) Aluminum alloy for lithium secondary battery negative electrode material
JP2929716B2 (en) Hydrogen storage alloy electrode
JPS6048867B2 (en) lead acid battery
JPH0555987B2 (en)
JPH0357170A (en) Coin type polymer battery
JP2518090B2 (en) Lead acid battery
JP3525519B2 (en) Hydrogen storage alloy electrode
JPH0579736B2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees