JPS63125675A - Magnetron sputtering device - Google Patents

Magnetron sputtering device

Info

Publication number
JPS63125675A
JPS63125675A JP27025386A JP27025386A JPS63125675A JP S63125675 A JPS63125675 A JP S63125675A JP 27025386 A JP27025386 A JP 27025386A JP 27025386 A JP27025386 A JP 27025386A JP S63125675 A JPS63125675 A JP S63125675A
Authority
JP
Japan
Prior art keywords
target
poles
permanent magnets
cathode
magnetron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27025386A
Other languages
Japanese (ja)
Inventor
Kiyoshi Uchida
清 内田
Motoyoshi Murakami
元良 村上
Hideji Kawabata
川端 秀次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27025386A priority Critical patent/JPS63125675A/en
Publication of JPS63125675A publication Critical patent/JPS63125675A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To uniformize the erosion of a target by ion bombardment and to improve the utilization efficiency thereof by providing a mechanism for moving a magnet group arranged alternately with N poles and S poles continuously in one direction where the magnets are arranged to a cathode part. CONSTITUTION:A yoke 3 provided alternately with plural pieces of permanent magnets 21 having the N poles at the top ends and the S poles at the bottom end and the permanent magnets 22 having the S poles at the top end and the N poles at the bottom end is provided to the cathode part of a magnetron puttering device. Magnetic lines of force are generated in a direction B if the surface of the target 1 on the side opposite from the permanent magnets 21, 22 is installed in a low pressure gaseous atmosphere of about 1X10<-3>-1X10<-2>Torr. Magnetron discharge is generated by the effect of an electromagnetic field when a negative voltage is impressed from a power supply 9 to a cathode 8. The magnetron discharge shift from the left to the right if the yoke 3 and the permanent magnets 21, 22 are moved in a direction C by a rotating wheel 4. The part eroded by the ion bombardment is thereby moved on the target 1 as well, by which the erosion of the target is uniformized and the utilizing efficiency of the target 1 is improved; in addition, the thickness of the formed thin film is uniformized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁界中の放電にともなう陰極スパッタリング現
象を利用して、被膜を形成するマグネトロンスパッタ装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magnetron sputtering apparatus that forms a film by utilizing a cathode sputtering phenomenon caused by discharge in a magnetic field.

従来の技術 スパッタリング現象はグロー放電によるガスイオンが電
界により加速されて陰極に衝突することにより、陰極材
料が原子、又はその集団として射出する現象である。
BACKGROUND ART Sputtering is a phenomenon in which gas ions generated by glow discharge are accelerated by an electric field and collide with a cathode, whereby the cathode material is ejected as atoms or a group thereof.

スパッタリング装置は、陰極から射出する陰極材料を陰
極と対向する基板上に付着、堆積し、基2へ−ジ 板上に陰極材料の被膜を形成する装置である。
The sputtering device is a device that attaches and deposits the cathode material emitted from the cathode onto a substrate facing the cathode, and forms a film of the cathode material on the substrate 2.

近年、スパッタリング装置は、被膜の形成速度が速い直
交電磁界配置のマグネトロンスパッタ装置が主流となっ
てきた(例えば、早用茂、和佐清孝著:「薄膜化技術」
第5章、5.2スパツタ装置参照)。
In recent years, magnetron sputtering equipment with orthogonal electromagnetic field configuration has become the mainstream sputtering equipment, which has a faster film formation rate (for example, "Thin Film Technology" by Shigeru Hayayo and Kiyotaka Wasa).
(See Chapter 5, 5.2 Sputtering device).

直交電磁界放電を利用したマグネトロンスパッタ装置の
ターゲットの表面近傍における磁界分布は不均一となる
。この結果、ターゲット表面は不均一なイオン衝撃を受
け、ターゲット表面が局部的な浸蝕を受ける。このため
ターゲットの寿命は局部的な浸蝕が進み、ターゲットと
ターゲット裏板のボンディング面に浸蝕が達した時とな
り、ターゲットの利用効率が非常に低い状態であった。
In a magnetron sputtering device that uses orthogonal electromagnetic field discharge, the magnetic field distribution near the target surface becomes non-uniform. As a result, the target surface is subjected to non-uniform ion bombardment, resulting in localized erosion of the target surface. For this reason, the life of the target was limited to the point at which local erosion progressed and the erosion reached the bonding surface between the target and the target back plate, and the utilization efficiency of the target was extremely low.

以下、図面を参照しながら、上述したような従来のマグ
ネトロンスパッタ装置について説明を行う。
Hereinafter, a conventional magnetron sputtering apparatus as described above will be explained with reference to the drawings.

第3図は従来のマグネトロンスパッタ装置の陰極部を示
すものである。第3図において、1はターゲット、21
2L、21bは上端がN極、下端が3ベージ S極の永久磁石、23は上端がS極下端がN極の永久磁
石、3は磁気回路を構成するためのコーク、5はターゲ
ット1上での放電領域を限定するためのアース電位のシ
ールド板、6は陰極部を保持するベースプレート、7は
絶縁プレート、8はカソード、9はカソード8に負電位
を与えるり、Ol又はR,Fの電源である。
FIG. 3 shows a cathode section of a conventional magnetron sputtering apparatus. In Figure 3, 1 is the target, 21
2L and 21b are permanent magnets with an N pole on the upper end and a 3-page S pole on the lower end, 23 is a permanent magnet with an S pole on the upper end and an N pole on the lower end, 3 is a coke for forming a magnetic circuit, and 5 is on the target 1. A ground potential shield plate for limiting the discharge area of It is.

以上のように構成されたマグネトロンスパッタ装置の陰
極部について、以下その動作について説明する。
The operation of the cathode section of the magnetron sputtering apparatus configured as described above will be described below.

ターゲット1の永久磁石211L、21t)及び23に
対する面の裏面をlX10To□1X 10 Torr
の低圧気体雰囲気中に設置する。ターゲット1のこの面
上では、永久磁石211L、21b、23[より、矢印
人で示す向きに磁力線が発生しているため、カソード8
に電源9により負電圧金印加するとターゲット1上で電
磁界の作用によりマグネトロン放電が生ずる。このマグ
ネトロン放電ね収束磁力線Aにより閉じ込められ、その
結果この部分のターゲットは強いイオン衝撃を受け、激
しい浸蝕を受ける。
The back side of the surface of target 1 relative to the permanent magnets 211L, 21t) and 23 is 1X10To□1X10 Torr
installed in a low-pressure gas atmosphere. On this surface of the target 1, the permanent magnets 211L, 21b, 23 [, since magnetic lines of force are generated in the direction indicated by the arrows, the cathode 8
When a negative voltage gold is applied by the power source 9, a magnetron discharge is generated on the target 1 due to the action of an electromagnetic field. This magnetron discharge is confined by the convergent magnetic field lines A, and as a result, the target in this area is subjected to strong ion bombardment and severe erosion.

マグネトロンスパッタ装置を利用した薄膜形成において
は、ターゲット1の浸蝕面に対向して基板を設け、ター
ゲツト材質を主成分にした薄膜を基板上に堆積させるも
のである。第4図に、ターゲット1を長時間マグネトロ
ン放電にさらし、スパッタを行った後のターゲットの断
面と、基板上に堆積した薄膜の膜厚分布を示す。第4図
において、10は永久磁石21a、21b、23の配列
方向にターゲット1を切断した断面形状、その上の曲線
Xは断面直上の基板上の堆積膜の膜厚分布を示すもので
ある。
In forming a thin film using a magnetron sputtering device, a substrate is provided opposite the eroded surface of the target 1, and a thin film containing the target material as a main component is deposited on the substrate. FIG. 4 shows a cross section of the target 1 after it has been exposed to magnetron discharge for a long time and sputtered, and the thickness distribution of the thin film deposited on the substrate. In FIG. 4, reference numeral 10 represents a cross-sectional shape of the target 1 cut in the direction in which the permanent magnets 21a, 21b, and 23 are arranged, and a curve X above the cross-sectional shape represents the film thickness distribution of the deposited film on the substrate immediately above the cross-section.

発明が解決しようとする問題点 しかしながら、第4図に示す如く、磁界収束部分に対応
するターゲツト面は深く浸蝕を受けるが、磁界収束部か
らはずれたターゲツト面はほとんど浸蝕を受けておらず
、このためターゲットの寿命は磁界収束部の浸蝕の深さ
で決まり、ターゲット全体積の10〜2o%程度しか利
用されていないという問題点を有していた。
Problems to be Solved by the Invention However, as shown in Figure 4, the target surface corresponding to the magnetic field convergence area is deeply eroded, but the target surface away from the magnetic field convergence area is hardly eroded; Therefore, the life of the target is determined by the depth of erosion in the magnetic field convergence area, and there is a problem in that only about 10 to 20% of the total target volume is utilized.

5ページ また近年、薄膜形成において、レアメタルを中心とした
高価なターゲツト材が利用されはじめ、ターゲットの利
用効率の向上という要請が高まってきており、この問題
は極めて重要であった。
Page 5 Also, in recent years, expensive target materials, mainly rare metals, have begun to be used in thin film formation, and there has been a growing demand for improved target utilization efficiency, making this issue extremely important.

本発明は上記問題点に鑑み、ターゲットの利用効率を向
上することができるマグネトロンスパッタ装置を提供す
るものである。
In view of the above-mentioned problems, the present invention provides a magnetron sputtering apparatus that can improve target utilization efficiency.

問題点を解決するだめの手段 この目的を達成するために、本発明のマグネトロンスパ
ッタ装置は、N極磁石、S極磁石が交互に配列された磁
石群が配列方向に連続的に移動する磁界発生機構を陰極
部に設けた構成となっている。
Means for Solving the Problems In order to achieve this object, the magnetron sputtering apparatus of the present invention generates a magnetic field in which a group of magnets in which N-pole magnets and S-pole magnets are arranged alternately moves continuously in the arrangement direction. The structure is such that the mechanism is provided in the cathode section.

作用 この構成によってターゲット」二の磁界収束部分がター
ゲットを一様に掃引し、ターゲツト面は一様に浸蝕を受
け、局部的なターゲットの浸蝕がなく、ターゲットの利
用効率が格段に向上することとなる。
Effect: With this configuration, the magnetic field convergence part of the target 2 sweeps the target uniformly, the target surface is uniformly eroded, there is no local erosion of the target, and the efficiency of target utilization is greatly improved. Become.

実施例 6ヘージ 以下本発明の一実施例について、図面を参照しながら説
明する。
Embodiment 6 Below, an embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例におけるマグネトロンスパッ
タ装置の陰極部を示すものである。第1図において、1
はターゲット、21は上端がN極、下端がS極の永久磁
石、22は上端がS極、下端がN極の永久磁石、3はベ
ルトの機能を有したヨークであり、第1図に示す如く複
数個の永久磁石21.22をベルトs上に交互に設けて
いる。4はヨーク3及び永久磁石21.22を駆動させ
るための回転車、5はシールド板、6はベースプレー 
1−17は絶縁ポート、8はカソード、9はり、C又は
R,Fの電源である。
FIG. 1 shows a cathode section of a magnetron sputtering apparatus in one embodiment of the present invention. In Figure 1, 1
is a target, 21 is a permanent magnet with an N pole at the top end and an S pole at the bottom end, 22 is a permanent magnet with an S pole at the top end and a N pole at the bottom end, and 3 is a yoke that functions as a belt, as shown in Figure 1. A plurality of permanent magnets 21 and 22 are provided alternately on the belt s. 4 is a rotating wheel for driving the yoke 3 and permanent magnets 21 and 22, 5 is a shield plate, and 6 is a base plate.
1-17 is an insulated port, 8 is a cathode, 9 is a beam, C or R, F power source.

以上のように構成されたマグネトロンスパッタ装置の陰
極部について、以下その動作について説明する。
The operation of the cathode section of the magnetron sputtering apparatus configured as described above will be described below.

ターゲット1の永久磁石21及び22に対する面と反対
面をlX10Torr〜I X 10 Torrの低圧
気体雰囲気中に設置する。ターゲット1のこの面上では
、永久磁石21.22により、矢印Bで7ヘージ 示す向きに磁力線が発生している。
The surface of the target 1 opposite to the surface facing the permanent magnets 21 and 22 is placed in a low pressure gas atmosphere of 1.times.10 Torr to 1.times.10 Torr. On this surface of the target 1, magnetic lines of force are generated by the permanent magnets 21, 22 in the direction indicated by arrow B by 7 heges.

カソード8に電源9により負電圧を印加すると、ターゲ
ット1上で電磁界の作用によりマグネトロン放電が生ず
る。この際に、回転車4を駆動させ矢印Cの方向に、ヨ
ーク3及び永久磁石21.22を移動させると、収束磁
力線Bにより閉じ込められたマグネトロン放電はターゲ
ット1上を第1図の左から右に向かって移動する。これ
に伴って、イオン衝撃による浸蝕部もターゲット1上を
移動する。
When a negative voltage is applied to the cathode 8 by a power source 9, a magnetron discharge occurs on the target 1 due to the action of the electromagnetic field. At this time, when the rotary wheel 4 is driven to move the yoke 3 and the permanent magnets 21 and 22 in the direction of arrow C, the magnetron discharge confined by the converging magnetic field lines B moves over the target 1 from left to right in FIG. move towards. Along with this, the eroded portion due to ion bombardment also moves on the target 1.

イオン衝撃による浸蝕がカソード8におよばないために
、シールド板5によりマグネトロン放電の領域を限定し
ている。
In order to prevent corrosion caused by ion bombardment from reaching the cathode 8, the area of magnetron discharge is limited by the shield plate 5.

第2図に、本実施例によるマグネトロンスパッタ装置の
陰極部により、ターゲット1を長時間マグネトロン放電
にさらし、スパッタを行った後のターゲット1の断面及
び基板上に堆積した薄膜の膜厚分布を示す。第2図にお
いて、11は永久磁石21.22の配列方向にターゲッ
ト1を切断した断面形状、その上の曲線Yはターゲツト
1断面直上の基板上の堆積膜の膜厚分布を示すもので、
均一にターゲット1が浸蝕されている。
Figure 2 shows the cross section of the target 1 and the film thickness distribution of the thin film deposited on the substrate after sputtering by exposing the target 1 to magnetron discharge for a long time using the cathode section of the magnetron sputtering apparatus according to this embodiment. . In FIG. 2, reference numeral 11 indicates the cross-sectional shape of the target 1 cut in the direction in which the permanent magnets 21 and 22 are arranged, and the curve Y above it indicates the film thickness distribution of the deposited film on the substrate directly above the cross-section of the target 1.
Target 1 is uniformly eroded.

以上のように本実施例によれば、永久磁石21゜22を
連続的に移動させることによシ、イオン衝撃によるター
ゲット浸蝕部分をターゲット全面で掃引させ、第2図に
示す如く、均一なターゲット浸蝕を実現し、ターゲット
の利用効率を60−60%に向上できる。さらに、基板
への膜付着速度の等速性を達成し、均一な膜厚分布の薄
膜を作製できる。
As described above, according to this embodiment, by continuously moving the permanent magnets 21 and 22, the eroded portion of the target due to ion bombardment is swept over the entire surface of the target, and as shown in FIG. Erosion can be realized and target utilization efficiency can be improved to 60-60%. Furthermore, it is possible to achieve uniform film deposition speed on the substrate and to produce a thin film with a uniform thickness distribution.

また、本実施例では永久磁石を密に配置することにより
ターゲット上でのイオン衝撃面積を広げたため、ターゲ
ットの浸蝕速度が速くなシ、薄膜の高速成膜が可能とな
る。
Furthermore, in this example, the ion bombardment area on the target is expanded by arranging the permanent magnets densely, so that the target is eroded at a high rate and a thin film can be formed at high speed.

なお、本実施例ではターゲットの形状を角型としたが、
ジ−トド板5の形状を変更することにより、丸型のター
ゲットでも対応できる。
Note that in this example, the shape of the target was square, but
By changing the shape of the target plate 5, even a round target can be used.

発明の効果 本発明はN極、S極が交互に配列された磁石群を、配列
方向の一方向に連続的に移動する磁界発9べ−7 主機構を陰極部に設けることにより、イオン衝撃による
ターゲット浸蝕を均一にし、ターゲットの利用効率の向
上と薄膜の膜厚の均一化をはかることができ、さらに永
久磁石の配置を密にしたことによシ薄膜の高速成膜とい
う効果を得ることができる優れたマグネトロンスパッタ
装置を実現できるものである。
Effects of the Invention The present invention uses a group of magnets in which N poles and S poles are arranged alternately to generate a magnetic field that moves continuously in one direction in the arrangement direction.By providing a main mechanism in the cathode part, ion bombardment can be achieved. This makes it possible to uniformly erode the target, improve target usage efficiency, and make the thickness of the thin film uniform.Furthermore, by densely arranging the permanent magnets, it is possible to achieve the effect of high-speed deposition of thin films. This makes it possible to realize an excellent magnetron sputtering device that can perform

【図面の簡単な説明】 第1図は本発明の一実施例におけるマグネトロンスパッ
タ装置の断面斜視図、第2図は長時間スパッタ後のター
ゲット断面と膜厚分布とを示す対応図、第3図は従来の
マグネトロンスパッタ装置の断面斜視図、第4図は長時
間スパッタ後のターゲット断面と膜厚分布とを示す対応
図である。 1・・・・・・ターゲット、3・・・・・・ヨーク、4
・・・・・・回転車、5・・・・・シールド板、6・・
・・・ベースプレート、了・・・・・・絶縁ボート、8
・・・・・カソード、9・・・・・−電源、10.11
・・・・・・ターゲット断面、21.22・・・・・・
永久磁石。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名× 
        3 8−Ili!1呻 大−
[Brief Description of the Drawings] Fig. 1 is a cross-sectional perspective view of a magnetron sputtering apparatus in an embodiment of the present invention, Fig. 2 is a corresponding diagram showing a target cross section and film thickness distribution after long-time sputtering, and Fig. 3 4 is a cross-sectional perspective view of a conventional magnetron sputtering apparatus, and FIG. 4 is a corresponding diagram showing a target cross section and film thickness distribution after long-time sputtering. 1...Target, 3...Yoke, 4
... Rotating wheel, 5 ... Shield plate, 6 ...
・・・Base plate, finished...Insulated boat, 8
...Cathode, 9...-Power supply, 10.11
...Target cross section, 21.22...
permanent magnet. Name of agent: Patent attorney Toshio Nakao and 1 other person
3 8-Ili! 1 big groan

Claims (1)

【特許請求の範囲】[Claims] N極、S極が交互に配列された磁石群が、配列方向の一
方向に連続的に移動するように構成された磁界発生機構
を陰極部分に設けたことを特徴とするマグネトロンスパ
ッタ装置。
A magnetron sputtering apparatus characterized in that a magnetic field generating mechanism is provided in a cathode portion, in which a group of magnets in which N poles and S poles are alternately arranged move continuously in one direction of arrangement.
JP27025386A 1986-11-13 1986-11-13 Magnetron sputtering device Pending JPS63125675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27025386A JPS63125675A (en) 1986-11-13 1986-11-13 Magnetron sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27025386A JPS63125675A (en) 1986-11-13 1986-11-13 Magnetron sputtering device

Publications (1)

Publication Number Publication Date
JPS63125675A true JPS63125675A (en) 1988-05-28

Family

ID=17483669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27025386A Pending JPS63125675A (en) 1986-11-13 1986-11-13 Magnetron sputtering device

Country Status (1)

Country Link
JP (1) JPS63125675A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001254175A (en) * 2000-01-24 2001-09-18 Senken Kan Planar magnetron sputtering system
WO2003015124A1 (en) * 2001-08-02 2003-02-20 N.V. Bekaert S.A. Sputtering magnetron arrangements with adjustable magnetic field strength
KR100603459B1 (en) 2003-11-13 2006-07-20 엘지전자 주식회사 Sputtering Apparatus
JP2009228129A (en) * 2008-03-21 2009-10-08 Beijing Boe Optoelectronics Technology Co Ltd Magnetic control sputtering target structure and equipment
US20100006424A1 (en) * 2008-07-09 2010-01-14 Samsung Mobile Display Co. Ltd. Magnetron unit moving apparatus for preventing magnetization and magnetron sputtering equipment having the same
US8388819B2 (en) 2009-02-13 2013-03-05 Beijing Boe Optoelectronics Technology Co., Ltd. Magnet target and magnetron sputtering apparatus having the same
US9449799B2 (en) 2013-12-30 2016-09-20 Shanghai Tianma AM-OLED Co., Ltd. Film deposition device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176673A (en) * 1984-09-21 1986-04-19 Fujitsu Ltd Sputtering method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176673A (en) * 1984-09-21 1986-04-19 Fujitsu Ltd Sputtering method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001254175A (en) * 2000-01-24 2001-09-18 Senken Kan Planar magnetron sputtering system
WO2003015124A1 (en) * 2001-08-02 2003-02-20 N.V. Bekaert S.A. Sputtering magnetron arrangements with adjustable magnetic field strength
KR100603459B1 (en) 2003-11-13 2006-07-20 엘지전자 주식회사 Sputtering Apparatus
JP2009228129A (en) * 2008-03-21 2009-10-08 Beijing Boe Optoelectronics Technology Co Ltd Magnetic control sputtering target structure and equipment
US20100006424A1 (en) * 2008-07-09 2010-01-14 Samsung Mobile Display Co. Ltd. Magnetron unit moving apparatus for preventing magnetization and magnetron sputtering equipment having the same
US8882976B2 (en) * 2008-07-09 2014-11-11 Samsung Display Co., Ltd. Magnetron unit moving apparatus for preventing magnetization and magnetron sputtering equipment having the same
US8388819B2 (en) 2009-02-13 2013-03-05 Beijing Boe Optoelectronics Technology Co., Ltd. Magnet target and magnetron sputtering apparatus having the same
US9449799B2 (en) 2013-12-30 2016-09-20 Shanghai Tianma AM-OLED Co., Ltd. Film deposition device
DE102014107354B4 (en) 2013-12-30 2022-07-21 Tianma Micro-Electronics Co., Ltd. layer deposition device

Similar Documents

Publication Publication Date Title
US6395146B2 (en) Sputtering assembly and target therefor
EP0211412B1 (en) Planar magnetron sputtering apparatus and its magnetic source
US5876576A (en) Apparatus for sputtering magnetic target materials
SE9704607D0 (en) A method and apparatus for magnetically enhanced sputtering
JP2934711B2 (en) Sputtering equipment
JPS63125675A (en) Magnetron sputtering device
JPS59133370A (en) Magnetron sputtering device
JPH079062B2 (en) Spatter device
JPH11158625A (en) Magnetron sputtering film forming device
JPH0881769A (en) Sputtering device
JPS6217175A (en) Sputtering device
JP3893436B2 (en) Inclined target type magnetron sputtering system
JPH08209343A (en) Method and apparatus for plane magnetron sputtering
JP3100837B2 (en) Sputtering equipment
JP2001348663A (en) Sputtering system
JP2796765B2 (en) Thin film forming equipment
JP2001164362A (en) Planar magnetron sputtering system
JPS63247366A (en) Magnetron sputtering device
JPH0559542A (en) Magnetron sputtering electrode
JP3414667B2 (en) Magnetron sputtering method
JPH03240953A (en) Magnetron sputtering device
JPH04354868A (en) Target for magnetron sputtering device
JPH0633454B2 (en) Sputtering device
KR100281035B1 (en) Magnetic sputtering cathode device
JPS63282262A (en) Method for controlling sputtering device