JPS63124843A - Electronic control fuel control device for internal combustion engine - Google Patents

Electronic control fuel control device for internal combustion engine

Info

Publication number
JPS63124843A
JPS63124843A JP26875186A JP26875186A JPS63124843A JP S63124843 A JPS63124843 A JP S63124843A JP 26875186 A JP26875186 A JP 26875186A JP 26875186 A JP26875186 A JP 26875186A JP S63124843 A JPS63124843 A JP S63124843A
Authority
JP
Japan
Prior art keywords
interrupt
acceleration
injection
fuel
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26875186A
Other languages
Japanese (ja)
Other versions
JPH0557421B2 (en
Inventor
Shinpei Nakaniwa
伸平 中庭
Seiichi Otani
大谷 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP26875186A priority Critical patent/JPS63124843A/en
Publication of JPS63124843A publication Critical patent/JPS63124843A/en
Publication of JPH0557421B2 publication Critical patent/JPH0557421B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent an air-fuel ratio from being brought into a lean state during acceleration running from all rotation area even if a delay in detection response occurs during the initial stage of acceleration and to improve acceleration performance, by a method wherein the number of interruption injection times is increased along with an increase in the number of revolutions. CONSTITUTION:A control device 9 computes a fundamental fuel injection based on an intake air amount from an airflow meter 10 and the number of revolutions from a crank angle sensor 11, and performs various kinds of correction based on detecting values from a throttle sensor 12 and a water temperature sensor 13. When the change rate per a unit hour of the opening of a throttle valve is positive, it is decided that acceleration is in progress, and an increase correction factor is read in response to each of a rate of change of a throttle, the number of revolutions, a cooling water temperature, and a fundamental fuel injection amount to compute an injection amount of an acceleration interruption injection amount. By means of an interruption pulse signal responding to an interruption injection amount during acceleration, interruption injection is effected in synchronism with the number of revolutions of an engine.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は内燃機関の電子制御燃料噴射装置に関し、特に
加速性能の改善に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an electronically controlled fuel injection device for an internal combustion engine, and particularly to improving acceleration performance.

〈従来の技術〉 内燃機関の電子制御燃料噴射装置の従来例として以下の
ようなものがある(実開昭60−066558号参照)
<Prior art> The following is a conventional example of an electronically controlled fuel injection device for an internal combustion engine (see Utility Model Application No. 60-066558).
.

即ち、吸気通路に介装された熱線抵抗の出力電圧により
吸入空気流量を検出するエアフロメータの検出吸入空気
流量Qと、機関回転速度Nとから基本噴射量Tp=KX
Q/N (Kは定数)を演算すると共に、主として水温
に応じた各種補正係数C0EF、空燃比フィードバック
補正係数α7バツテリ電圧による補正係数T3とを演算
した後、燃料量T i = T p X COE F 
X (r + T sを演算する。
That is, from the detected intake air flow rate Q of an air flow meter that detects the intake air flow rate based on the output voltage of a hot wire resistor installed in the intake passage, and the engine rotational speed N, the basic injection amount Tp=KX
After calculating Q/N (K is a constant), various correction coefficients C0EF mainly depending on water temperature, air-fuel ratio feedback correction coefficient α7 and correction coefficient T3 due to battery voltage, fuel amount T i = T p X COE F
Compute X (r + T s.

そして、点火信号等に同期して燃料噴射弁に対し、前記
燃料量Tiに対応するパルス巾の駆動パルス信号を出力
し、機関に燃料を供給する。
Then, in synchronization with the ignition signal, etc., a drive pulse signal having a pulse width corresponding to the fuel amount Ti is outputted to the fuel injection valve, thereby supplying fuel to the engine.

また、加速運転時にはスロットル弁開度の変化率等から
得られた加速増量係数を前記燃料量Tiに乗算して加速
増量燃料量を設定し、該増量燃料量に対応するパルス巾
の割込みパルス信号を所定タイミングで前記駆動パルス
信号の間に割込ませて加速初期に加速増量燃料を噴射す
るいわゆる割込み噴射により加速増量を図る。
In addition, during acceleration operation, an acceleration increase fuel amount is set by multiplying the fuel amount Ti by an acceleration increase coefficient obtained from the rate of change of the throttle valve opening, etc., and an interrupt pulse signal with a pulse width corresponding to the increase fuel amount is set. The acceleration amount is increased by so-called interrupt injection in which the fuel is inserted between the drive pulse signals at a predetermined timing and the acceleration increased amount of fuel is injected at the beginning of acceleration.

〈発明が解決しようとする問題点〉 ところで、従来の割込み噴射は、加速運転状態に拘わら
ず一定回数行うようにしているので、以下の問題点があ
る。
<Problems to be Solved by the Invention> By the way, in the conventional interrupt injection, the interrupt injection is performed a fixed number of times regardless of the acceleration driving state, and therefore, there are the following problems.

すなわち、加速運転時には実際の吸入空気流量は第7図
中破線で示すようにスロットル弁の開度変化に略対応し
て変動する。これに対し、第5図中実線で示すようにエ
アフロメータにより検出された吸入空気流量は検出応答
遅れにより加速運転初期において実際の吸入空気流量よ
り大巾に減少する。ここで、検出された吸入空気流量が
実際の吸入空気流量を下回る期間(以下、応答遅れ期間
と呼ぶ)は第7図に示すように機関回転速度に拘わらず
略一定になっている。
That is, during acceleration operation, the actual intake air flow rate varies approximately in accordance with changes in the opening degree of the throttle valve, as shown by the broken line in FIG. On the other hand, as shown by the solid line in FIG. 5, the intake air flow rate detected by the air flow meter decreases by a large margin than the actual intake air flow rate at the beginning of acceleration operation due to the detection response delay. Here, the period during which the detected intake air flow rate is lower than the actual intake air flow rate (hereinafter referred to as a response delay period) is approximately constant regardless of the engine rotation speed, as shown in FIG.

したがって、低回転域からの加速運転時に対応させて一
定の割込み噴射回数(たとえば3回)を設定すると、低
回転域(例えば1200r、p、m、 )からの加速運
転時には第7図に示すように前記応答遅れ期間の間一定
の割合いで割込み噴射がなされるため、空燃比のリーン
化は第7図に示すように最小限に抑制され加速性能の低
下を抑制できる。
Therefore, if a certain number of interrupt injections (for example, 3 times) is set to correspond to the acceleration operation from the low rotation range (for example, 1200r, p, m, Since interrupt injection is performed at a constant rate during the response delay period, lean air-fuel ratio is suppressed to a minimum as shown in FIG. 7, and deterioration in acceleration performance can be suppressed.

しかし、高回転域(例えば2400r、p、m )から
の加速運転時には、第7図に示すように応答遅れ期間の
後期に対応する気筒(第5図中破線位置)に割込み噴射
がなされないので、空燃比が第7図破線で示すように大
巾にリーン化するため、加速性能が悪化するという問題
点がある。
However, when accelerating from a high rotation range (e.g. 2400r, p, m2), as shown in Fig. 7, interrupt injection is not performed in the cylinder corresponding to the latter half of the response delay period (dotted line position in Fig. 5). , as the air-fuel ratio becomes significantly leaner as shown by the broken line in FIG. 7, there is a problem that acceleration performance deteriorates.

本発明は、このような実状に鑑みてなされたもので、全
ゆる回転域からの加速運転時にも最適な加速性能を確保
できる内燃機関の電子制御燃料噴射装置を提供すること
を目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an electronically controlled fuel injection device for an internal combustion engine that can ensure optimal acceleration performance even during acceleration operation from all rotation ranges.

く問題点を解決するための手段〉 このため、本発明は第1図に示すように機関Aの少なく
とも加速運転状態を含む運転状態を検出する運転状態検
出手段Bと、該検出信号に基づいて燃料量を設定する燃
料量設定手段Cと、設定された燃料量に対応する駆動パ
ルス信号を燃料噴射弁りに出力する駆動パルス出力手段
Eと、加速運転時の割込み燃料噴射量を設定する割込み
燃料噴射量設定手段Fと、加速運転時若しくは加速運転
開始直前の機関回転速度の増大に伴って割込み噴射回数
が増大するように加速運転初期の一定時間内の割込み噴
射回数を設定する割込み噴射回数設定手段Gと、該設定
された割込み噴射、回数に基づいて前記割込み燃料噴射
量に対応する割込みパルス信号を前記駆動パルス信号の
間に割込ませて前記燃料噴射弁りに出力する割込みパル
ス出力手段Hと、を備えるようにした。
Means for Solving Problems> For this reason, the present invention, as shown in FIG. A fuel amount setting means C for setting the fuel amount, a drive pulse output means E for outputting a drive pulse signal corresponding to the set fuel amount to the fuel injection valve, and an interrupt for setting the interrupt fuel injection amount during acceleration operation. A fuel injection amount setting means F, and an interrupt injection number for setting the number of interrupt injections within a certain period of time at the beginning of acceleration operation so that the number of interrupt injections increases as the engine rotation speed increases during acceleration operation or immediately before the start of acceleration operation. a setting means G, and an interrupt pulse output for interpolating an interrupt pulse signal corresponding to the interrupt fuel injection amount between the drive pulse signals and outputting the interrupt pulse signal to the fuel injection valve based on the set interrupt injection number. Means H is provided.

〈作用〉 このようにして、機関回転速度の増大に伴って割込み噴
射回数を増大させ、加速運転初期に例えば吸入空気流量
の検出応答遅れが発生しても空燃比のリーン化を防止で
きるようにした。
<Function> In this way, the number of interrupt injections is increased as the engine rotational speed increases, and even if, for example, there is a delay in the intake air flow rate detection response at the beginning of acceleration operation, it is possible to prevent the air-fuel ratio from becoming leaner. did.

〈実施例〉 以下に本発明の一実施例を説明する。<Example> An embodiment of the present invention will be described below.

第2図において、機関1にはエアクリーナ2゜吸気ダク
ト3.スロットルチャンバ4.吸気マニホールド5及び
吸気弁6を介して空気が吸入される。
In FIG. 2, an engine 1 includes an air cleaner 2° intake duct 3. Throttle chamber 4. Air is taken in through an intake manifold 5 and an intake valve 6.

スロットルチャンバ4には図示しないアクセルペダルと
連動するスロットル弁7が設けられていて、吸入空気流
量を制御する。
The throttle chamber 4 is provided with a throttle valve 7 that operates in conjunction with an accelerator pedal (not shown) to control the flow rate of intake air.

吸気マニホールド5 (又は吸気ボート)には各気筒毎
に燃料噴射弁8が設けられている。この燃料噴射弁8は
ソレノイドに通電されて開弁じ通電停止されて閉弁する
電磁式燃料噴射弁であって、制御装置9からの駆動パル
ス信号によりソレノイドに通電されて開弁じ、図示しな
い燃料ポンプから圧送されプレッシャレギュレータによ
り所定の圧力に調整された燃料を機関1に噴射供給する
The intake manifold 5 (or intake boat) is provided with a fuel injection valve 8 for each cylinder. The fuel injection valve 8 is an electromagnetic fuel injection valve whose solenoid is energized to open the valve, and whose energization is stopped to close the valve.The solenoid is energized by a drive pulse signal from the control device 9 to open the valve, and a fuel pump (not shown) The engine 1 is injected with fuel that is pressure-fed from the engine and adjusted to a predetermined pressure by a pressure regulator.

制御装置9は、各種のセンサからの人力信号を受け、後
述の如く演算処理して、燃料噴射量(噴射時間)と噴射
開始時期とを定め、これに従って駆動パルス信号を燃料
噴射弁8に出力する。
The control device 9 receives human input signals from various sensors, performs arithmetic processing as described below, determines the fuel injection amount (injection time) and injection start timing, and outputs a drive pulse signal to the fuel injection valve 8 in accordance with this. do.

前記各種のセンサとしては、吸気ダクト3に熱線式のエ
アフローメータ10が設けられていて、吸入空気流量に
応じた信号を出力する。また、図示しないディストリビ
ュータに内蔵させてクランク角センサ11が設けられて
いて、クランク角2@毎の単位信号と、180 °毎(
4気筒の場合)の基準信号とを出力する。したがって、
クランク角720°で4個の基準信号が出力されるが、
そのうち1つは他と識別可能で、これをもとに各基準信
号を各気筒の行程に対し特定可能である。また、スロッ
トル弁7にポテンショメータ式のスロットルセンサ12
が設けられていて、スロットル弁7の開度に応じた信号
を出力する。また、機関1のウォータシャケ、ットに水
温センサ13が設けられていて、水温に応じた信号を出
力する。更に制御装置9にはその動作電源としてまた電
源電圧の検出のためバッテリ14の電圧がエンジンキー
スイッチ15を介して印加されている。
As the various sensors mentioned above, a hot wire type air flow meter 10 is provided in the intake duct 3, and outputs a signal corresponding to the intake air flow rate. In addition, a crank angle sensor 11 is provided built into the distributor (not shown), and it outputs a unit signal every 2 @ crank angle, and every 180 degrees (
(in the case of a 4-cylinder engine). therefore,
Four reference signals are output at a crank angle of 720°,
One of them is distinguishable from the other, and each reference signal can be specified for each cylinder stroke based on this. In addition, a potentiometer-type throttle sensor 12 is attached to the throttle valve 7.
is provided and outputs a signal according to the opening degree of the throttle valve 7. Further, a water temperature sensor 13 is provided in the water bucket of the engine 1, and outputs a signal corresponding to the water temperature. Furthermore, the voltage of a battery 14 is applied to the control device 9 via an engine key switch 15 as its operating power source and for detecting the power supply voltage.

ここでは、制御装置9が燃料量設定手段と割込み燃料噴
射量設定手段と割込み噴射回数設定手段と駆動パルス出
力手段と割込みパルス出力手段とを構成する。また、エ
アフロメータ10とクランク角センサ11とスロットル
センサ12と水温センサ13とが運転状態検出手段を構
成する。
Here, the control device 9 constitutes a fuel amount setting means, an interrupt fuel injection amount setting means, an interrupt injection number setting means, a drive pulse output means, and an interrupt pulse output means. Further, the air flow meter 10, the crank angle sensor 11, the throttle sensor 12, and the water temperature sensor 13 constitute a driving state detection means.

次に作用を第3図〜第6図のフローチャートに従って説
明する。
Next, the operation will be explained according to the flowcharts shown in FIGS. 3 to 6.

ある気筒について、特定の基準信号がクランク角センサ
11から出力されると、これにより第3図のフローチャ
ートに示すルーチンが実行される。
When a specific reference signal is output from the crank angle sensor 11 for a certain cylinder, the routine shown in the flowchart of FIG. 3 is executed.

先ず、SlでタイマをOスタートさせる。First, the timer is started at O using Sl.

次に、S2で今回の基準信号とその1つ前の基準信号と
の間の周期T□、に所定の係数Aを乗じて特定の基準信
号(タイマ・スタート)から吸気弁6の開弁までの時間
t+=T□、・Aを演算する。これは、特定の基準信号
から吸気弁6の開弁までのクランク角は一定であり、こ
の期間を基準信号間のクランク角に対する比率で表し、
前記周期T +tiyにその比率Aを乗算して時間に換
算するのである。
Next, in S2, the period T□ between the current reference signal and the previous reference signal is multiplied by a predetermined coefficient A, and the period from the specific reference signal (timer start) to the opening of the intake valve 6 is calculated. The time t+=T□, ·A is calculated. This means that the crank angle from a specific reference signal to the opening of the intake valve 6 is constant, and this period is expressed as a ratio to the crank angle between the reference signals.
The period T+tiy is multiplied by the ratio A to convert it into time.

次に84でエアフロメータ10により検出される吸入空
気流IQと機関回転速度の逆数に相当する周期T□、と
から下記(1)式により基本燃料噴射量Tpを演算し、
更にS5でスロットルセンサ12により検出されるスロ
ットル弁7の開度や水温センサ13により検出される水
温に基づいて設定される各種補正係数C0EFとバッテ
リ14の電圧値に基づいて設定される電圧補正分子、と
を用いて下記(2)式により燃料噴射量(噴射時間)T
iを演算する。
Next, in step 84, a basic fuel injection amount Tp is calculated from the intake airflow IQ detected by the airflow meter 10 and a period T□ corresponding to the reciprocal of the engine rotational speed using the following formula (1),
Furthermore, in S5, various correction coefficients C0EF are set based on the opening degree of the throttle valve 7 detected by the throttle sensor 12 and the water temperature detected by the water temperature sensor 13, and a voltage correction numerator is set based on the voltage value of the battery 14. , and the fuel injection amount (injection time) T according to the following equation (2).
Calculate i.

T p =に−Q−T*tr  (Kは定数) ・”(
11T i −T p−COE F + T s   
  ・・・(2)次に36で吸気弁6開弁までの時間t
、から噴射時間Tiを減じて、特定の基準信号から噴射
開始までの時間t、=t、−Tiを演算する。
T p = −Q−T*tr (K is a constant) ・”(
11T i −T p−COE F + T s
...(2) Next, at 36, the time t until intake valve 6 opens
By subtracting the injection time Ti from , the time t,=t,-Ti from a specific reference signal to the start of injection is calculated.

一方、所定時間(例えば1 ms)毎に第4図のフロー
チャートに示すルーチンが実行され、そのS11でタイ
マがカウントアツプされる。そして、S12でそのタイ
マの計時が前記噴射開始までの時間t2に一致したか否
かを判定し、不一致の場合はこのルーチンを終了する。
On the other hand, a routine shown in the flowchart of FIG. 4 is executed at predetermined time intervals (for example, 1 ms), and a timer is counted up in step S11. Then, in S12, it is determined whether or not the time measured by the timer matches the time t2 until the injection start, and if the time does not match, this routine is ended.

そして、一致したときに313へ進んで、噴射時間Tl
のパルス巾をもつ駆動パルス信号を燃料噴射弁8に出力
して通常の燃料噴射を開始させる。
Then, when they match, the process advances to 313 and the injection time Tl
A drive pulse signal having a pulse width of is output to the fuel injection valve 8 to start normal fuel injection.

すると、吸気弁6の開弁時期近傍で噴射が終了する。Then, the injection ends near the opening timing of the intake valve 6.

第5図のフローチャートに示すルーチンは所定時間(例
えば10m5)毎に実行される。
The routine shown in the flowchart of FIG. 5 is executed at predetermined intervals (for example, every 10 m5).

S21ではスロ7 +−ルセンサ12により検出される
スロットル、弁7の開度αを検出し、S22では前回の
検出値との差(単位時間当たりの変化率)Δαを演算し
、かつΔαのレベルをメモリする。そして、S23では
加速判定すなわちΔα〉0か否かの判定を行い、加速と
判定された場合は、S24へ進んで加速初回か否かを判
定する。そして、加速初回の場合のみ、割込み噴射のた
め、S25へ進む。
In S21, the opening degree α of the throttle and valve 7 detected by the throttle sensor 12 is detected, and in S22, the difference (rate of change per unit time) Δα from the previous detected value is calculated, and the level of Δα is calculated. to memory. Then, in S23, an acceleration determination is made, that is, it is determined whether Δα>0, and if it is determined that acceleration is occurring, the process proceeds to S24, and it is determined whether or not it is the first acceleration. Then, only in the case of the first acceleration, the process proceeds to S25 for interrupt injection.

S25ではCY Lカウンタの値を予め決められた値(
例えば5、これは最大5回の割込み噴射を行うことを意
味する。)にセットする。次に526では加速状態を表
すΔαに応じた割込みパルス信号の時間巾T、Iを検索
する。そして、S27でその時間巾T、の割込みパルス
信号を出力し、割込み噴射を行わせる。これは通常の燃
料噴射の終了時期(Ti−END)とは無関係の割込み
噴射となる。
In S25, the value of the CYL counter is set to a predetermined value (
For example, 5, which means that a maximum of 5 interrupt injections are performed. ). Next, at 526, the time widths T and I of the interrupt pulse signal corresponding to Δα representing the acceleration state are searched. Then, in S27, an interrupt pulse signal having the time width T is outputted to cause interrupt injection to be performed. This becomes an interrupt injection unrelated to the normal fuel injection end timing (Ti-END).

第6図のフローチャートに示すルーチンは通常の燃料噴
射の終了時期(Ti−END)に実行される割込みルー
チンである。
The routine shown in the flowchart of FIG. 6 is an interrupt routine executed at the end of normal fuel injection (Ti-END).

S31では、各種信号を入力させ、S32では検出され
たスロットル弁70開度αからその変化率Δαを演算す
る。
In S31, various signals are inputted, and in S32, the rate of change Δα of the throttle valve 70 opening degree α is calculated from the detected throttle valve 70 opening degree α.

S33では、演算された変化率Δαから加速操作か否か
を判定しYESの場合にはS34に進みN。
In S33, it is determined whether or not it is an acceleration operation based on the calculated rate of change Δα, and if YES, the process advances to S34 (N).

の場合にはS31に戻る。In this case, the process returns to S31.

334では、割込み噴射用タイマのカウントを開始させ
る。
At 334, the interrupt injection timer starts counting.

335では、割込み噴射用タイマのカウント時間が加速
運転初期の応答遅れ期間(第7図TL)内か否かを判定
し、YESのときにはS36に進みNOのときにはS3
1に戻る。ここで、前記応答遅れ期間T、は機関回転速
度の大小に拘わらす略一定となる。
At 335, it is determined whether or not the count time of the interrupt injection timer is within the response delay period (TL in FIG. 7) at the beginning of acceleration operation. If YES, the process advances to S36, and if NO, the process advances to S3.
Return to 1. Here, the response delay period T is substantially constant regardless of the magnitude of the engine rotational speed.

336では、前記変化率Δαに基づいて変化率依存増量
係数α1をROM (又はRAM)から検索し、S37
に進む。この変化率依存増量係数α1は前記変化率Δα
の増大に伴って大きくなるように設定されている。
In step 336, the rate-of-change dependent increase coefficient α1 is retrieved from the ROM (or RAM) based on the rate of change Δα, and the process is performed in step S37.
Proceed to. This rate of change dependent increase coefficient α1 is the rate of change Δα
It is set to increase as the value increases.

S37では、検出された回転速度に基づいて回転依存増
量係数N1を検索し、338に進む。この回転依存増量
係数N、は回転速度の増大に伴って小さくなるように設
定されている。
In S37, the rotation dependent increase coefficient N1 is searched based on the detected rotation speed, and the process proceeds to 338. This rotation-dependent increase coefficient N is set to decrease as the rotation speed increases.

338では、検出された冷却水温度に基づいて水温依存
増量係数T1を検索し、S39に進む。この水温依存増
量係数T’w+は冷却水温の上昇に伴って小さくなるよ
うに設定されている。
In step 338, a water temperature dependent increase coefficient T1 is searched based on the detected cooling water temperature, and the process proceeds to step S39. This water temperature dependent increase coefficient T'w+ is set to become smaller as the cooling water temperature rises.

S39では、前記S4にて演算された基本噴射量’rp
に基づいて基本噴射量依存増量係数T、1を検索し、3
40に進む。この基本噴射量依存増量係数T□は基本噴
射量の増大に伴って小さくなるように設定されている。
In S39, the basic injection amount 'rp calculated in S4 is
Search for the basic injection amount dependent increase coefficient T, 1 based on 3
Proceed to 40. This basic injection amount dependent increase coefficient T□ is set to decrease as the basic injection amount increases.

S40では、現在、燃料供給停止中若しくはその終了直
後か否かを判定し、YESのときには燃料供給停止中若
しくはその終了直後からの加速運転と判定しS41に進
みNOのときには燃料供給制御を連続して行っている時
からの加速運転と判定し342に進む。
In S40, it is determined whether or not the fuel supply is currently being stopped or immediately after the end of the fuel supply. If YES, it is determined that the fuel supply is being stopped or the acceleration operation has started immediately after the end. The process proceeds to S41, and if NO, the fuel supply control is continued. It is determined that the acceleration operation is from when the vehicle is moving forward, and the process proceeds to step 342.

S41では、燃料供給停止時若しくはその直後からの加
速運転時に燃料供給再開時増量係数Q、を1.3に設定
し、それ以外のときにはS42でQ、を1.0に設定す
る。
In S41, the fuel supply restart increase coefficient Q is set to 1.3 when the fuel supply is stopped or when acceleration is started immediately after the fuel supply is stopped, and in other cases, Q is set to 1.0 in S42.

S43では、加速時割込み噴射量T、lIを次式により
演算する。
In S43, the acceleration interruption injection amounts T and lI are calculated using the following equations.

T)11=KX(’r+ xN、XTw+XTpiXQ
+  (Kは定数) S44では、演算された加速時割込み噴射ft T *
 Iに対応する割込みパルス信号を機関回転速度に同期
して燃料噴射弁8に出力し割込み噴射Tiを行う。した
がって、割込みパルス信号の出力時期が機関回転速度に
同期して設定され、この部分が割込み噴射時期設定手段
に相当する。
T) 11=KX('r+ xN, XTw+XTpiXQ
+ (K is a constant) In S44, the calculated acceleration interruption injection ft T *
An interrupt pulse signal corresponding to I is output to the fuel injection valve 8 in synchronization with the engine rotational speed to perform interrupt injection Ti. Therefore, the output timing of the interrupt pulse signal is set in synchronization with the engine rotation speed, and this portion corresponds to interrupt injection timing setting means.

このようにして、前記応答遅れ期間T8.が経過するま
で各気筒に対し点火順序に従って通常の燃料噴射Tiに
割込ませて割込み噴射T、Iを行う。
In this way, the response delay period T8. Interrupt injections T and I are performed for each cylinder by interrupting the normal fuel injection Ti according to the ignition order until the time period elapses.

ここで、応答遅れ期間Ttは第7図に示すように機関回
転速度の如何に拘わらす略一定であるため、機関回転速
度の増大に伴って割込み噴射回数が増大し、高回転域で
は第7図中破線位置でも割込み噴射T、が行われる。
Here, since the response delay period Tt is approximately constant regardless of the engine rotation speed as shown in FIG. 7, the number of interrupt injections increases as the engine rotation speed increases, and in the high rotation range Interrupt injection T is also performed at the position shown by the broken line in the figure.

したがって、機関回転速度の如何に拘わらず応答遅れ期
間T、の間は割込み噴射’rpが行なわれるので、エア
フロメータ10の検出応答遅れが加速運転初期に発生し
ても割込み噴射T、Iにより燃料増量を図れるため、加
速運転初期の空燃比のり−ン化を防止でき、全ゆる回転
域からの加速運転時に最適な加速性能を確保できる。
Therefore, regardless of the engine speed, the interrupt injection 'rp is performed during the response delay period T, so even if the detection response delay of the air flow meter 10 occurs at the beginning of acceleration operation, the interrupt injections T and I will cause the fuel to be injected. Since the amount can be increased, it is possible to prevent the air-fuel ratio from becoming too steep at the beginning of acceleration operation, and it is possible to ensure optimal acceleration performance during acceleration operation from all rotation ranges.

尚、本実施例では、加速運転開始から応答遅れ期間TL
が経過するまで割込み噴射を行うようにしたが、加速運
転開始直前の機関回転速度の増大に伴って割込み噴射回
数が増大するように設定されたマツプから割込み噴射回
数を機関回転速度に応じて検索し、検索された割込み噴
射回数に基づいて割込み噴射を行うようにしてもよい。
In this embodiment, the response delay period TL from the start of acceleration operation
The interrupt injection is performed until the engine rotation speed has elapsed, but the number of interrupt injections is set to increase as the engine rotation speed increases just before the start of acceleration operation.The number of interrupt injections is searched according to the engine rotation speed from the map. However, the interrupt injection may be performed based on the retrieved number of interrupt injections.

〈発明の効果〉 本発明は、以上説明したように、機関回転速度の増大に
伴って割込み噴射回数を増大させて割込み噴射を行うよ
うにしたので、加速運転初期に検出応答遅れが発生して
も全ゆる回転域からの加速運転時に空燃比のリーン化を
防止でき、最適な加速性能を確保できる。
<Effects of the Invention> As explained above, the present invention performs interrupt injection by increasing the number of interrupt injections as the engine rotation speed increases, so that a detection response delay occurs at the beginning of acceleration operation. It is possible to prevent the air-fuel ratio from becoming lean during acceleration operation from all rotation ranges, ensuring optimal acceleration performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のクレーム対応図、第2図は本発明の一
実施例を示す構成図、第3図〜第6図は夫々同上のフロ
ーチャート、第7図は従来例及び作用を説明するための
図である。 8・・・燃料噴射弁  9・・・制御装置  10・・
・エアフロメータ  11・・・クランク角センサ  
12・・・スロットルセンサ 特許出願人 日本電子機器株式会社 代理人 弁理士 笹 島  冨二雄 第5図
Fig. 1 is a diagram corresponding to the claims of the present invention, Fig. 2 is a configuration diagram showing an embodiment of the present invention, Figs. 3 to 6 are flowcharts of the above, respectively, and Fig. 7 explains a conventional example and its operation. This is a diagram for 8...Fuel injection valve 9...Control device 10...
・Air flow meter 11...Crank angle sensor
12...Throttle sensor patent applicant Fujio Sasashima, agent of Japan Electronics Co., Ltd., patent attorney Figure 5

Claims (1)

【特許請求の範囲】[Claims] 機関の少なくとも加速運転状態を含む運転状態を検出す
る運転状態検出手段と、該検出信号に基づいて燃料量を
設定する燃料量設定手段と、設定された燃料量に対応す
る駆動パルス信号を燃料噴射弁に出力する駆動パルス出
力手段と、加速運転時の割込み燃料噴射量を設定する割
込み燃料噴射量設定手段と、加速運転時若しくは加速運
転開始直前の機関回転速度の増大に伴って割込み噴射回
数が増大するように加速運転初期の一定時間内の割込み
噴射回数を設定する割込み噴射回数設定手段と、該設定
された割込み噴射回数に基づいて前記割込み燃料噴射量
に対応する割込みパルス信号を前記駆動パルス信号の間
に割込ませて前記燃料噴射弁に出力する割込みパルス出
力手段と、を備えたことを特徴とする内燃機関の電子制
御燃料噴射装置。
an operating state detection means for detecting an operating state of the engine including at least an acceleration operating state; a fuel amount setting means for setting a fuel amount based on the detection signal; and a drive pulse signal corresponding to the set fuel amount for fuel injection. A driving pulse output means for outputting to the valve, an interrupt fuel injection amount setting means for setting an interrupt fuel injection amount during acceleration operation, and an interrupt injection amount setting means for setting the interrupt fuel injection amount during acceleration operation or when the engine rotation speed increases just before the start of acceleration operation. an interrupt injection number setting means for setting the number of interrupt injections within a certain period of time at the initial stage of acceleration operation; An electronically controlled fuel injection device for an internal combustion engine, comprising: interrupt pulse output means for outputting an interrupt pulse to the fuel injection valve by interrupting the signal.
JP26875186A 1986-11-13 1986-11-13 Electronic control fuel control device for internal combustion engine Granted JPS63124843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26875186A JPS63124843A (en) 1986-11-13 1986-11-13 Electronic control fuel control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26875186A JPS63124843A (en) 1986-11-13 1986-11-13 Electronic control fuel control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS63124843A true JPS63124843A (en) 1988-05-28
JPH0557421B2 JPH0557421B2 (en) 1993-08-24

Family

ID=17462829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26875186A Granted JPS63124843A (en) 1986-11-13 1986-11-13 Electronic control fuel control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS63124843A (en)

Also Published As

Publication number Publication date
JPH0557421B2 (en) 1993-08-24

Similar Documents

Publication Publication Date Title
US4442812A (en) Method and apparatus for controlling internal combustion engines
JP2715207B2 (en) Electronic control fuel supply device for internal combustion engine
JP2577210B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPS6411814B2 (en)
JPH0141823B2 (en)
JPH0211729B2 (en)
JPH04159432A (en) Electronic control fuel injection system
US5181496A (en) Air/fuel ratio control apparatus in an internal combustion engine
JPH0217703B2 (en)
JPH07301139A (en) Cylinder injection of fuel control device for internal combustion engine
JPS6358255B2 (en)
JPS63124843A (en) Electronic control fuel control device for internal combustion engine
US5103788A (en) Internal combustion engine ignition timing device
JPH088273Y2 (en) Fuel supply control device for internal combustion engine
JPH0357861A (en) Intake air temperature detecting device for internal combustion engine
JPH03185247A (en) Fuel control device for engine
JPH07116962B2 (en) Air-fuel ratio controller for internal combustion engine
JPH0734193Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH0463933A (en) Fuel injection control device
JPH01151748A (en) Electronic control fuel injection device for internal combustion engine
JPH041180B2 (en)
JP2589193B2 (en) Ignition timing control device for internal combustion engine
JPH0612083B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH03281959A (en) Electronically controlled fuel injection device for internal combustion engine
JPH0252103B2 (en)