JPS63123860A - Molten steel casting nozzle - Google Patents

Molten steel casting nozzle

Info

Publication number
JPS63123860A
JPS63123860A JP61265641A JP26564186A JPS63123860A JP S63123860 A JPS63123860 A JP S63123860A JP 61265641 A JP61265641 A JP 61265641A JP 26564186 A JP26564186 A JP 26564186A JP S63123860 A JPS63123860 A JP S63123860A
Authority
JP
Japan
Prior art keywords
alumina
carbon
nozzle
molten steel
zirconium boride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61265641A
Other languages
Japanese (ja)
Inventor
寛 今若
松村 龍雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Ceramic Co Ltd
Nippon Steel Corp
Original Assignee
Harima Ceramic Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Ceramic Co Ltd, Nippon Steel Corp filed Critical Harima Ceramic Co Ltd
Priority to JP61265641A priority Critical patent/JPS63123860A/en
Publication of JPS63123860A publication Critical patent/JPS63123860A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶鋼を連続鋳造するときにタンディツシュから
モールドへ溶鋼を注入するために使用するイマージョン
ノズルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an immersion nozzle used for injecting molten steel from a tundish into a mold during continuous casting of molten steel.

〔従来の技術〕[Conventional technology]

イマージョンノズルの材質としては、当初溶融シリカ質
のものが使用されていたが、IJ!在ではアルミナ・カ
ーボン質がもっとも多く使用されるようになっている0
例えば特開昭58−84173号公報記載のものはアル
ミナ・カーボン質は、主原料として焼結アルミナ又は電
融アルミナにカーボン源として20〜40wt%(以下
同じ)4の鱗状黒鉛を配合させたものである。使用条件
によっては、アルミナとカーボンの組合せでは耐熱衝撃
性が不足するため5〜30%の溶融シリカを添加する。
Initially, fused silica was used as the material for the immersion nozzle, but IJ! Currently, alumina and carbon materials are most commonly used.
For example, the alumina-carbon material described in JP-A-58-84173 is a mixture of sintered alumina or fused alumina as the main raw material and 20 to 40 wt% (the same applies hereinafter) of scaly graphite as a carbon source. It is. Depending on the conditions of use, a combination of alumina and carbon may lack thermal shock resistance, so 5 to 30% of fused silica is added.

これらの耐火物原料に、結合剤として、フェノール樹脂
、ピッチ等の有機質結合剤を加えて混練、成形し、少な
くとも700″′C以上の温度で焼成して有機質結合剤
を炭素化して製品としたものである。アルミナ・カーボ
ン質の材料はモールドに添加されるパウダーに侵食され
易いため、パウダーに接する部分はジルコニア・カーボ
ン質の材料を用いるのが普通である0例えば特開昭57
−7386号公報、特開昭57−32358号公報があ
る。
Organic binders such as phenol resin and pitch are added to these refractory raw materials as binders, kneaded and molded, and fired at a temperature of at least 700''C to carbonize the organic binders and create products. Since alumina-carbon materials are easily corroded by the powder added to the mold, it is common to use zirconia-carbon materials for the parts that come into contact with the powder.For example, JP-A-57
There are Japanese Patent Laid-open No. 57-32358 and Japanese Patent Application Laid-Open No. 57-32358.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

アルミナ・カーボン−質ノズルの一つの問題点は、溶鋼
に脱酸剤として添加されたアルミニウムから生成したア
ルミナがノズル内孔壁に析出付着する現象が起ることで
、アルミナ閉塞、アルミナづまりと呼ばれている。これ
は、溶鋼の円滑な流動を妨げるために、多数回連鋳を連
続して行う多連鋳操業の障害になるだけでなく、付着し
たアルミナの剥離したものが大型非金属介在物となり鋼
片の品質を劣化させる。
One problem with alumina/carbon nozzles is that alumina produced from aluminum added to molten steel as a deoxidizing agent precipitates and adheres to the nozzle inner hole wall, which is called alumina clogging or alumina clogging. It is. This not only hinders the smooth flow of molten steel and hinders continuous casting operations in which multiple castings are performed in succession, but also the peeled off adhering alumina becomes large non-metallic inclusions in the steel billet. deteriorate the quality of

この対策として、特開昭56−102357号公報の記
載のようにポーラスプラグをノズルの側壁にはめこんで
、そこからアルゴンガスをノズル内へ吹込む方法、ノズ
ル側壁内に設けたスリットから或は耐火物Vo1,32
.4月、1980年耐火物技術協会発行第179頁に示
すような側壁の気孔を通じてアルゴンをノズル内へ吹込
む方法、等が行われている。しかしながら、アルゴンの
消費や、配管の必要とするノズルの構造の複雑等の問題
点がある。
As a countermeasure against this problem, as described in JP-A-56-102357, a porous plug is fitted into the side wall of the nozzle, and argon gas is blown into the nozzle from there. Refractory Vo1,32
.. A method of blowing argon into the nozzle through pores in the side wall, as shown in April 1980, Refractory Technology Association, p. 179, has been used. However, there are problems such as argon consumption and a complicated nozzle structure that requires piping.

〔問題点を解決するための手段〕[Means for solving problems]

発明者等は種々の材質について実験を試みた結果、硼化
ジルコニウム(ZrB、)、カーボン。
The inventors experimented with various materials and found that they found zirconium boride (ZrB) and carbon.

アルミナを組合わせることにより非常にアルミナ付着を
起しにくいのみならず、パウダーに対する耐侵食性を有
する材質を見出し本発明を完成させたものである。すな
わち本発明は硼化ジルコニウムを5〜49wt%、カー
ボン5〜30wt%。
By combining alumina, the present invention was completed by discovering a material that is not only extremely resistant to alumina adhesion but also has powder corrosion resistance. That is, in the present invention, zirconium boride is contained in an amount of 5 to 49 wt%, and carbon is contained in an amount of 5 to 30 wt%.

残部がアルミナから成る耐火物粉末の混合物に有機質結
合剤を加えて混練、加圧成形した後700℃以上の温度
で還元雰囲気中で焼成した材質で少なくともノズルの一
部を構成してなる、溶鋼鋳造用ノズルである。
Molten steel, which constitutes at least a part of the nozzle with a material obtained by adding an organic binder to a mixture of refractory powder, the balance of which is alumina, kneading it, press-forming it, and then firing it in a reducing atmosphere at a temperature of 700°C or higher. This is a casting nozzle.

〔作用〕[Effect]

発明者等は硼化ジルコニウムを1,3,5,10゜20
.30,40,50,60,80wt%と変化させカー
ボンを20wt%、残部をアルミナとし、これに有機質
結合剤としてフェノール樹脂2wt%(外掛)、硬ピッ
チ粉7wt%(外掛)加えて混練、成形し1000℃で
5時間還元雰囲気中で焼成したブリケットを作り、これ
から20X20X120mmのテストピースを切出し、
高周波炉で溶解した鋼にアルミニウム1%を溶解し、こ
れにテストピースを1600℃で15分浸漬後引上げて
アルミナの付着状態を観察した。比較としてカーボン2
0wt%含むアルミナ・カーボン質の材料を用いた。そ
の結果硼化ジルコニウム3wt%までは著るしいアルミ
ナ付着が認められたが5wt%では急速に付着量は小さ
くなり、硼化ジルコニウムの添加量は少なくなるほどア
ルミナ付着が少なくなる傾向が認められた。しかし50
wt%以上では顕著な差はない。硼化ジルコニウムは高
価であるので50wt%以上の添加は不経済である。以
上の実験結果に基づき硼化ジルコニウムの配合量は5〜
49wt%とした。
The inventors made zirconium boride at 1, 3, 5, 10°20
.. 30, 40, 50, 60, and 80 wt%, carbon is 20 wt%, and the balance is alumina. To this, phenol resin 2 wt% (outer layer) and hard pitch powder 7 wt% (outer layer) are added as organic binders, and then kneaded and molded. Briquettes were made by baking them in a reducing atmosphere at 1000℃ for 5 hours, and test pieces of 20 x 20 x 120 mm were cut out from them.
1% aluminum was dissolved in steel melted in a high frequency furnace, and a test piece was immersed in the solution at 1600° C. for 15 minutes and then pulled out to observe the state of alumina adhesion. Carbon 2 for comparison
An alumina-carbon material containing 0 wt% was used. As a result, significant alumina adhesion was observed up to 3 wt% of zirconium boride, but the amount of adhesion decreased rapidly at 5 wt%, and it was observed that the smaller the amount of zirconium boride added, the less alumina adhesion tended to be. But 50
There is no significant difference above wt%. Since zirconium boride is expensive, it is uneconomical to add more than 50 wt%. Based on the above experimental results, the amount of zirconium boride is 5~
It was set to 49 wt%.

アルミナと硼化ジルコニウムの組合せのみでは通常の使
用条件では耐熱衝撃性が不足するため割れることがある
のでカーボンを添加する。その添加量は少なくとも5w
t%以上でないと耐熱衝撃性を向上する効果が得られな
い@ 30 w t%を越えると溶鋼、パウダーによる
耐食性が低下するので好ましくない。
Carbon is added because a combination of alumina and zirconium boride alone lacks thermal shock resistance under normal usage conditions and may crack. The amount added is at least 5w
If it is less than t%, the effect of improving thermal shock resistance cannot be obtained. If it exceeds 30 wt%, the corrosion resistance due to molten steel and powder will deteriorate, which is not preferable.

本発明に使用する硼化ジルコニウムは、ZrB、  9
8wt%以上で微量のC,N、Oを含むものである。ア
ルミナとしてはAl1,0.含有量が95wt%以上の
焼結アルミナ、又は電融アルミナが好ましい。カーボン
源としては固定炭素量90wt%以上の鱗状黒鉛、玉状
黒鉛、人造黒鉛。
The zirconium boride used in the present invention is ZrB, 9
It contains trace amounts of C, N, and O at 8 wt% or more. As the alumina, Al1.0. Sintered alumina or fused alumina with a content of 95 wt% or more is preferred. Carbon sources include scaly graphite, globular graphite, and artificial graphite with a fixed carbon content of 90 wt% or more.

ピッチコークス等が使用出来るが、耐熱衝撃性の向上効
果の点で鱗状黒鉛がもっとも好ましい。
Although pitch coke and the like can be used, flaky graphite is most preferable in terms of the effect of improving thermal shock resistance.

結合剤としては還元焼成によってカーボンボンドさせる
ために固定炭素量の多いものがよく、タールピッチ、フ
ェノ−、ル樹脂、フラン樹脂等を単独又は混合して使用
する。この他に添加物として耐酸化性を向上する目的で
炭化硼素(84C)、炭化珪素(SiC)を添加しても
よい。
The binder preferably has a large amount of fixed carbon in order to form a carbon bond through reduction firing, and tar pitch, phenol, resin, furan resin, etc. are used alone or in combination. In addition, boron carbide (84C) and silicon carbide (SiC) may be added as additives for the purpose of improving oxidation resistance.

アルミナ・カーボン質ノズルがアルミナづまりを起す理
由については諸説あるが、−説によると脱酸生成物とし
て溶鋼内に分散存在している微細なアルミナ粒子(1〜
4μとされる)が表面エネルギーを最少にするように凝
集成長して行くと云われる。発明者の推定するところで
は、耐火物中のアルミナと溶鋼、鋼中酸素が反応して、
Ag2O、+ F e + (03→Fe0−AQ20
3なる反応により耐火物表面には融点が1450℃のF
eO・AJ、O,が生成し・ており、これは溶鋼の温度
では液相となっているので、溶鋼中に分散している微細
なアルミナが接触すると、そこに捕えられる。
There are various theories as to why alumina/carbon nozzles cause alumina clogging, but one theory is that fine alumina particles (1 to 1
4μ) is said to grow cohesively to minimize the surface energy. The inventor estimates that the alumina in the refractory reacts with the molten steel and the oxygen in the steel.
Ag2O, + Fe + (03→Fe0−AQ20
Due to the reaction 3, F with a melting point of 1450℃ is deposited on the surface of the refractory.
eO・AJ, O, is generated, and since this is in a liquid phase at the temperature of molten steel, when it comes into contact with fine alumina dispersed in molten steel, it is captured there.

これが核となってアルミナの成長が進んで行くと推定さ
れる。
It is estimated that this becomes the core of alumina growth.

これに対して硼化ジルコニウムは、溶鋼とは反応しにく
いため表面に液相が生成せず、溶鋼中に分散したアルミ
ナが接触しても捕えられないために、アルミナづまりが
起りにくいと推定される。
On the other hand, zirconium boride does not easily react with molten steel, so no liquid phase is generated on the surface, and alumina dispersed in molten steel is not trapped even if it comes into contact with it, so it is assumed that alumina clogging is less likely to occur. .

以上のことから1本発明においては、本発明になる材質
を用いてノズル主体を作ることは勿論のこと、ノズル本
体を従来の材質で作り、ノズル内面の一部又は全面、ノ
ズル外面の一部又は全面から選択された部位を本発明に
なる材質で構成するものである。
From the above, in the present invention, it is of course possible to make the nozzle main body using the material of the present invention, but also to make the nozzle main body from a conventional material, and a part or whole of the inner surface of the nozzle and a part of the outer surface of the nozzle. Alternatively, selected parts of the entire surface are made of the material of the present invention.

〔実施例〕〔Example〕

本発明品及び比較品の配合割合を第1表に示す。 Table 1 shows the blending ratios of the products of the present invention and comparative products.

比較品は本発明品と同じ原料の組合せであるが、その配
合割合が本発明の限定範囲外にあるものである。結合剤
としてピッチとフェノール樹脂を組合わせている場合に
は、耐火物原料にピッチを添加して180Cで熱間混練
した後、30℃に冷却しフェノール樹脂のみの場合には
常温で混練した。
The comparative product has the same combination of raw materials as the product of the present invention, but the blending ratio is outside the limited range of the present invention. When a combination of pitch and phenolic resin was used as a binder, pitch was added to the refractory raw material and hot kneaded at 180C, then cooled to 30C, and when only phenol resin was used, it was kneaded at room temperature.

ついでオイルプレスを用いて114X114X65 m
 mの形状に1000 k g / cdの圧力で成形
した後、さやに納めてコークスプリーズで充填し還元雰
囲気中1000℃で5時間焼成して製品を得た。
Then, using an oil press, 114 x 114 x 65 m
After molding into a shape of m at a pressure of 1000 kg/cd, it was placed in a pod, filled with coke please, and fired at 1000° C. for 5 hours in a reducing atmosphere to obtain a product.

物性値を第1表に示す、従来品のアルミナ・カーボンや
ジルコニア・カーボンに比較して、硼化ジルコニウムを
添加した本発明品は、熱間強度が大きい、アルミナ付着
テストでは、本発明の限定範囲より硼化ジルコニウム配
合量が3%と少ない比較品りはアルミナ付着が大きいの
に対して、硼化ジルコニウム配合量7%の本発明品Aで
は中程度、更に硼化ジルコニウム量20%のB、40%
のCではアルミナ付着は小さい。
Physical property values are shown in Table 1. Compared to conventional products such as alumina/carbon and zirconia/carbon, the product of the present invention with added zirconium boride has greater hot strength.In the alumina adhesion test, the present invention's limitations Comparative products with a lower zirconium boride content of 3% have large alumina adhesion, whereas inventive product A with a 7% zirconium boride content is moderate, and even B with a zirconium boride content of 20%. ,40%
In C, alumina adhesion is small.

更に本発明の範囲外である硼化ジルコニウム60%の比
較量Gでもアルミ付着は小であるが、本発明品Cと比較
すると差がなく、@化ジルコニウムは高価であるのでこ
のような多量配合は無益である。比較量Eは本発明の限
定範囲より鱗状黒鉛の量が2%と少ない例であり、スポ
ール試験で亀裂を発生している。
Furthermore, aluminum adhesion is small even with a comparative amount G of 60% zirconium boride, which is outside the scope of the present invention, but there is no difference when compared with the product C of the present invention.Since zirconium boride is expensive, such a large amount is not suitable. is useless. Comparative amount E is an example in which the amount of scaly graphite is 2% smaller than the limited range of the present invention, and cracks were generated in the spall test.

次に実用に使用するイマージョンノズルの形状のものを
作った。即ち本発明品Cを用いて作ったノズルH,ノズ
ル本体を従来品のアルミナ・カーボンで作り、パウダー
ライン部を同じ〈従来品のジルコニアカーボンとしたノ
ズルJ、ノズル内面を本発明品Cで構成し、ノズル本体
を従来品のアルミナカーボン、パウダーラインを従来品
のジルコニア・カーボンで作ったノズルKを夫々作った
Next, we created an immersion nozzle shape for practical use. That is, nozzle H made using product C of the present invention, nozzle J whose nozzle body is made of alumina carbon of the conventional product and the powder line part is the same (zirconia carbon of the conventional product), and nozzle J whose inner surface is made of product C of the present invention. Then, we made Nozzle K with the nozzle body made of conventional alumina carbon and the powder line made of conventional zirconia carbon.

製造の条件は前述の114X114X65mm形状品と
同じであるが、成形はラバープレスで圧力は1200 
k g / c rxrとした。このノズルをタンディ
ツシュに取り付け、アルミギルド鋼の連続鋳造を行った
ところ、従来のノズルJは400tの溶鋼通過でノズル
づまりを起したのに対して、本発明のノズルH,ノズル
には共に異常なかった。
The manufacturing conditions are the same as for the 114 x 114 x 65 mm shaped product described above, but the molding is done using a rubber press and the pressure is 1200.
kg/c rxr. When this nozzle was attached to a tundish and continuous casting of aluminum guild steel was performed, the conventional nozzle J became clogged when 400 tons of molten steel passed through it, whereas nozzles H and nozzles of the present invention had no abnormalities. .

〔発明の効果〕〔Effect of the invention〕

以上特許請求範囲及び明細書より明らかなように硼化ジ
ルコニウム、アルミナ、カーボンの組合せをカーボンボ
ンドした材料は溶鋼中の脱酸剤起源のアルミナが付着し
にくいためアルミナつまりを起さず、従来のアルミナカ
ーボンのようにこれを防ぐためにアルゴンを吹込む必要
もなく、円滑な連続鋳造作業ができる。従ってアルゴン
の消費がなくなり経済的である。又配管の必要がなくな
る。ノズルの構造もポーラスプラグをはめ込んだり側壁
内にガスの通路となるスリットを設ける必要もなくなる
ので簡単になる。
As is clear from the above patent claims and specifications, materials in which a combination of zirconium boride, alumina, and carbon are carbon-bonded do not cause alumina clogging because alumina originating from the deoxidizing agent in molten steel does not easily adhere to it. Unlike alumina carbon, there is no need to blow in argon to prevent this, and smooth continuous casting can be performed. Therefore, there is no consumption of argon, which is economical. Also, there is no need for piping. The structure of the nozzle is also simplified because there is no need to fit a porous plug or provide a slit in the side wall for a gas passage.

更にパウダーに対する耐侵食性を有するものであり連続
鋳造のイマージョンノズルとして多大の効果を奏するも
のである。
Furthermore, it has corrosion resistance against powder and is highly effective as an immersion nozzle for continuous casting.

代理人   弁理士   古島  寧i゛で 手続補正書 昭和61年12月r日Agent: Patent attorney: Nei Furushima Procedural amendment December r, 1986

Claims (1)

【特許請求の範囲】[Claims]  硼化ジルコニウムを5〜49wt%、カーボン5〜3
0wt%、残部がアルミナから成る耐火物粉末の混合物
に有機質結合剤を加えて混練、加圧成形した後700℃
以上の温度で還元雰囲気中で焼成した材質で少なくとも
ノズルの一部を構成してなる、溶鋼鋳造用ノズル。
5-49wt% zirconium boride, 5-3% carbon
An organic binder is added to a mixture of refractory powder consisting of 0wt% and the balance is alumina, kneaded and pressure molded at 700°C.
A nozzle for casting molten steel, comprising at least a part of the nozzle made of a material fired in a reducing atmosphere at a temperature above.
JP61265641A 1986-11-10 1986-11-10 Molten steel casting nozzle Pending JPS63123860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61265641A JPS63123860A (en) 1986-11-10 1986-11-10 Molten steel casting nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61265641A JPS63123860A (en) 1986-11-10 1986-11-10 Molten steel casting nozzle

Publications (1)

Publication Number Publication Date
JPS63123860A true JPS63123860A (en) 1988-05-27

Family

ID=17419952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61265641A Pending JPS63123860A (en) 1986-11-10 1986-11-10 Molten steel casting nozzle

Country Status (1)

Country Link
JP (1) JPS63123860A (en)

Similar Documents

Publication Publication Date Title
US4870037A (en) Prevention of Al2 O3 formation in pouring nozzles and the like
JPS583992B2 (en) Lenzokuchiyuzoyoushinseki nozzle
JP4132212B2 (en) Zirconia-graphite refractory with excellent corrosion resistance and nozzle for continuous casting using the same
JPS62202860A (en) Nozzle for molten steel casting
JPS63123860A (en) Molten steel casting nozzle
US20010036894A1 (en) Ceramic compositions
AU732774B2 (en) Ceramic compositions
JP4118058B2 (en) Immersion nozzle for casting
JPS6060978A (en) Nozzle composition for continuous casting
JPS605547B2 (en) Immersion nozzle for continuous casting
JP4629461B2 (en) Continuous casting nozzle
JP4589151B2 (en) Nozzle for continuous casting and continuous casting method
JPS58120569A (en) Nozzle for casting
JP2727266B2 (en) Nozzle for continuous casting for steelmaking
JPS6081068A (en) Antispalling non-bake refractories
JPS5911548B2 (en) Immersion nozzle for continuous casting
JPH11246265A (en) High corrosion resistant fused silica-containing refractory
JPS6214510B2 (en)
JPS6324945B2 (en)
JPS63157746A (en) Submerged nozzle for continuous casting
JPS5830265B2 (en) Refractories for continuous casting
JPS5919071B2 (en) Immersion nozzle for continuous steel casting
JP4020224B2 (en) Molten metal processing parts
JP2001030047A (en) Immersion nozzle having sliding surface
CN113999008A (en) Low-carbon submersed nozzle lining and preparation method thereof