JPS6312185A - Cooling equipment for gas laser oscillator - Google Patents

Cooling equipment for gas laser oscillator

Info

Publication number
JPS6312185A
JPS6312185A JP2520187A JP2520187A JPS6312185A JP S6312185 A JPS6312185 A JP S6312185A JP 2520187 A JP2520187 A JP 2520187A JP 2520187 A JP2520187 A JP 2520187A JP S6312185 A JPS6312185 A JP S6312185A
Authority
JP
Japan
Prior art keywords
temperature
pure water
cooling
demineralized water
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2520187A
Other languages
Japanese (ja)
Inventor
Teruyasu Iijima
飯島 照康
Kazu Mizoguchi
計 溝口
Akira Egawa
明 江川
Kazuyoshi Niihori
新堀 和義
Susumu Tanichi
谷地 享
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Publication of JPS6312185A publication Critical patent/JPS6312185A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/041Arrangements for thermal management for gas lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain a cooling equipment of simple and small structure which is capable of effective heat exchange to keep always the temperature of a demineralized water close to set value, by performing the heat exchange of a demineralized water (or insulative oil) with a brine cooled in a chiller. CONSTITUTION:A demineralized water (or insulative oil) is cooled b a heat exchanger 9 through a newly branched pipe 12 for brine, and the temperature of the cooled water is detected by a thermal sensor 11. When the detected temperature is nearly equal to a set temperature (atmospheric temperature), a radiator fan 10 is not operated, and the demineralized water is sent at a present temperature to an optical system and an electrode-source system in a gas laser oscillator. In the case where the temperature of the demineralized water differs from the set temperature, the fan 10 is operated. When the fan 10 operates because the temperature of demineralized water is higher than the set temperature, it serves as a cooler to cool the demineralized water. When the fan 10 operates as the water temperature is lower than the set temperature, it serves as a heater to raise the temperature of the demineralized water.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガスレーザ装置の冷却装置に関し、特にその光
学系及び電源・電極系の機能を低下させることな(、効
率的に冷却することを可能とした冷却装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a cooling device for a gas laser device, and in particular, to a cooling device for a gas laser device, in particular, it is possible to efficiently cool the optical system and the power supply/electrode system without deteriorating their functions. The invention relates to a cooling device with a cooling system.

(従来の技術) まず、従来のこの種冷却装置を説明する前に、ガスをレ
ーザ媒質とする気体循環形レーザ装置について、その概
要を説明する。
(Prior Art) First, before explaining a conventional cooling device of this type, an outline of a gas circulation laser device using gas as a laser medium will be explained.

第2図は一般に3軸直交形と呼ばれているガスレーザ発
振器を示し、■はレーザ媒質ガス(以下レーザガスとい
う。)を大気と隔絶するための密閉容器で、通常ステン
レスが使われる。汐がガスブロアで前記密閉容器1内の
レーザガスを放電領域4−熱交換器3−放電領域4左回
流させるものである。ここで、熱交換器3は放電により
高温化したレーザガスを冷却するために設置さnている
Figure 2 shows a gas laser oscillator that is generally referred to as a three-axis orthogonal type, and ◯ is an airtight container for isolating the laser medium gas (hereinafter referred to as laser gas) from the atmosphere, and stainless steel is usually used. A gas blower is used to circulate the laser gas in the sealed container 1 through the discharge area 4 - the heat exchanger 3 - and the discharge area 4 to the left. Here, the heat exchanger 3 is installed to cool down the laser gas that has become hot due to discharge.

すなわち、放電領域4には低温とさnたレーザガスが流
入し、放電領域4で高温となって該領域4から流出し、
熱交換器で冷やさtて再び放電領域4内に流入すること
になる。
That is, low temperature laser gas flows into the discharge region 4, becomes high temperature in the discharge region 4, and flows out from the region 4,
It is cooled by a heat exchanger and flows into the discharge area 4 again.

5は全反射メリャミラー、6は半反射の出方ミラーであ
り、両者は放電領域4で励起され反転分布を形成したレ
ーザガスの利得領域を挾んで配置さn、出力ミラー6よ
ジレーザビームが屯v出さnる。
Reference numeral 5 designates a total reflection mellah mirror, and 6 a semireflection output mirror, both of which are arranged to sandwich the gain region of the laser gas excited in the discharge region 4 to form a population inversion. nru.

このようなガスレーザ装置にあっては、ガス巴度をコン
トロールすることが重要であり、その理由を炭酸ガスレ
ーザの場合を例にとって説明する。
In such a gas laser device, it is important to control the gas efficiency, and the reason for this will be explained using a carbon dioxide laser as an example.

一般に炭酸ガスレーザのレーザガス成分はCO,。Generally, the laser gas component of a carbon dioxide laser is CO.

He、N、が混合さnた基本ガスからなり、加工時には
これにアシストガスが使用さする。
It consists of a basic gas consisting of a mixture of He and N, and is used as an assist gas during processing.

このうち、特に励起・発振に寄与するのはCO7とN2
ガスである。
Of these, CO7 and N2 particularly contribute to excitation and oscillation.
It's gas.

第3図によってそのメカニズムについて説明すると、基
底準位にあるco、及びN2は放電プラズマ中の電子と
の衝突により上位の振動準位に励起さnるが、レーザ遷
移に直接寄与するCO,の上位準位〈001〉への励起
は、Co、の基底準位(000)分子と励起さtた窒素
分子<1>との衝突によるエイ・ルギー移乗が支配、的
である。
To explain the mechanism with reference to Figure 3, CO and N2 at the ground level are excited to an upper vibrational level by collision with electrons in the discharge plasma, but CO, which directly contributes to laser transition, The excitation to the upper level <001> is dominated by the energy transfer due to the collision between the Co base level (000) molecule and the excited nitrogen molecule <1>.

こうして励起さした001分子が下位の(l OO)に
遷移する際に10.6μmの波長をもつレーザ光を放出
し、(o 10>準位及び〈020〉’ljA位を経て
基底準位く000〉へ緩和する6 ところで、ガス温度が上昇するとく010〉準位へと熱
励起さね易くなり、その準位に滞在する分子が増加し、
<100>準位にある分子の緩和を妨げるようになる。
When the excited 001 molecule transits to the lower level (l OO), it emits a laser beam with a wavelength of 10.6 μm, and passes through the (o 10> level and <020>'ljA level to the ground level). By the way, as the gas temperature rises, it becomes easier to thermally excite to the 010> level, and the number of molecules staying at that level increases.
This will hinder the relaxation of molecules at the <100> level.

この準位間の分布温度のガス依存性が算4図に示されて
いる。同図により、温度の上昇に伴いく100〉準位の
分子密度が増加し、破線で示されている如(分子のくO
Ol〉準位から〈100〉準位への遷移が急激に減少す
る様子が理解できる。
The dependence of the temperature distribution between the levels on the gas is shown in Figure 4. The figure shows that the molecular density at the 100〉 level increases as the temperature rises, as shown by the broken line (the
It can be seen that the transition from the Ol> level to the <100> level decreases rapidly.

そこで、ガス温度のコントロールが必要になるわけであ
るが、そのための被冷却物としては(1)し。
Therefore, it is necessary to control the gas temperature, and the object to be cooled for this purpose is (1).

−ザガス、(2)送風機のモータ、(3)放電部の電極
、(4)ミラー類の光学系、(5)放電エネルギーの供
給源である高周波電源があり、冷却手段としては冷凍機
、内・外熱交換器冷却液循環管路等が挙げらする。
- The gas, (2) the blower motor, (3) the electrode of the discharge section, (4) the optical system of mirrors, and (5) the high frequency power supply that is the source of the discharge energy, and the cooling means are a refrigerator, an internal - Examples include external heat exchanger coolant circulation pipes, etc.

このうち、°被冷却物である(1)のレーザガスはレー
ザ出力を高めるためには上述の如く、その温度を低(抑
える必要があV、そのため熱交換機能を十分に発揮させ
ねばならず、(2)の送風機のモータについては、その
発熱を極力抑えるために可能な限り低温水を循環させて
やることが必要となるが、(3)の放電電極及び(5)
の高周波電源については冷却能を高めるよりも、むしろ
使用部・材として耐錆・耐食性のものを選び、かつ冷却
液として防錆・防食性に優ね、同時に電流がまわり込ま
ないように導電率の低いものを選ぶ必要がある。そのた
め、冷却部として純水や絶縁油などが用いらnる。
Among these, the laser gas (1), which is the object to be cooled, needs to be kept at a low temperature (V) in order to increase the laser output, so it must be able to fully demonstrate its heat exchange function. Regarding the blower motor (2), it is necessary to circulate low-temperature water as much as possible in order to suppress heat generation as much as possible, but the discharge electrode (3) and (5)
For high-frequency power supplies, rather than increasing the cooling capacity, the parts and materials used should be rust-resistant and corrosion-resistant, and the coolant should have excellent rust- and corrosion-proofing properties, while at the same time maintaining conductivity to prevent current from circulating. You need to choose the one with the lowest value. Therefore, pure water, insulating oil, etc. are used as the cooling part.

(4)の光学系についてみnば、冷卸水の温度を低(設
定し過ぎてミラ一部分に結露が生じてはならず、更に冷
却の前後で液温の差が多すぎるとミラーにサーマルショ
ックをかける形となり、ミラーが歪んでしまう結果とな
るので前後での液温度差を多(とることができない。ま
たミラーに汚物が付着しないように液の汚を等をも十分
に排除する必要がある。、。
Regarding the optical system (4), the temperature of the cooling water must be set too low (so that condensation does not form on a portion of the mirror), and if there is too much of a difference in liquid temperature before and after cooling, thermal damage may occur on the mirror. This will cause a shock and distort the mirror, so it is not possible to create a large difference in liquid temperature between the front and the rear.Also, it is necessary to sufficiently remove dirt from the liquid so that dirt does not adhere to the mirror. There is...

以上を踏まえて、従来から冷却液の選定をレーザガス及
び送風機の冷却にはプラインを、また光学系及び電極・
電源系の冷却には純水又は絶縁油が梗われている。
Based on the above, the selection of cooling fluids has traditionally been to use prine for cooling the laser gas and blower, and for cooling the optical system and electrodes.
Pure water or insulating oil is used to cool the power supply system.

第5図及び第6図は従来のガスレーザ装置における冷却
系統図で、光学系及び電α・電極系の冷却に純水を用い
た例を示している。第5図は水冷式のチラーを使用して
いる例を示し、第6図は空冷式のチラーを使用する例で
ある。
FIGS. 5 and 6 are cooling system diagrams in a conventional gas laser device, showing an example in which pure water is used to cool the optical system and the electric α/electrode system. FIG. 5 shows an example in which a water-cooled chiller is used, and FIG. 6 shows an example in which an air-cooled chiller is used.

両面において異なるところは機外の冷却部であジ、レー
ザ発振器内における冷却は図から明らかな如くレーザガ
ス及び送風機のモータにはプラインを循環させて行い、
光学系及び電極・電源系は純水を循環させることによっ
て行っている。
The difference between the two sides is the cooling section outside the machine.As is clear from the figure, the cooling inside the laser oscillator is done by circulating plines around the laser gas and blower motor.
The optical system, electrodes, and power supply system are operated by circulating pure water.

水冷式チラーを用いる場合(第5図)と空冷式チラーを
用いる場合(第6図)を比較すると、前者では純水の冷
却を熱交換器Bを介してクーリンダタワーで行うことが
できるが、後者にあっては純水の熱交換系が無いために
純水の冷却をラジェータファンにより行5か、或は水冷
の系統を別途用意する必要がある。
Comparing the case of using a water-cooled chiller (Fig. 5) and the case of using an air-cooled chiller (Fig. 6), it is found that in the former case, pure water can be cooled in a cool cylinder tower via heat exchanger B, but In the latter case, since there is no heat exchange system for pure water, it is necessary to cool the pure water using a radiator fan (5) or to prepare a separate water cooling system.

このように、空冷式チラーを用いる場合には純水循環系
統における純水の冷却にはラジェータファンが関われる
が、このとぎの可能放熱量は次式罠より決まる。
In this way, when an air-cooled chiller is used, a radiator fan is involved in cooling the pure water in the pure water circulation system, but the amount of heat that can be dissipated is determined by the following equation.

Q−α・K−A・ΔT  ただし、α:修正係数に:放
熱係数 A:放熱面積 ΔT:気水温度差 純水の冷却では、通常は気水温度差ΔTの値が小さいた
め、放熱量を高めようとすれば必然的に放熱面積を多(
しなければならず、従ってラジェータファンを大型化せ
ざるを得な(なる。
Q-α・K-A・ΔT However, α: Correction coefficient: Heat radiation coefficient A: Heat radiation area ΔT: Air-water temperature difference In pure water cooling, the value of the air-water temperature difference ΔT is usually small, so the amount of heat radiation is If you try to increase the heat dissipation area, you will inevitably increase the heat dissipation area (
Therefore, the radiator fan had to be made larger.

一方、第5図に示す如き水冷式のチラーを用いる場合に
あっても、プライン系のテラーとは別に小型の空冷式チ
ラー等や、水冷式チラーの冷却能力に熱交換器Bの熱交
換量を加えた分の能力を持つクーリングタワーを取り付
ける必要があり、そのための配管系統が増加し、装置も
大型化してコスト高になるという問題点があった。
On the other hand, even when using a water-cooled chiller as shown in Fig. 5, a small air-cooled chiller may be used in addition to the prine-type teller, or the heat exchange amount of heat exchanger B is dependent on the cooling capacity of the water-cooled chiller. It is necessary to install a cooling tower with a capacity equal to that of the above, which increases the number of piping systems, making the equipment larger and increasing costs.

更に、以上の冷却装置ではそのいずnも光学系(ミラー
)の冷却温度の制御が困難で、上述の如(ミラーの過冷
却に伴う結露現象の発生、冷却の前後における水温差が
大きい場合のサーマル79ツクによるミラーの歪発生等
があって、こねもがレーザ出力を変動させる大きな要因
ともなっていた。
Furthermore, in all of the above cooling devices, it is difficult to control the cooling temperature of the optical system (mirror), and as mentioned above (occurrence of dew condensation due to overcooling of the mirror, or when there is a large difference in water temperature before and after cooling) There was distortion of the mirror due to thermal damage, etc., and this was also a major cause of fluctuations in laser output.

(発明が解決しようとする問題点) このように、従来のガスレーザ発振器における冷却@置
にあっては、純水又は絶縁油系の冷却を十分に行おうと
すると装置の大型化コストアップにつながり、また余り
に純水又は絶縁油系の冷却能を上げ過ぎるとミラーに変
形等を発生させてたり、純水の場合は特に結露なども生
じたりさせて。
(Problems to be Solved by the Invention) As described above, in the conventional cooling system for gas laser oscillators, attempting to sufficiently cool the pure water or insulating oil system leads to an increase in the size and cost of the device. Also, if the cooling capacity of pure water or insulating oil systems is increased too much, it may cause deformation of the mirror, and in the case of pure water, condensation may occur.

レーザ出力を変動させるという問題点を有していた。This had the problem of varying the laser output.

不発明は、こtらの問題点を解決すべ(なさtたもので
、装置を大型化することなくガス、送風機のモータの冷
却能を確保すると共にミラーの冷却を大気温度に近づけ
、冷却によるミラー面の結露或は変形を防いで安定、か
つ人出カが得らするようなガスレーザ装置の冷却装置を
提供しようとするものである。
The invention was designed to solve these problems by ensuring the cooling performance of the gas and blower motor without increasing the size of the device, and by bringing the cooling of the mirror close to atmospheric temperature, thereby increasing the cooling efficiency. It is an object of the present invention to provide a cooling device for a gas laser device that is stable by preventing dew condensation or deformation on the mirror surface and that can attract a large number of people.

(問題点を解決するための手段) このため、本発明はプライン系統と純水系統又は絶縁油
系統の2系統から構成さゎる力゛スレーザ発振器の冷却
装置において、ブライ/系統に新管路を分岐させ、熱交
換器を介して純水系統又は絶縁油系統の熱交換を行うと
共に、純水系統又は絶縁油系統の往路にはラジェータフ
ァンと、こnを設定温度を基準として作動・非作動にす
る温度セッサを設けることを構成とし、こnを上記問題
点の解決手段とするものである。
(Means for Solving the Problems) Therefore, the present invention provides a cooling system for a power laser oscillator that is composed of two systems, a prine system and a pure water system or an insulating oil system, by connecting a new pipe to the bleed/system. The deionized water system or insulated oil system is branched to exchange heat with the pure water system or insulated oil system via a heat exchanger, and a radiator fan is installed on the outbound path of the deionized water system or insulated oil system, which operates and deactivates based on the set temperature. The structure is such that a temperature sensor is provided for operation, and this is used as a means for solving the above-mentioned problems.

(作  用) 新たに分岐させたプラインの管路により、熱交換器を介
して純水又は絶縁油を冷却する。この冷却された純水又
は絶縁油の温度センナにより検知し、設定温度(大気温
度)に近いときはラジェータファンを作物させずに純水
又は絶縁油を現状温度でガスレーザ発振器内の光学系及
び電極・電源系疋送り、純水又は絶縁油温度が設定温度
(大気温度)より高(ても或は低い場合にも、前記ラジ
ェータファンを作動させるようにする。
(Function) Pure water or insulating oil is cooled through a heat exchanger using a newly branched pline pipe. The cooled pure water or insulating oil is detected by a temperature sensor, and when it is close to the set temperature (atmospheric temperature), the radiator fan is not turned on and the pure water or insulating oil is supplied to the optical system and electrodes in the gas laser oscillator at the current temperature. - The radiator fan is operated even if the power supply system feed, pure water or insulating oil temperature is higher (or lower) than the set temperature (atmospheric temperature).

純水又は絶縁油の温度が設定温度(大汽温ヴ)よジ高い
ためにラジェータファンが作動しているときは、ラジェ
ータファンは純水又は絶縁油を更に冷却する冷却機とし
ての機能を有し、純水又は絶縁油温度が設定温度(大気
温度)より低いためにラジェータファンが作動している
ときは、ラジェータファンは純水又は絶縁油の温度を高
める加熱機としての機能を有している。
When the radiator fan is operating because the temperature of pure water or insulating oil is higher than the set temperature (Oki temperature), the radiator fan functions as a cooler to further cool the pure water or insulating oil. However, when the radiator fan is operating because the pure water or insulating oil temperature is lower than the set temperature (atmospheric temperature), the radiator fan functions as a heater to raise the temperature of the pure water or insulating oil. There is.

このよう罠、ラジェータファンの作動・非作動により、
純水又は絶縁油は常に設定温度に近づき、例えば殆んど
大気温度と差がな(なって、純水が低温になり過ぎるた
めに発生するミラー面での結露を防止し、或は純水又は
絶縁油が高温であり過ぎることにより発生するミラーの
歪を防止する。
Due to such traps and activation/deactivation of the radiator fan,
Pure water or insulating oil is always close to the set temperature, for example, with almost no difference from the atmospheric temperature (this prevents dew condensation on the mirror surface that occurs when pure water becomes too cold, or Or to prevent distortion of the mirror caused by the insulating oil being too hot.

(実施例) 以下1本発明の実施例を図面に基づいて具体的に説明す
る。
(Example) An example of the present invention will be specifically described below based on the drawings.

第1図は本発明の実施例を示すガスレーザ発振器におけ
る冷却装置の冷却系統図である。
FIG. 1 is a cooling system diagram of a cooling device in a gas laser oscillator showing an embodiment of the present invention.

1は密閉8器、2は送風機、3は熱交換器、5はリヤミ
ラー、6は出力ミラーであり、こnらの部分は第2図に
示した部分と同一であって、7は放電工坏ルギーを供1
、aする高周波電源、4−1.4−2は放電電極で両者
間に放電領域を形成する。
1 is a sealing device, 2 is a blower, 3 is a heat exchanger, 5 is a rear mirror, 6 is an output mirror, these parts are the same as the parts shown in Figure 2, and 7 is an electric discharge machine. Serve 1 serving
, a, a high frequency power source, and 4-1.4-2 are discharge electrodes that form a discharge region between them.

密閉容器1内にガスが封入され、ガスは熱交換器3で冷
やさnて送風機2により放電領域に送られ、放電領域内
で高温になり前記熱交換器3を通さnて再び冷却され、
こnが繰り返さnて回流する。
Gas is sealed in an airtight container 1, the gas is cooled by a heat exchanger 3, and sent to a discharge area by a blower 2, where it reaches a high temperature in the discharge area, passes through the heat exchanger 3, and is cooled again.
This is repeated n and circulated.

既述の如く、前記熱交換器3及び送風機2のモータ部に
は外部に設置さnた水冷式又は空冷式チラー8内の蒸発
器によって冷却さtたプラインによる循環管路が形成さ
ね、レーザガス及び送風機2内のモータ部の冷却を行っ
ている。
As mentioned above, a circulation pipe is formed in the heat exchanger 3 and the motor section of the blower 2 by a pline cooled by an evaporator in an externally installed water-cooled or air-cooled chiller 8. The laser gas and the motor inside the blower 2 are cooled.

一方、全反射ミラー5、半反射ミラー6等の光学系及び
放電電極4−1.4−2.電源7等の電気系には、純水
又、は絶縁油の冷却循環管路が形成されて、夫々を純水
又は絶縁油により冷却する。この純水又は絶縁油管路の
発振器外の部分は熱交換器9を通さnており、同熱交換
器9から出た管路の下流側にはラジェータファン1o及
び温度センサエlが取ジ付けらnる。
On the other hand, optical systems such as a total reflection mirror 5 and a half reflection mirror 6, and discharge electrodes 4-1, 4-2. A cooling circulation pipe for pure water or insulating oil is formed in the electric system such as the power source 7, and the cooling circulation pipes are cooled by pure water or insulating oil, respectively. The portion of this pure water or insulating oil pipeline outside the oscillator passes through a heat exchanger 9, and a radiator fan 1o and a temperature sensor 1 are attached to the downstream side of the pipeline exiting from the heat exchanger 9. nru.

前記発振器外の熱交換器9には前記チラー8内を出入す
るプライン循環管路に新たに分岐形成さnた管路が通さ
れ、ここで発振器内を通って暖められた純水又は絶縁油
を冷却する。
A new branch line is passed through the heat exchanger 9 outside the oscillator to the prine circulation line that goes in and out of the chiller 8, and the heated pure water or insulating oil passes through the oscillator. to cool down.

ところで、一般にレーザ出力が一定の場合、純水又は絶
縁油系の発熱量は一定なので純水又は絶縁油とプライン
の流量はほぼ一定となる。しかし、純水又は絶縁油の冷
却前後の水又は油温は大気温に近い状態におかnるのが
良い。また、熱交換器9における熱交換量はプライン温
度と純水又は絶縁油温度の差によって決まるために、大
気温度が高い場合には水温又は油温を高く設定する必要
があり、熱交換量が太き(なる。逆に大気温度が低い場
合は純水又は絶縁油温度を低(設定するために熱交換量
が小さくなる。このため、熱交換器9だけでは適冷°却
になったり、或は冷却し切nな(なったりする。
By the way, in general, when the laser output is constant, the calorific value of pure water or insulating oil is constant, so the flow rates of pure water or insulating oil and pline are almost constant. However, it is preferable that the water or oil temperature before and after cooling the pure water or insulating oil be close to atmospheric temperature. Furthermore, the amount of heat exchanged in the heat exchanger 9 is determined by the difference between the pline temperature and the pure water or insulating oil temperature, so if the atmospheric temperature is high, it is necessary to set the water temperature or oil temperature high, and the amount of heat exchanged is On the other hand, when the atmospheric temperature is low, the pure water or insulating oil temperature is set low, which reduces the amount of heat exchanged. Therefore, the heat exchanger 9 alone may not provide adequate cooling. Or it will cool down and become painful.

そこで、前記温度センサ11により前記熱交換器11で
熱交換さnた冷却純水の温度を検出すると共に大気の温
度と比較して、もし検出温度と大気温度との差が所定の
許容(直の範囲内にあるときは前記ラジェータファンl
Oを作動させる信号を発せずにおき、前記温度差がその
許容値を超えたとき初めてラジェータファン10を作動
させるための信号を出力するようにしている。
Therefore, the temperature sensor 11 detects the temperature of the cooled pure water heat exchanged in the heat exchanger 11, and compares it with the atmospheric temperature.If the difference between the detected temperature and the atmospheric temperature is within a predetermined tolerance (direct When it is within the range of , the radiator fan l
A signal for operating the radiator fan 10 is not issued, and a signal for operating the radiator fan 10 is output only when the temperature difference exceeds the allowable value.

即ち、本実施列に係るガスレーザ発振器における冷却製
蓋にあっては、チラー8内の蒸発器により低温に冷却さ
れたプラインを使って純水又は絶縁油を効率よく冷却す
ると共に、この冷却さした純水又は絶縁油の温度を検知
し、もし大気温度との間に大きな差があるときはラジェ
ータファン10を作動させようとするものである。
That is, in the case of the cooling lid for the gas laser oscillator according to this embodiment, the pure water or insulating oil is efficiently cooled using the pline cooled to a low temperature by the evaporator in the chiller 8, and the cooling The temperature of pure water or insulating oil is detected, and if there is a large difference between the temperature and the atmospheric temperature, the radiator fan 10 is activated.

そして、このラジエータフ7ノ100作動は、純水又は
絶縁油の温度よりも低いときは大気によって純水を暖め
2加熱機として作用し、また逆に純水又は絶縁油の温度
が大気より高いときは同じ(大気によって純水又は絶縁
油を冷やす冷却機として作用することになる。
In this Radiator Tough 7/100 operation, when the temperature of pure water or insulating oil is lower than the temperature of pure water or insulating oil, the pure water is warmed by the atmosphere and acts as a 2-heater, and conversely, the temperature of pure water or insulating oil is higher than the atmosphere. At the same time (atmospheric air acts as a cooler to cool pure water or insulating oil).

く、ミラー類、電極、電源の冷却機能を十分に発揮する
ことができるものであり、加えてミラー類の冷却がほぼ
大気温度と同温度でなされるために結露の発生の心配が
な(、かつ冷却前後の温度差もそn種火きくならないた
め歪みを起すようなこともない。
The cooling function of the mirrors, electrodes, and power supply can be fully demonstrated.In addition, since the mirrors are cooled at almost the same temperature as the atmospheric temperature, there is no need to worry about condensation. Moreover, the difference in temperature before and after cooling does not cause any kind of ignition, so distortion does not occur.

(発明の効果) 以上、詳細に説明した如(本発明によると、チラー内で
冷却さtたプラインにより純水又は絶縁油の熱交換を行
うため、冷却系独自の冷却システムを構成する必要がな
(、構造が簡単で小型な上、に効率的な熱交換が可能と
なり、また冷却さnた純水又は絶縁油の温度を検知して
、設定温度に近いときは純水又は絶縁油圧ラジェータフ
ァンが作用せず、設定温度との差が大ぎいときに初めて
同うジエータフ、アンを作動させて純水又は絶縁油の温
度を常洗設定厘度に近づけるようにしたため、ミラー類
に過度の冷却が行わnることがな(、従ってミラー類に
結露を発生させることな(、かつ熱歪等の変形も防止で
きるものである。
(Effects of the Invention) As explained above in detail (according to the present invention, since heat exchange between pure water or insulating oil is performed by the cooled pline inside the chiller, it is not necessary to configure a cooling system unique to the cooling system). (The structure is simple and compact, and it enables efficient heat exchange. It also detects the temperature of cooled pure water or insulating oil, and when the temperature is close to the set temperature, the pure water or insulated hydraulic radiator is activated.) When the fan does not work and there is a large difference between the temperature and the set temperature, the same Jetaph and Anne are activated to bring the temperature of pure water or insulating oil closer to the set temperature for regular washing, which causes excessive damage to the mirrors. There is no need for cooling (therefore, no condensation occurs on the mirrors), and deformation such as thermal distortion can be prevented.

更に、不発明は上記した構成をとることにより構造上の
無駄がな(合理的であり、冷却のために使われる消費エ
ネルギーも従来のそれに比べて少なくて済み、全体とし
て小型化でき、かつ大巾にコストダウンを図れるもので
ある。
Furthermore, by adopting the above-mentioned configuration, the invention is not wasteful in structure (it is rational, the energy consumption used for cooling is less than that of the conventional one, the overall size can be reduced, and the size is large. This allows for significant cost reductions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すガスレーザ装置における
冷却装置の系統図、第2図は従来のガスレーザ装置の代
表的な例である3軸直交形レ一ザ発撮器の概要を示す全
体構成図、第3図は炭酸ガスレーザの励起原理を説明す
るための図、第4図は各励起準位における分子密度との
関係を示す図、第5図及び第6図は共に従来のガスレー
ザ装置における冷却装置の系統図であり、第5図は水冷
式チラーを用いる例を示すものである。 図の主要部分の説明
Fig. 1 is a system diagram of a cooling device in a gas laser device showing an embodiment of the present invention, and Fig. 2 is an overall diagram showing an outline of a 3-axis orthogonal laser emitter, which is a typical example of a conventional gas laser device. 3 is a diagram to explain the excitation principle of a carbon dioxide laser, FIG. 4 is a diagram showing the relationship between molecular density at each excitation level, and FIGS. 5 and 6 are both diagrams of a conventional gas laser device. FIG. 5 is a system diagram of a cooling device in which a water-cooled chiller is used. Description of the main parts of the diagram

Claims (1)

【特許請求の範囲】[Claims] プライン系統と純水系統又は絶縁油系統の2系統から構
成されるガスレーザ発振器の冷却装置において、プライ
ン系統に新管路を分岐させ、熱交換器を介して純水系統
又は絶縁油系統の熱交換を行うと共に、純水系統又は絶
縁油系統の往路にはラジエータファンとこれを設定温度
を基準として作動・非作動にする温度センサを設けるこ
とを特徴とするガスレーザ発振器における冷却装置。
In a cooling system for a gas laser oscillator that consists of two systems: a prine system and a pure water system or an insulating oil system, a new pipe line is branched to the prine system, and heat exchange between the pure water system or the insulating oil system is performed via a heat exchanger. A cooling device for a gas laser oscillator, characterized in that a radiator fan and a temperature sensor for activating or deactivating the radiator fan on the outgoing path of a pure water system or an insulating oil system are provided based on a set temperature.
JP2520187A 1986-03-07 1987-02-05 Cooling equipment for gas laser oscillator Pending JPS6312185A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4964586 1986-03-07
JP61-49645 1986-03-07

Publications (1)

Publication Number Publication Date
JPS6312185A true JPS6312185A (en) 1988-01-19

Family

ID=12836942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2520187A Pending JPS6312185A (en) 1986-03-07 1987-02-05 Cooling equipment for gas laser oscillator

Country Status (1)

Country Link
JP (1) JPS6312185A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006000889A1 (en) * 2006-01-04 2007-07-12 Laser-Laboratorium Göttingen e.V. Gas discharge laser beam quality improving method for e.g. excimer laser-system, involves providing input temperature of tempering medium flowing through temperature duct with constant flow rate as actuating variable of control loop
JP2014229720A (en) * 2013-05-22 2014-12-08 ビアメカニクス株式会社 Gas laser oscillator, and laser processing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006000889A1 (en) * 2006-01-04 2007-07-12 Laser-Laboratorium Göttingen e.V. Gas discharge laser beam quality improving method for e.g. excimer laser-system, involves providing input temperature of tempering medium flowing through temperature duct with constant flow rate as actuating variable of control loop
DE102006000889B4 (en) * 2006-01-04 2009-04-09 Laser-Laboratorium Göttingen e.V. Method for improving the beam quality of a gas discharge laser by optimized cooling and gas discharge laser system
JP2014229720A (en) * 2013-05-22 2014-12-08 ビアメカニクス株式会社 Gas laser oscillator, and laser processing device

Similar Documents

Publication Publication Date Title
JPH05264139A (en) Refrigerant supplying system
JPS6312185A (en) Cooling equipment for gas laser oscillator
JPH04125538A (en) Cooling device for polarizing plate and liquid crystal panel
JP2002367797A (en) X-ray tube device
JP3014704U (en) Electronic cooling device
JPH07332829A (en) Freezer
JPS63227776A (en) Cathode/target assembly for precipitation apparatus
JPS5843914B2 (en) Laterally excited gas circulation type laser device
SE9201768D0 (en) REFRIGERATOR WITH INTERMITTENT WORKING SURPTION REFRIGERATOR
KR200263749Y1 (en) Cooling device of radiator type for cooling of thermoelectric element
KR101969093B1 (en) Thermostat and cooling system using phase change
JPH1019438A (en) Thermoelectric element radiation promoting device, refrigerator and water tank cooling unit provided with such a device
JP2003110174A (en) Laser oscillator
JPH02101782A (en) Gas laser equipment
JPS60170279A (en) Ion laser device
JPH02134885A (en) Laser oscillator
JP3259161B2 (en) Gas laser oscillation device
JPH0444282A (en) Cooler for gas laser
JPH01273375A (en) Discharge excitation excimer laser device
JP2001304740A (en) Thermoelectric cooling device
JPH07296986A (en) X-ray tube device
JPH04335557A (en) Conductive cooling module
JP2001108326A (en) Heating medium supplying device
JPH0744034Y2 (en) High frequency excitation gas laser device
JP2004181192A (en) Dressing table with cold insulation storage