JPS6311885A - Method for continuously observing specific area in earth observation - Google Patents

Method for continuously observing specific area in earth observation

Info

Publication number
JPS6311885A
JPS6311885A JP61154734A JP15473486A JPS6311885A JP S6311885 A JPS6311885 A JP S6311885A JP 61154734 A JP61154734 A JP 61154734A JP 15473486 A JP15473486 A JP 15473486A JP S6311885 A JPS6311885 A JP S6311885A
Authority
JP
Japan
Prior art keywords
specific area
sar
synthetic aperture
antenna
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61154734A
Other languages
Japanese (ja)
Other versions
JPH055312B2 (en
Inventor
Yasumasa Hisada
安正 久田
Yasuyuki Ito
康之 伊東
Toshikazu Uehara
上原 利数
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Space Development Agency of Japan
Original Assignee
National Space Development Agency of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Space Development Agency of Japan filed Critical National Space Development Agency of Japan
Priority to JP61154734A priority Critical patent/JPS6311885A/en
Publication of JPS6311885A publication Critical patent/JPS6311885A/en
Publication of JPH055312B2 publication Critical patent/JPH055312B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To always observe a specific area, by mounting SAR (synthetic aperture radar) to the artificial satellite on a synchronous orbit and allowing SAR to reciprocally move in relative relation to the ground of the specific area in the air. CONSTITUTION:SAR is allowed to reciprocally move in relative relation to the ground of a specific area in the air and, during this reciprocal movement, a pulse radio wave is emitted from the antenna of SAR at a constant interval and the echo radio wave from the ground is received by said antenna. By this method, an unequal interval synthetic aperture array becoming coarse at the center thereof but becoming dense at both left and right ends thereof is formed in the space of the specific area equivalently during data processing. The energy distribution of said equivalent unequal interval synthetic aperture array within a unit time comes to a both-end distribution type and the beam width of the main lobe on a synthetic aperture antenna pattern is narrower as compared not only with usual actual aperture type radar but also with SAR and the resolving power of said array is enhanced. The received echo signal is subjected to cross-correlation processing along with reference function separately calculated and the information such as topography of the specific area is formed as an image to be outputted.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、パルス電波を用いた能動型地球観測におい
て、特定地域の常時観測を高分解能で可能とした観測方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an observation method that enables constant observation of a specific area with high resolution in active earth observation using pulsed radio waves.

(従来の技術) 従来、パルス電波を用いた能動型地球観測としては、通
常のレーダを用いた実開口式(以下、「RARJと略称
する)と、合成開口手法を用いた合成開口レーダ(以下
、rsARJと略称する)とがある。
(Prior art) Conventionally, active earth observation using pulsed radio waves has been conducted using real aperture radar (hereinafter referred to as "RARJ") using ordinary radar, and synthetic aperture radar (hereinafter referred to as "RARJ") using synthetic aperture method. , rsARJ).

(発明が解決しようとする問題点) 人工衛星等の飛しよう体の大きさに比べてアンテナが比
較的小さく、分解能の高い従来のSARは、その基本原
理から一定速度で走行させることが必須であり、特定地
域の常時観測は困難であった。他方、RARにおいては
、常時観測は可能であるが、分解能は悪くアンテナが大
きくなりすぎて実際的ではない。
(Problem to be solved by the invention) Conventional SAR, which has a relatively small antenna and high resolution compared to the size of a flying object such as an artificial satellite, requires the antenna to travel at a constant speed due to its basic principle. Therefore, constant observation of specific areas was difficult. On the other hand, with RAR, constant observation is possible, but the resolution is poor and the antenna is too large to be practical.

このような理由から、地域観測において、パルス電波を
用いた能動型センサで特定地域を常時観測する観測方法
は、未だ何等提案されていない。
For these reasons, in regional observation, no observation method has yet been proposed in which a specific area is constantly observed using an active sensor using pulsed radio waves.

(問題点を解決するだめの手段) この発明は、前記問題点に鑑み、SARで特定地域の常
時観測を可能とし、RARと比べてはもちろん、従来の
走行型SARより分解能を高くしたもので、パルス電波
を用いた能動型地球観測において特定地域の常時観測を
可能とするとともに、RA Rと比べて分解能を向上さ
せるようにしたもので、空中においてSARを特定地域
の地表に対して相対的に往復運動させ、該SARの往復
運動中そのアンテナより一定間隔でパルス電波を発射し
、該パルス電波の送受信により中央で疎、左右両端で密
となる不等間隔合成開口アレイをデータ処理において等
価的に形成し、同時にデータ処理により特定地域の情報
を画像として形成しかつ出力するものである。これによ
り、アンテナは小さアンテナが大きくなるため、RAR
で不可能であった高分解能を小型アンテナで可能にした
(Means for Solving the Problems) In view of the above-mentioned problems, this invention enables constant observation of a specific area using SAR, and has higher resolution than conventional mobile SAR as well as compared to RAR. , which enables constant observation of a specific area in active earth observation using pulsed radio waves, and improves resolution compared to RAR, which allows SAR to be measured in the air relative to the ground surface in a specific area. During the reciprocating movement of the SAR, pulse radio waves are emitted from the antenna at regular intervals, and by transmitting and receiving the pulse radio waves, an unequally spaced synthetic aperture array that is sparse in the center and dense at both left and right ends is equivalent in data processing. At the same time, information on a specific area is formed as an image through data processing and output. This makes the antenna smaller and the antenna larger, so RAR
This made it possible to achieve high resolution with a small antenna, which was previously impossible.

(作 用) この発明においては、SARを空中において特定地域の
地表に対して相対的に往復運動させ、この往復運動中、
SARのアンテナから一定間隔でパルス電波を発射する
とともに、地表からのエコー信号を受信する。これによ
り、特定地域の空間には中央で疎、左右両端で密となる
不等間隔合成開口アレイがデータ処理上で等価的に形成
される。
(Function) In this invention, the SAR is moved in the air in a reciprocating manner relative to the ground surface in a specific area, and during this reciprocating movement,
The SAR antenna emits pulsed radio waves at regular intervals and receives echo signals from the ground. As a result, in the space of a specific area, an unequally spaced synthetic aperture array that is sparse at the center and dense at both left and right ends is equivalently formed in data processing.

この等価的な不等間隔合成開口アレイの単位時間内のエ
ネルギー分布は両端分布型となり、合成開口アンテナパ
ターン上のメインロープのビーム幅は、RARのそれと
比べてはもちろん、SARと比べても狭く、その分解能
が向上する。一方、受信されたエコー信号は、別途求め
た参照関数とともに相互相関処理され、これにより特定
地域の地形等の情報が画像として形成されかつ出力する
The energy distribution within the unit time of this equivalent nonuniformly spaced synthetic aperture array becomes a double-ended distribution type, and the beam width of the main rope on the synthetic aperture antenna pattern is narrower than that of RAR, as well as compared to SAR. , its resolution is improved. On the other hand, the received echo signal is subjected to cross-correlation processing together with a separately determined reference function, whereby information such as the topography of a specific area is formed as an image and output.

(実施例) 以下、具体的実施例に基づいてこの発明の詳細な説明す
る。
(Examples) Hereinafter, the present invention will be described in detail based on specific examples.

空中におけるSARの、特定地域の地表に対する相対的
な往復運動は、1例として地表に対し相対的に往復運動
を行なう同期軌道に、SARを搭載した人工衛星を乗せ
ることにより行なわれ、同期軌道上の人工衛星が地表に
対して相対的に往復運動するため、人工衛星に搭載され
ているSARが空中において特定地域の地表に対し相対
的に往復運動する。
For example, reciprocating motion of SAR in the air relative to the ground surface in a specific area is carried out by placing an artificial satellite equipped with SAR in a synchronous orbit that makes reciprocating motion relative to the ground surface. Since the artificial satellite makes a reciprocating motion relative to the ground surface, the SAR mounted on the artificial satellite makes a reciprocating motion in the air relative to the ground surface in a specific area.

同期軌道は、人工衛星の周期が地球の自転周期と一致す
る軌道で、人工衛星の軌道要素のうち、軌道傾斜角iお
よび離心率eの一方もしくは両方を変化させることによ
り得られる。第1図に示すように、軌道傾斜角iを変化
させた、軌道傾斜角i\0 (離心率e=0)の同期軌
道上の人工衛星1は、地球2の地軸Oと人工衛星1との
距離をRGとすると、地表から見ると南北方向に2・R
G・iの範囲で地表に対して相対的に往復移動する。
A synchronous orbit is an orbit in which the period of the artificial satellite matches the rotation period of the earth, and is obtained by changing one or both of the orbital inclination angle i and eccentricity e among the orbital elements of the artificial satellite. As shown in Figure 1, an artificial satellite 1 on a synchronous orbit with an orbital inclination i\0 (eccentricity e = 0) whose orbital inclination angle i has been changed is aligned with the earth's axis O of the earth 2 and the artificial satellite 1. If the distance is RG, then 2・R in the north-south direction when viewed from the ground
It moves back and forth relative to the earth's surface within a range of G.i.

なお、第1図において、3は赤道面、Nは牝、Sは南で
ある。また、第2図(A)、(B)に示すように、離心
率eを変化させた、離心率eζ0 (傾斜軌道角i;0
)の同期軌道上の人工衛星1は、地表から見ると東西方
向に4・RGseの範囲で地表に対して相対的に往復移
動する。なお、第2図(A) 、  (B)において、
Eは東、Wは西であり、また第2図(B)において、P
は軌道傾斜角i=0、離心率e = Oとした場合の人
工衛星1の静止位置を示している。
In addition, in FIG. 1, 3 is the equatorial plane, N is female, and S is south. In addition, as shown in Fig. 2 (A) and (B), eccentricity eζ0 (inclined orbit angle i; 0
) The artificial satellite 1 on the synchronous orbit moves back and forth relative to the earth's surface in the east-west direction within a range of 4·RGse when viewed from the earth's surface. In addition, in Fig. 2 (A) and (B),
E is east, W is west, and in Figure 2 (B), P
indicates the stationary position of the artificial satellite 1 when the orbital inclination angle i=0 and the eccentricity e=0.

したがって、観測目的に応じて軌道傾斜角iおよび離心
率eを適宜変化させた同期軌道に人工衛星1を乗せると
、この人工衛星1に搭載されたSARは、空中において
特定地域の地表に対して相対的に往復運動を行なう。
Therefore, if the artificial satellite 1 is placed in a synchronous orbit with the orbital inclination i and eccentricity e changed appropriately according to the observation purpose, the SAR on board this artificial satellite 1 will be Performs a relative reciprocating motion.

SARの前記往復運動を振子と同じく単振動とすると、
瞬時の速度Vは中央で最大、左右両端でOとなる、いわ
ゆる余弦関数(c o s関数)となり、v=vo*c
os(J・t  (ただし、t:パルス電波の発射時刻
、 CIJ ”” 27[−7* τ:捩振動周期)で
求められ、パルス電波の発射間隔Toを一定とすると、
等価的に形成される合成開口アレイアンテナの仮想的に
並んだ各アンテナの間隔dは、その各アンテナの位置を
座標図として説明する第3図に示すように、d=y*’
l’0となる。その絶′対値はd=ldn−dn+11
  (ただし、n:自然数)である。したがって、前記
間隔dの瞬時の存在位置間隔は、第4図に示すように、
中央で疎、左右両端で密となり、データ処理上等価的に
形成される合成開口アレイアンテナは、不等間隔合成開
口アレイを形成する。
Assuming that the reciprocating motion of the SAR is a simple harmonic motion like a pendulum,
The instantaneous velocity V is maximum at the center and O at both left and right ends, which is a so-called cosine function (cos function), and v=vo*c
os(J・t (where t: emission time of pulse radio waves, CIJ "" 27[-7* τ: torsional vibration period), and assuming the emission interval To of pulse radio waves is constant,
The interval d between each virtually lined-up antenna of an equivalently formed synthetic aperture array antenna is d=y*' as shown in FIG. 3, which explains the position of each antenna as a coordinate diagram.
It becomes l'0. Its absolute value is d=ldn-dn+11
(However, n: natural number). Therefore, the instantaneous existing position interval of the interval d is as shown in FIG.
A synthetic aperture array antenna that is sparse at the center and dense at both left and right ends and equivalently formed in terms of data processing forms an unequally spaced synthetic aperture array.

前記不等間隔合成開口アレイの単位時間内のエネルギー
分布は、第5図に示すように、両端分布型となる。この
両端分布型のアレイは、均一分布型に比ベサイドロープ
4のレベルは悪くなるが、メインローブ5のビーム幅W
dは狭くなり (第6図参照)、この結果得られる分解
能は向上する。
The energy distribution within a unit time of the non-uniformly spaced synthetic aperture array has a two-end distribution type, as shown in FIG. In this double-ended distribution type array, the level of the side rope 4 is worse than that of the uniform distribution type, but the beam width W of the main lobe 5 is
d becomes narrower (see Figure 6) and the resulting resolution improves.

なお、第4図および第5図における符号Xは、仮想的に
並ぶ各アンテナの位置の進行方向を示し、またtはパル
ス電波の発射時刻を示している。
Note that the symbol X in FIGS. 4 and 5 indicates the advancing direction of the positions of the virtual antennas, and t indicates the emission time of the pulse radio wave.

前記のように、メインロープ5のビーム幅Wdが狭いパ
ルス電波の地表からのエコー信号6は、通常のパルスレ
ーダと同様の方法により受信され、かつ記録されるもの
で、その詳細な説明は省略する0 そして、前記エコー信号6は、速度(相対的)、パルス
電波の繰返周波数、軌道情報等を考慮して求められた参
照関数とともに相互相関演算処理される。この処理され
たデータは、画像7として形成されかつ出力される(第
7図参照)。したがって、この画像7は、特定地域の地
形等の情報を常時出力することになり、この画像7の観
察により特定地域の常時観測が可能となる。
As mentioned above, the echo signal 6 from the earth's surface of pulsed radio waves with a narrow beam width Wd of the main rope 5 is received and recorded in the same manner as a normal pulse radar, and a detailed explanation thereof will be omitted. Then, the echo signal 6 is subjected to a cross-correlation calculation process together with a reference function obtained by taking into account the speed (relative), the repetition frequency of pulse radio waves, orbit information, etc. This processed data is formed and output as an image 7 (see Figure 7). Therefore, this image 7 always outputs information such as the topography of a specific area, and by observing this image 7, it becomes possible to constantly observe the specific area.

以上のように、この実施例においては、同期軌道上の人
工衛星にSARを搭載し、SARを空中において特定地
域の地表に対し相対的に往復運動させたものであるから
、特定地域の常時観測が可能となる。なお、SARを空
中において特定地域の地表に対して相対的に往復運動さ
せる方法は、前記実施例のように、同期軌道上の人工衛
星に搭載する方法に限定されるものではなく、SARが
空中において特定地域の地表に対して相対的に往復運動
する方法であればどのような方法でもよく、たとえばS
ARを航空機に搭載し、この航空機を特定地域の上空に
おいて旋回させたり、往復させることも可能である。
As described above, in this embodiment, the SAR is mounted on an artificial satellite on a synchronous orbit, and the SAR is moved in the air in a reciprocating manner relative to the ground surface in a specific area, so that constant observation of the specific area is possible. becomes possible. Note that the method of making SAR reciprocate in the air relative to the ground surface in a specific area is not limited to the method of mounting it on a satellite in a synchronous orbit as in the above embodiment; Any method may be used as long as it makes a reciprocating motion relative to the ground surface in a specific area, for example, S
It is also possible to mount an AR on an aircraft and make the aircraft circle or reciprocate over a specific area.

(発明の効果) 以上のように、この発明によれば、SARが空中におい
て、特定地域の地表に対して相対的に往復運動するもの
であるから、特定地域の常時観測が可能となる。また、
SARの往復運動により、特定地域の空間には不等間隔
合成開口アレイがデータ処理によって等価的に形成され
るものであるから、結果的に合成開口アンテナパターン
上のメインロープのビーム幅が狭くなって分解能が向上
する0
(Effects of the Invention) As described above, according to the present invention, since the SAR reciprocates in the air relative to the ground surface in a specific area, constant observation of the specific area is possible. Also,
Due to the reciprocating motion of SAR, an unequally spaced synthetic aperture array is equivalently formed in the space of a specific area by data processing, and as a result, the beam width of the main rope on the synthetic aperture antenna pattern becomes narrower. The resolution is improved0

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、この発明の一実施例を示すもので、第軌道を表
わす説明図、第2図(B)は地球の地表から見たときの
人工衛星の相対的軌跡を表わす説明図、第3図はパルス
電波を一定間隔で発射したときの等価的に形成される合
成開口アレイアンテナの仮想的に並んだ各アンテナの位
置を説明する座標図、第4図は等価的に形成される合成
開口アレイアンテナの仮想的に並んだ各アンテナの間隔
を示す説明図、第5図は不等間隔合成開口アレイの単位
時間内のエネルギー分布の説明図、第6図は合成開口ア
ンテナパターンの説明図、第7図はエコー信号の処理系
統を示すブロック図である。 1・・・人工衛星、2・・・地球、3・・・赤道面、4
・・・サイドローブ、5・・・メインロープ、6・・・
エコー信号、7・・・画像、TO・・・パルス電波の発
射間隔、d・・・仮想的に並んだ各アンテナの間隔、t
・・・パルス電波の発射時刻、X・・・仮想的に並ぶ各
アンテナの位置の進行方向、Wd・・・メインロープの
ビーム幅。
The drawings show an embodiment of the present invention; FIG. 2(B) is an explanatory diagram showing the orbit, FIG. 4 is a coordinate diagram illustrating the positions of virtually lined up antennas of a synthetic aperture array antenna that is formed equivalently when pulsed radio waves are emitted at regular intervals. Figure 4 is a synthetic aperture array that is formed equivalently. FIG. 5 is an explanatory diagram showing the spacing between each antenna that is virtually lined up. FIG. FIG. 7 is a block diagram showing an echo signal processing system. 1...Artificial satellite, 2...Earth, 3...Equatorial plane, 4
...Side lobe, 5...Main rope, 6...
Echo signal, 7... Image, TO... Pulse radio wave emission interval, d... Interval between virtual antennas, t
...The emission time of the pulse radio wave,

Claims (1)

【特許請求の範囲】[Claims] 空中において合成開口レーダを特定地域の地表に対して
相対的に往復運動させ、該合成開口レーダの往復運動中
そのアンテナより一定間隔でパルス電波を発射し、該パ
ルス電波の送受信により中央で疎、左右両端で密となる
不等間隔合成開口アレイをデータ処理において等価的に
形成し、同時にデータ処理により特定地域の情報を画像
として形成しかつ出力することを特徴とする、地球観測
における特定地域の常時観測方法。
A synthetic aperture radar is moved in the air in a reciprocating manner relative to the ground surface in a specific area, and during the reciprocating movement of the synthetic aperture radar, pulsed radio waves are emitted from its antenna at regular intervals. A method for detecting a specific area in earth observation, which is characterized in that an unevenly spaced synthetic aperture array that is dense at both left and right ends is equivalently formed in data processing, and at the same time, information on a specific area is formed and output as an image through data processing. Constant observation method.
JP61154734A 1986-07-01 1986-07-01 Method for continuously observing specific area in earth observation Granted JPS6311885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61154734A JPS6311885A (en) 1986-07-01 1986-07-01 Method for continuously observing specific area in earth observation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61154734A JPS6311885A (en) 1986-07-01 1986-07-01 Method for continuously observing specific area in earth observation

Publications (2)

Publication Number Publication Date
JPS6311885A true JPS6311885A (en) 1988-01-19
JPH055312B2 JPH055312B2 (en) 1993-01-22

Family

ID=15590766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61154734A Granted JPS6311885A (en) 1986-07-01 1986-07-01 Method for continuously observing specific area in earth observation

Country Status (1)

Country Link
JP (1) JPS6311885A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309178A (en) * 2003-04-02 2004-11-04 Oyo Corp Ground surface variation measuring method using synthetic aperture radar

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4991787A (en) * 1972-12-30 1974-09-02
JPS60170775A (en) * 1984-02-15 1985-09-04 Natl Space Dev Agency Japan<Nasda> Synthetic aperture radar
JPS6135382A (en) * 1984-07-28 1986-02-19 Natl Space Dev Agency Japan<Nasda> Synthetic aperture radar

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4991787A (en) * 1972-12-30 1974-09-02
JPS60170775A (en) * 1984-02-15 1985-09-04 Natl Space Dev Agency Japan<Nasda> Synthetic aperture radar
JPS6135382A (en) * 1984-07-28 1986-02-19 Natl Space Dev Agency Japan<Nasda> Synthetic aperture radar

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309178A (en) * 2003-04-02 2004-11-04 Oyo Corp Ground surface variation measuring method using synthetic aperture radar

Also Published As

Publication number Publication date
JPH055312B2 (en) 1993-01-22

Similar Documents

Publication Publication Date Title
JP3878213B2 (en) SAR radar system
US5059966A (en) Synthetic aperture radar system
US4723124A (en) Extended SAR imaging capability for ship classification
US5451957A (en) Radar device for obstacle warning
CN107390181B (en) Radar high-resolution imaging method based on multi-beam scanning
KR930000138B1 (en) Sar signal azimuth ambiguity cancellation
CN110426707A (en) Vortex SAR imaging method and system based on orbital angular momentum
US6670920B1 (en) System and method for single platform, synthetic aperture geo-location of emitters
CN105068074B (en) A kind of arrowband passive radar three-D imaging method
CN110275140B (en) Satellite-borne SAR beam scanning method based on parabolic antenna
JPH07244158A (en) Evaluation method of image quality of synthetic aperture radar image
CN107942295A (en) A kind of sparse antenna of forward sight array SAR system
Yarlequé et al. FMCW GPR radar mounted in a mini-UAV for archaeological applications: First analytical and measurement results
CN110456362B (en) Target acoustic imaging and speed measuring method and system based on pulse pair emission
CN111505629A (en) Terahertz security inspection imaging system and method
US6987479B1 (en) Conformal range migration algorithm (CRMA) “KARMA”
US3007155A (en) Ground contour mapping system
JPS6311885A (en) Method for continuously observing specific area in earth observation
JPH01500218A (en) Radiometric imager with frequency dispersive linear array antenna
KR20220122513A (en) Multiple resolution radar
JPS60170777A (en) Synthetic aperture radar
US3129422A (en) Oblique-look reconnaissance system
JPS6122274A (en) Method for data processing of synthetic aperture radar
RU2211459C2 (en) Technique of space scan and tracking of surface objects in low-altitude flight
JPS5870181A (en) Radar system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term