JPS6311879B2 - - Google Patents

Info

Publication number
JPS6311879B2
JPS6311879B2 JP54169302A JP16930279A JPS6311879B2 JP S6311879 B2 JPS6311879 B2 JP S6311879B2 JP 54169302 A JP54169302 A JP 54169302A JP 16930279 A JP16930279 A JP 16930279A JP S6311879 B2 JPS6311879 B2 JP S6311879B2
Authority
JP
Japan
Prior art keywords
thyristor
voltage
scr
circuit
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54169302A
Other languages
Japanese (ja)
Other versions
JPS5694993A (en
Inventor
Michio Hisatake
Kazuji Yamamoto
Tooru Hyodo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Janome Corp
Original Assignee
Janome Sewing Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Janome Sewing Machine Co Ltd filed Critical Janome Sewing Machine Co Ltd
Priority to JP16930279A priority Critical patent/JPS5694993A/en
Publication of JPS5694993A publication Critical patent/JPS5694993A/en
Publication of JPS6311879B2 publication Critical patent/JPS6311879B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/2805Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Sewing Machines And Sewing (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Direct Current Motors (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は電動機の速度制御回路に関するもので
あり、特にサイリスタを用いて電動機への供給電
流を制御する回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a speed control circuit for an electric motor, and particularly to a circuit that uses a thyristor to control the current supplied to the electric motor.

(目的) 本発明の目的は、電動機の速度制御において、
始動時の回転速度を変えないで前記制御の最高速
度を任意に設定出来る構成簡単な回路を提供する
ことにある。
(Objective) The object of the present invention is to control the speed of an electric motor.
To provide a circuit with a simple configuration that can arbitrarily set the maximum speed of the control without changing the rotational speed at the time of starting.

(従来技術) 整流子電動機においては、ミシンを例にする
と、通常足踏コントローラを用いて低速から高速
まで速度を制御するが、使用者の熟練度や縫の種
類などによつてその制御可能な最高速度を制限す
る必要がある。そのためには速度制御用のサイリ
スタを制御する回路の電源をなしている基準電圧
を例えば低下させることにより、最高速度を低下
し得るが、同時に始動時における最抵回転数も不
必要に低下してしまい、またこれが下がることに
よつて始動トルクが低下して始動に支障を来たす
などの不具合が生じる。
(Prior art) In a commutator motor, taking a sewing machine as an example, the speed is usually controlled from low to high speed using a foot controller, but the speed can be controlled depending on the user's skill level and the type of sewing. It is necessary to limit the maximum speed. To achieve this, for example, by lowering the reference voltage that powers the circuit that controls the speed control thyristor, the maximum speed can be lowered, but at the same time, the lowest rotational speed at the time of starting is also unnecessarily lowered. Moreover, as this decreases, the starting torque decreases, causing problems such as trouble in starting.

(解決手段) 本発明は、速度制御用サイリスタを制御するた
めの基準電圧を抵抗素子とツエナーダイオードと
よりなる回路が受け、そのツエナー電流によつて
抵抗要素に発生する電圧を調節可能にして、電動
機の始動回転速度に影響せずに最高回転速度を任
意に設定出来、回路構成簡単な制御回路を提供す
るものである。
(Solution Means) The present invention allows a circuit including a resistance element and a Zener diode to receive a reference voltage for controlling a speed control thyristor, and adjusts the voltage generated in the resistance element by the Zener current. To provide a control circuit with a simple circuit configuration, which can arbitrarily set the maximum rotational speed without affecting the starting rotational speed of the electric motor.

(実施例) 本発明の実施例を添附図面によつて説明する
と、第1図は制御回路図であり、図中Vは交流電
源、SW1は電源スイツチ、Mは単相直巻整流子電
動機、SCR1,SCR2は該電動機への供給電流を制
御するための速度制御用サイリスタで、互いに逆
並列に接続されている。ダイオードD1〜D4の組
は全波整流回路を構成し、その直流出力側は前記
各サイリスタSCR1,SCR2の点弧用の電源をな
す。R1は回路電流制限抵抗、ZD1は交流電源電圧
Vの変動を補償するツエナーダイオード、C1
平滑用コンデンサである。TRはトランジスタ
で、抵抗R2とともにサイリスタSCR1,SCR2
点弧用電圧を得るための基準電圧回路を構成し、
該トランジスタのコレクタ、エミツタ間抵抗と抵
抗R2とによつてコンデンサC1の両端電圧を分圧
して抵抗R3等を介してサイリスタSCR1,SCR2
にゲート電流を供給するようになつている。
CONTはコントローラで、ミシンを例にすると
足踏操作によりその踏込み始めにおいて始動スイ
ツチSW2が閉となり、可動接触子mが抵抗VR1
減少させてトランジスタTRのベース電圧を上昇
せしめるようになつている。前記分圧された電圧
を受け、抵抗R3を介する電圧はダイオードD5
抵抗R4を介してサイリスタSCR1の制御電圧をな
すとともに、ダイオードD6、抵抗R3を介してサ
イリスタSCR2の制御電圧をなす。
(Embodiment) An embodiment of the present invention will be explained with reference to the attached drawings. Fig. 1 is a control circuit diagram, in which V is an AC power supply, SW 1 is a power switch, and M is a single-phase series commutator motor. , SCR 1 , and SCR 2 are speed control thyristors for controlling the current supplied to the electric motor, and are connected in antiparallel to each other. The set of diodes D 1 to D 4 constitutes a full-wave rectifier circuit, and its DC output side forms a power source for ignition of each of the thyristors SCR 1 and SCR 2 . R 1 is a circuit current limiting resistor, ZD 1 is a Zener diode that compensates for fluctuations in the AC power supply voltage V, and C 1 is a smoothing capacitor. TR is a transistor, which together with resistor R 2 constitutes a reference voltage circuit for obtaining the ignition voltage of thyristors SCR 1 and SCR 2 .
The voltage across the capacitor C1 is divided by the collector-to-emitter resistor of the transistor and the resistor R2 , and is then connected to the thyristors SCR1 and SCR2 via the resistor R3 , etc.
The gate current is supplied to the
CONT is a controller, and if we take a sewing machine as an example, the start switch SW 2 will be closed at the beginning of the foot operation, and the movable contact m will decrease the resistance VR 1 and increase the base voltage of the transistor TR. There is. Receiving the divided voltage, the voltage passing through the resistor R 3 is connected to the diode D 5 ,
A control voltage for thyristor SCR 1 is provided via a resistor R 4 , and a control voltage for thyristor SCR 2 is provided via a diode D 6 and a resistor R 3 .

コンデンサC2,C3と抵抗R6,R7は交流電源V
からのノイズによるサイリスタSCR1,SCR2の誤
動作を防止すると共に点弧回路を形成している。
このコンデンサC2,C3は所定電圧(約0.5V)に
充電された時、サイリスタSCR1,SCR2を点弧
し、サイリスタ逆バイアス時、抵抗R6,R7によ
り放電する。
Capacitors C 2 and C 3 and resistors R 6 and R 7 are AC power supply V
This prevents thyristors SCR 1 and SCR 2 from malfunctioning due to noise, and also forms an ignition circuit.
When the capacitors C 2 and C 3 are charged to a predetermined voltage (approximately 0.5V), they fire the thyristors SCR 1 and SCR 2 , and are discharged by the resistors R 6 and R 7 when the thyristors are reverse biased.

ダイオードD5,D6と抵抗R4,R5はサイリスタ
順バイアス時に前記コンデンサC2,C3を充電す
る点弧用コンデンサ充電回路を形成している。例
えば、サイリスタSCR1が順バイアス時には交流
電源Vに同期したのこぎり波がコンデンサC2
印加され、これが前述の所定電圧に達するとサイ
リスタSCR1を点弧する。従つて、ダイオードD5
の印加電圧によつてサイリスタSCR1の点弧位相
を制御できる。この期間、C3→R5→R3→R2→D4
を経由する電流が流れ、サイリスタSCR2のゲー
ト端子に負電圧が加わつてサイリスタSCR2が破
壊するのを防ぐ為、ダイオードD6を入れてある。
この為、コンデンサC3の電荷は抵抗R7を介して
放電し、次回、サイリスタSCR2が順バイアスさ
れた時の充電に備えている。
Diodes D 5 and D 6 and resistors R 4 and R 5 form an ignition capacitor charging circuit that charges the capacitors C 2 and C 3 during forward biasing of the thyristor. For example, when the thyristor SCR1 is forward biased, a sawtooth wave synchronized with the AC power supply V is applied to the capacitor C2 , and when this reaches the aforementioned predetermined voltage, the thyristor SCR1 is fired. Therefore, diode D 5
The firing phase of thyristor SCR 1 can be controlled by the applied voltage. During this period, C 3 →R 5 →R 3 →R 2 →D 4
A diode D6 is inserted to prevent thyristor SCR 2 from being destroyed due to the current flowing through it and applying a negative voltage to the gate terminal of thyristor SCR 2 .
Therefore, the charge in the capacitor C 3 is discharged through the resistor R 7 in preparation for charging the next time the thyristor SCR 2 is forward biased.

ところで、抵抗R4は抵抗R5より低抵抗となし
て、前述ののこぎり波の傾斜をコンデンサC2
を大きくして、サイリスタSCR1の点弧感度をサ
イリスタSCR2のそれより上げている。抵抗R4
R5の値を適当に選ぶ事により、サイリスタSCR1
は電動機Mを低速から中速にかけて半波位相制御
し、中速から高速にかけてはサイリスタSCR1
制御に加えてサイリスタSCR2が逆相の半波を位
相制御して、結局、全波位相制御を行ない、速度
制御領域を拡大している。本発明は抵抗R3とダ
イオードD5,D6との接続点に可変抵抗VR3、ツ
エナーダイオードZD2を直列に接続し、抵抗R2
対して抵抗R3を介する並列回路を構成すること
によつてその目的にかなうことが出来る。即ち0
電位点E0に対して抵抗R2とR3との接続点の電位
をER、抵抗R3とVR3との接続点の電位をES、ツ
エナーダイオードZD2のツエナー電圧をEZとし、
サイリスタSCR1,SCR2が点弧していない状態で
はダイオードD5,D6にはコンデンサC2又はC3
電の為の微少電流しか流れないので該電流を無視
すると、コントローラ(CONT)の浅い踏み込
み、つまりトランジスタ(TR)のコレクタ、エ
ミツタ間の抵抗が大である場合のEREZのとき
は、ES=ERとなり、第2図の如くERを横軸、ES
を縦軸とすると破線の如く45゜の直線特性となる。
この制御範囲においては抵抗VR3、ツエナーダイ
オードZD2を取はずした従来回路における特性の
一部をなしている。コントローラ(CONT)の
深い踏み込み時、つまりトランジスタ(TR)の
コレクタ、エミツタ間抵抗が小となつてER>EZ
のときは、ES={(ER−EZ)/(R3+VR3)}×
VR3+EZ={VR3/(R3+VR3)}ER+{R3/(R3
+VR3)}EZとなり、ERの係数は1より小である
から第2図のESの如く45゜より緩やかな傾斜をも
つた直線特性となる。前記ER>ESにおけるES
式において、VR3=0とおくと第2図のES′の如
くERと平行の特性となる。同様にVR3≫R3とお
くと同じESの式においてERの係数は1となり第
2図のES″の如く鎖線を延長した45゜の直線特性と
なる。前記ES′とES″の直線が作る角度45゜の範囲
は抵抗VR3を変化させることによつて変化し得る
直線ESの傾斜の制御範囲を意味しており、そして
その直線の座標が示す電位ESは前述の点弧用コン
デンサ充電回路の制御電圧として作用する。よつ
て第2図の縦軸は電動機Mの回転速度に対応す
る。また前記電位ERはコントローラ(CONT)
によつて制御されるものであるから第2図の横軸
は該コントローラの踏量に対応する。
By the way, the resistor R4 has a lower resistance than the resistor R5 , and the slope of the above-mentioned sawtooth wave is made larger on the capacitor C2 side, so that the firing sensitivity of the thyristor SCR1 is made higher than that of the thyristor SCR2 . Resistance R 4 ,
By choosing the value of R 5 appropriately, the thyristor SCR 1
performs half-wave phase control on motor M from low to medium speeds, and from medium to high speeds, in addition to the control of thyristor SCR 1 , thyristor SCR 2 performs half-wave phase control of the opposite phase, resulting in full-wave phase control. This has expanded the speed control range. The present invention connects a variable resistor VR 3 and a Zener diode ZD 2 in series to the connection point between the resistor R 3 and the diodes D 5 and D 6 to form a parallel circuit with the resistor R 2 via the resistor R 3 . This can serve that purpose. That is 0
With respect to potential point E 0, let E R be the potential at the connection point between resistors R 2 and R 3 , E S be the potential at the connection point between resistors R 3 and VR 3 , and E Z be the Zener voltage of Zener diode ZD 2 . ,
When the thyristors SCR 1 and SCR 2 are not firing, only a small current flows through the diodes D 5 and D 6 to charge the capacitor C 2 or C 3 . When E R E Z occurs when the resistance is large between the collector and emitter of the transistor (TR), E S = E R , and as shown in Figure 2, E R is the horizontal axis and E S
When the vertical axis is taken as the vertical axis, it becomes a linear characteristic with an angle of 45° as shown by the broken line.
This control range is part of the characteristics of the conventional circuit in which the resistor VR 3 and Zener diode ZD 2 are removed. When the controller (CONT) is depressed deeply, the resistance between the collector and emitter of the transistor (TR) becomes small, and E R > E Z
When , E S = {( ER − E Z )/(R 3 + VR 3 )}×
VR 3 + E Z = {VR 3 / (R 3 + VR 3 )} E R + {R 3 / (R 3
+VR 3 )}E Z , and since the coefficient of E R is smaller than 1, it becomes a linear characteristic with a slope gentler than 45°, as shown by E S in FIG. In the equation for E S where E R >E S , if VR 3 =0, the characteristic becomes parallel to E R as shown in E S ' in FIG. Similarly, if we set VR 3 ≫ R 3 , the coefficient of E R in the same equation for E S becomes 1, resulting in a 45° linear characteristic with the chain line extended as shown in E S ' ' in Fig. 2. The range of angle 45° formed by the straight line S '' means the control range of the slope of the straight line E S that can be changed by changing the resistance VR 3 , and the potential E S indicated by the coordinates of the straight line is It acts as a control voltage for the aforementioned ignition capacitor charging circuit. Therefore, the vertical axis in FIG. 2 corresponds to the rotational speed of the electric motor M. Also, the potential E R is the controller (CONT)
2, the horizontal axis in FIG. 2 corresponds to the amount of pedal stroke of the controller.

第2図において、ER<EZのときの特性を表わ
す鎖線は、ER=0の近傍については表わしてい
ないが、これはコントローラ(CONT)の踏み
始めにおいてスイツチSW2が閉となるとER=0
から急激に電位ER0に到達するのでその間の値は
意味をもたないためである。電位ER0に対応する
電位ES0は、電動機Mの始動時におけるサイリス
タSCR1の点弧角を規定する。VR2は電動機Mの
始動回転速度を所定の値に設定する為の半固定抵
抗である。
In Fig. 2, the chain line representing the characteristic when E R < E Z does not represent the vicinity of E R = 0, but this means that when switch SW 2 closes at the beginning of pressing the controller (CONT), E R =0
This is because the potential E R0 is suddenly reached, so the values in between have no meaning. The potential E S0 , which corresponds to the potential E R0 , defines the firing angle of the thyristor SCR 1 when starting the motor M. VR 2 is a semi-fixed resistance for setting the starting rotation speed of the electric motor M to a predetermined value.

以上の構成において、電動機Mを可能な高速に
制御するために可変抵抗VR3を抵抗R3より著し
く大に調節し、電源スイツチSW1を閉として足踏
コントローラ(CONT)を浅く踏むと始動スイ
ツチSW2は閉となり、抵抗R2の電位ERは第2図
の電位ER0となり、そのときダイオードD5,D6
アノード側電位ESは第2図の電位ES0となつて電
動機MはサイリスタSCR1によつて始動回転する。
コントローラ(CONT)を更に踏み込んでゆく
と電位ES0は第2図の鎖線に沿つて上昇し、よつ
てサイリスタSCR1は点弧位相が進んで回転は上
昇する。更に踏み込んで電位ERがツエナーダイ
オードZD2のツエナー電圧に達すると、ツエナー
電流によつて電位ERは抵抗R3と抵抗VR3とで分
圧されて、電位ESは、電位ERより若干低下する
が抵抗VR3が抵抗R3より著しく大であるから殆
ど直線ES″に沿つて上昇し、その上昇過程におい
てサイリスタSCR2も位相制御に到り、コントロ
ーラ(CONT)の最大踏み込み操作において電
動機Mは可能な最高回転速度に達する。コントロ
ーラ(CONT)の最大踏み込み操作における電
動機Mの速度を低速に制限するために抵抗VR3
調節して例えばVR3=R3とすると前記のESの式
はEREZのときはES=ERであるから、電動機M
はコントローラ(CONT)の踏み込み操作に応
じた鎖線に対応して回転上昇し、ER>EZのとき
はES=(1/2)ER+(1/2)EZであるから第
2図のES直線の如き緩やかな傾斜の直線に対応し
て回転上昇し、よつて最大踏み込み操作における
速度も低速に制限される。抵抗VR3の値を種々調
節することによつて第2図の電位ESの特性は直線
ES′とES″との間にあつて傾斜の異なる直線特性に
制御され、よつて最大踏み込み操作における速度
も制御される。そして始動時における回転速度は
前記の各調節において、いずれも電位ES0に対応
していて一定である。なお電位ESと電動機Mの回
転速度の関係は、ツエナーダイオードZD2の電流
特性、サイリスタSCR1,SCR2の点弧特性等によ
り一般に正比例関係にはならない。
In the above configuration, in order to control the electric motor M at the highest possible speed, the variable resistor VR 3 is adjusted to be significantly larger than the resistor R 3 , and when the power switch SW 1 is closed and the foot controller (CONT) is lightly depressed, the starting switch is activated. SW 2 is closed, and the potential E R of the resistor R 2 becomes the potential E R0 in Fig. 2. At this time, the anode side potential E S of the diodes D 5 and D 6 becomes the potential E S0 in Fig. 2, and the electric motor M is started and rotated by thyristor SCR 1 .
As the controller (CONT) is further depressed, the potential E S0 increases along the chain line in FIG. 2, and the firing phase of the thyristor SCR 1 advances and the rotation increases. Going further, when the potential E R reaches the Zener voltage of the Zener diode ZD 2 , the Zener current divides the potential E R between the resistor R 3 and the resistor VR 3 , and the potential E S becomes lower than the potential E R. Although it decreases slightly, since resistance VR 3 is significantly larger than resistance R 3 , it rises almost along the straight line E S '', and in the rising process, thyristor SCR 2 also reaches phase control, and the maximum depression operation of the controller (CONT) The electric motor M reaches the maximum possible rotational speed at .If the resistor VR 3 is adjusted to limit the speed of the electric motor M to a low speed when the controller (CONT) is depressed to the maximum, for example, VR 3 = R 3 , then the above E Since the formula for S is E R E Z , E S = E R , so the electric motor M
The rotation increases in accordance with the chain line according to the pedal operation of the controller (CONT), and when E R > E Z , E S = (1/2) E R + (1/2) E Z , so the The rotation increases in accordance with a straight line with a gentle slope such as the E S straight line in Fig. 2, and therefore the speed at the maximum depression operation is also limited to a low speed. By variously adjusting the value of the resistor VR 3 , the characteristic of the potential E S in Fig. 2 becomes a straight line.
It is controlled to have a linear characteristic with a different slope between E S ′ and E S ″, and therefore the speed at the maximum depression operation is also controlled.The rotation speed at the time of starting is controlled by the electric potential in each of the above adjustments. It corresponds to E S0 and is constant.The relationship between the potential E S and the rotation speed of the motor M is generally not directly proportional due to the current characteristics of the Zener diode ZD 2 , the ignition characteristics of the thyristors SCR 1 and SCR 2 , etc. No.

第3図は電動機Mをミシンなどいくつかの機能
を有する機器を運転した場合に、その機能選択と
連動させることによつて最高速度の調節を行おう
とする回路例である。図は第1図と異なる部分の
みを示していて、図中、S1〜S4は機能選択スイツ
チで、このいずれかのスイツチの閉操作によつて
他を開とし、機能選択信号X1〜X4を図示してい
ない機能選択回路に出力するとともに互いに同一
抵抗値の各抵抗r1〜r4を介して各トランジスタtr1
〜tr4のうち選択された機能に対応するトランジ
スタにベース電流を与える。抵抗r5〜r8は第1図
における抵抗VR3を特定して調節した値に相当
し、各トランジスタtr1〜tr4に対応して異なる抵
抗値を有していて、スイツチS1〜S4の選択によつ
て各機能に適した電位ESが得られるように設定し
てある。よつて機能選択と連動して最高速度の調
節がなされる。
FIG. 3 is an example of a circuit in which the maximum speed is adjusted by linking the electric motor M with the function selection when operating a device having several functions, such as a sewing machine. The figure shows only the parts that are different from Figure 1. In the figure, S 1 to S 4 are function selection switches, and closing one of these switches opens the others, and function selection signals X 1 to X 4 is output to a function selection circuit (not shown) and connected to each transistor tr 1 via each resistor r 1 to r 4 having the same resistance value.
~tr Gives base current to the transistor corresponding to the selected function among 4 . The resistors r 5 to r 8 correspond to the specified and adjusted values of the resistor VR 3 in FIG . Settings are made so that a potential E S suitable for each function can be obtained by selecting 4 . Therefore, the maximum speed is adjusted in conjunction with the function selection.

(効果) 以上の如く本発明によれば、ツエナーダイオー
ドと抵抗要素など簡単な部材を付加して抵抗要素
の値を調節するのみで電動機の最高速度を調節し
得るものであり、調節は抵抗を変えるだけで良い
ので他の機能の選択などとも連動させることも容
易であり、一方、始動時においては前記の調節と
無関係に始動トルクが一定となり、始動不能など
のおそれはない。更に製造上電動機相互の特性は
ばらつきを生ずるが、制御回路を電動機個々に組
合わせて抵抗VR3を調節しておくことによつてこ
の問題が解消されるなど効果大なるものである。
(Effects) As described above, according to the present invention, the maximum speed of the motor can be adjusted by simply adding simple members such as a Zener diode and a resistance element and adjusting the value of the resistance element. Since it only needs to be changed, it is easy to link it with the selection of other functions, etc. On the other hand, at the time of starting, the starting torque remains constant regardless of the above-mentioned adjustment, and there is no fear that starting will not be possible. Further, due to manufacturing, the characteristics of the motors vary, but by combining the control circuit with each motor and adjusting the resistor VR 3 , this problem can be solved, which is very effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す制御回路図、第
2図は制御特性説明図、第3図は別実施例を示す
制御回路の部分図である。 図中、SCR1,SCR2はサイリスタ、Mは電動
機、トランジスタTRと抵抗R2の組は基準電圧回
路、ZD2はツエナーダイオード、R3,VR3は2個
の抵抗要素にしてVR3はその可変抵抗、ESは前記
サイリスタの制御電圧である。
FIG. 1 is a control circuit diagram showing an embodiment of the present invention, FIG. 2 is a diagram explaining control characteristics, and FIG. 3 is a partial diagram of a control circuit showing another embodiment. In the figure, SCR 1 and SCR 2 are thyristors, M is a motor, the set of transistor TR and resistor R 2 is a reference voltage circuit, ZD 2 is a Zener diode, R 3 and VR 3 are two resistance elements, and VR 3 is Its variable resistance, ES , is the control voltage of the thyristor.

Claims (1)

【特許請求の範囲】[Claims] 1 サイリスタSCR1,SCR2を介して交流電源V
に接続された電動機Mと、所定電圧に充電された
時に前記サイリスタを点弧しサイリスタ逆バイア
ス時に放電するサイリスタのゲートと電源に接続
されたコンデンサC2,C3を備えた点弧回路C2
R6,C3,R7と、サイリスタ順バイアス時に前記
コンデンサを充電するサイリスタのゲートに直列
に接続されよ点弧用コンデンサ充電回路R4,D5
R5,D6と、踏み込み量に応じて抵抗値が変化す
るコントローラと、該コントローラの踏み込み量
に応じて変化する基準電圧ERを発生する基準電
圧回路TR,R2と、この基準電圧を受けて該基準
電圧が設定電圧EZ以上の時動作するツエナーダ
イオードZD2と、該ツエナーダイオードのツエナ
ー電流によつて前記基準電圧の分電圧ESを発生
し可変抵抗VR3を含み分電圧を前記点弧用コンデ
ンサ充電回路の制御電圧として得られる少なく共
2個の抵抗要素R3,VR3とを設けて成ることを
特徴とする電動機の速度制御回路。
1 AC power supply V via thyristors SCR 1 and SCR 2
an ignition circuit C 2 comprising a motor M connected to the thyristor and capacitors C 2 and C 3 connected to the power source and the gate of the thyristor that ignites the thyristor when charged to a predetermined voltage and discharges when the thyristor is reverse biased ;
R 6 , C 3 , R 7 and an ignition capacitor charging circuit R 4 , D 5 , which is connected in series with the gate of the thyristor that charges the capacitor when the thyristor is forward biased.
R 5 , D 6 , a controller whose resistance value changes depending on the amount of depression of the controller, a reference voltage circuit TR, R 2 that generates a reference voltage E R that changes depending on the amount of depression of the controller, and this reference voltage. In response, a Zener diode ZD 2 operates when the reference voltage is higher than the set voltage EZ, and a Zener current of the Zener diode generates a divided voltage ES of the reference voltage, and a variable resistor VR 3 is included to convert the divided voltage to the point. A speed control circuit for an electric motor, characterized in that it comprises at least two resistance elements R 3 and VR 3 which are obtained as control voltages for an arc capacitor charging circuit.
JP16930279A 1979-12-27 1979-12-27 Speed control circuit for electromotor Granted JPS5694993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16930279A JPS5694993A (en) 1979-12-27 1979-12-27 Speed control circuit for electromotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16930279A JPS5694993A (en) 1979-12-27 1979-12-27 Speed control circuit for electromotor

Publications (2)

Publication Number Publication Date
JPS5694993A JPS5694993A (en) 1981-07-31
JPS6311879B2 true JPS6311879B2 (en) 1988-03-16

Family

ID=15884001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16930279A Granted JPS5694993A (en) 1979-12-27 1979-12-27 Speed control circuit for electromotor

Country Status (1)

Country Link
JP (1) JPS5694993A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3234171A1 (en) * 1982-09-15 1984-03-15 Pfaff Haushaltmaschinen Gmbh, 7500 Karlsruhe SEWING MACHINE WITH A UNIVERSAL MOTOR
JPH0540719Y2 (en) * 1985-04-19 1993-10-15

Also Published As

Publication number Publication date
JPS5694993A (en) 1981-07-31

Similar Documents

Publication Publication Date Title
JP3673128B2 (en) Power tool with preset speed switch
US3447055A (en) D.c. motor speed control circuit
US4449054A (en) Electronic circuit for controlling the supply voltage of electromagnets, electric motors, resistors, in single- and three-phase systems
US3278821A (en) Cemf responsive controlled rectifier supply for motors
US4134038A (en) Speed control for a universal electric motor
JP3301533B2 (en) Motor control circuit
US4236103A (en) Control circuit for a direct current motor
JPS6311879B2 (en)
US4158796A (en) Speed setting and control system for universal motors
JPH0648400U (en) Control device for vehicle alternator
US3329879A (en) Controlled rectifier supply for electric motors having negatively sloped armature speed voltages
JPH0540719Y2 (en)
GB2249849A (en) Motor speed control
JP3754130B2 (en) Motor speed control circuit
US3441826A (en) Tachometer feedback circuit for d.c. motor speed control
JP3528525B2 (en) Motor speed control circuit
SU1040585A1 (en) Direct current electric drive
SU688975A1 (en) Device for regulating dc motor speed
JP3476654B2 (en) AC motor phase control circuit
JPH01269821A (en) Motor rotation control device
SU1545318A1 (en) Electric drive
JPS6011552B2 (en) DC motor speed control method
KR970002059Y1 (en) The motor speed control apparatus of squeezer
SU1117811A1 (en) D.c.drive
KR900005201Y1 (en) Kriving circuit for solenoid pump