JPS63114909A - Production of fine metallic particle - Google Patents

Production of fine metallic particle

Info

Publication number
JPS63114909A
JPS63114909A JP26253586A JP26253586A JPS63114909A JP S63114909 A JPS63114909 A JP S63114909A JP 26253586 A JP26253586 A JP 26253586A JP 26253586 A JP26253586 A JP 26253586A JP S63114909 A JPS63114909 A JP S63114909A
Authority
JP
Japan
Prior art keywords
organometallic compound
compd
energy
chain
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26253586A
Other languages
Japanese (ja)
Inventor
Nobuo Shimo
紳郎 下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP26253586A priority Critical patent/JPS63114909A/en
Priority to US07/114,448 priority patent/US4844736A/en
Priority to EP87309702A priority patent/EP0266999B1/en
Priority to DE87309702T priority patent/DE3786143T2/en
Publication of JPS63114909A publication Critical patent/JPS63114909A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decompose a gaseous organometallic compd. in a chain reaction manner and to efficiently produce a high-purity metal by projecting high-density energy rays of a laser, etc., for a short period to the gaseous organometallic compd. of a specific concn. CONSTITUTION:The gaseous organometallic compd. having the metal-carbon bond between metals or metalloids such as Pb, Bi, Hg, Au, Ag, Pt, Co, Ni, Fe, Sn, Si and Ge, and an alkyl group, ally group, aralkyl group, etc., is made into a vapor phase state of >=10<15> molecule concn. per ml with He, N2, H2, air, etc., as a diluting gas. The energy rays such as UV, visible and IR laser light and others such as electron beams and ion beams are projected for the extremely short period of 10<-5> seconds at 10<5> Joule/sec energy intensity per cm<2> to said organometallic compd. to decompose the compd. and to form the active species of a high density. The high-purity metal is thus produced by the chain-like decomposition reaction at the high yield of the raw material.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明はレーザー等のエネルギーを活用し、有機金属化
合物の蒸気から金属微粒子を得る製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a manufacturing method for obtaining metal fine particles from the vapor of an organometallic compound by utilizing energy such as a laser.

[従来の技術] 従来より、蒸気を分解してその堆積物として、気相から
微粒子を生成させる方法(特rirID1160−51
539号公報)が知られ、また、蒸気として有機金属化
合物蒸気を使用する方法汀ケミストリー・アンド・イン
ダストリー(Chew、 arid I nd、 )、
第15巻、第247ページ(1985年)1が知られて
いる。
[Prior Art] Conventionally, there has been a method of decomposing steam and generating fine particles from the gas phase as deposits (special rirID1160-51).
Chew Chemistry and Industry (Chew, Arid Ind.), which uses organometallic compound vapor as vapor, is known.
Volume 15, page 247 (1985) 1 is known.

ところが、従来の有機金属化合物の蒸気を分解する方法
は、例えば、レーザー線の場合、1分子の金属微粒子を
生成させるために、少なくとも1光子のエネルギーが必
要であり、多大なエネルギーを必要とし、また、反応の
制御が困難であり、さらに、副生成物の生成などの問題
があるため、経済的及び品質的に不利である。
However, conventional methods for decomposing the vapor of organometallic compounds require a large amount of energy; for example, in the case of laser beams, at least one photon of energy is required to generate one molecule of metal fine particles. In addition, it is difficult to control the reaction, and furthermore, there are problems such as the production of by-products, which is disadvantageous economically and in terms of quality.

[発明が解決しようとする問題点1 本発明は有機金属化合物の蒸気から、有機物の混入のな
い高純度の金属微粒子を極めて効率的に得ることを目的
とするものである。
[Problem to be Solved by the Invention 1] The object of the present invention is to extremely efficiently obtain high-purity fine metal particles free from organic matter contamination from the vapor of an organometallic compound.

1問題点を解決するための手段1 本発明者らは、有機金属化合物の蒸気から高純度の金属
微粒子を得るため、鋭意研究の結果、少量のエネルギー
を高密度に投入したときに、有を妓金属化合物が連鎖的
反応により自発的に完全に分解することに着目し、極め
て効率よく金属微粒子を製造できることを見出し、本発
明をなすに至った。
1. Means for Solving Problem 1 The present inventors have conducted intensive research to obtain high-purity metal particles from the vapor of an organometallic compound, and have found that when a small amount of energy is input at high density, The present inventors focused on the fact that metal compounds spontaneously and completely decompose due to a chain reaction, and discovered that fine metal particles can be produced extremely efficiently, leading to the present invention.

すなわち、本発明は有機金属化合物の分解により金属微
粒子を製造する方法において、11当り1015分子以
上の濃度の気相状態で系内に存在する有機金属化合物に
、系内の一部に尖頭出力がI C22当り105ジュー
ル/秒以上のエネルギー密度のエネルギー線を照射して
、該系内の一部に高濃度の活性種を生成させ、次いで該
活性種からの連鎖的分解反応により微粒子の大部分を生
成させる金属微粒子の製造方法よりなる。
That is, the present invention provides a method for producing metal fine particles by decomposing an organometallic compound, in which the organometallic compound existing in the system in the gas phase at a concentration of 1015 molecules or more per 11 is given a peak output to a part of the system. irradiates an energy beam with an energy density of 105 joules/sec or more per IC22 to generate a high concentration of active species in a part of the system, and then a chain decomposition reaction from the active species reduces the size of fine particles. It consists of a method for producing metal fine particles that produces parts.

本発明に用いる有機金属化合物は蒸気になるものであれ
ばどのようなものでも使用できるが、例えば、鉛、ビス
マス、タリウム、亜鉛、アルミニュウム、カドミニウム
、水銀、金、銀、白金、コバルト、ニッケル、鉄、スズ
、ケイ素、ゲルマニウム等の金属又は半金属のアルキル
基、アリル基、アラルキル基等との間の金属−炭素結合
を有する有機化合物が本発明の有機金属化合物として使
用できる。
Any organometallic compound used in the present invention can be used as long as it becomes a vapor, but examples include lead, bismuth, thallium, zinc, aluminum, cadmium, mercury, gold, silver, platinum, cobalt, nickel, An organic compound having a metal-carbon bond between an alkyl group, an allyl group, an aralkyl group, etc. of a metal or semimetal such as iron, tin, silicon, germanium, etc. can be used as the organometallic compound of the present invention.

本発明に用いる有機金属化合物としては金属−炭素結合
の結合エネルギーが小さいもの及び蒸気圧の比較的に高
いものが連鎖的分解反応の円滑な開始進行の点から好ま
しい。
The organometallic compound used in the present invention is preferably one having a small metal-carbon bond energy and one having a relatively high vapor pressure from the viewpoint of smooth initiation and progress of the chain decomposition reaction.

また、炭素数の少ないものは、有機金属化合物の蒸気濃
度を太き(しやすいので好ましい。
Further, those having a small number of carbon atoms are preferable because they can easily increase the vapor concentration of the organometallic compound.

これらの観点から、本発明には低級アルキル基を有機成
分とする有機金属化合物が好適に使用できる。
From these viewpoints, organometallic compounds containing a lower alkyl group as an organic component can be suitably used in the present invention.

本発明に用いる有機金属化合物は、系内における有機金
属化合物の濃度が1015分子/x(1以上、好ましく
は、1016分子/lj!以上、特に好ましくは、10
17分子/lρ以上にして分解反応を行わせることが必
要である。この場合系内に希釈ガスを存在させてもよく
、希釈ガスとして、ヘリウム、窒素、水素、空気等が使
用できる。
The organometallic compound used in the present invention has a concentration of the organometallic compound in the system of 1015 molecules/x (1 or more, preferably 1016 molecules/lj! or more, particularly preferably 1016 molecules/lj! or more).
It is necessary to carry out the decomposition reaction at 17 molecules/lρ or more. In this case, a diluent gas may be present in the system, and helium, nitrogen, hydrogen, air, etc. can be used as the diluent gas.

希釈ガスを使用するときは、有機金属化合物の蒸気濃度
の2倍以下、好ましくは、等倍以下の濃度で、該ガスを
系内に導入することができる。
When a diluent gas is used, the gas can be introduced into the system at a concentration not more than twice the vapor concentration of the organometallic compound, preferably not more than the same.

本発明における有機金属化合物の蒸気濃度は該有機金属
化合物のモル分子吸光係数との関係で適切な条件を選択
でとる。例えば、エネルギー線の振動数を選択して、該
モル吸光係数が大きい条件で照射を行うときは、該蒸気
濃度を小さくしても連鎖的分解反応は開始する。
The vapor concentration of the organometallic compound in the present invention is determined by selecting appropriate conditions in relation to the molar molecular extinction coefficient of the organometallic compound. For example, when the frequency of the energy beam is selected and irradiation is performed under conditions where the molar extinction coefficient is large, the chain decomposition reaction will start even if the vapor concentration is reduced.

本発明において、系内の有機金属化合物の濃度が低いと
、連鎖開始の活性種の濃度が低くなり、活性種の寿命の
ある間に有機金属化合物との反応が起こりにくくなり、
活性種が失活してしまうので連鎖反応が開始しない。
In the present invention, when the concentration of the organometallic compound in the system is low, the concentration of the chain-initiating active species is low, making it difficult for the active species to react with the organometallic compound during its lifetime,
The chain reaction does not start because the active species are deactivated.

本発明の連鎖開始反応のエネルギー源に用いるエネルギ
ー線は、例えば、電磁波(紫外、可視及び赤外のレーザ
ー光、水銀ランプ、キセノンランプ等の定常光、軌道放
射光、マイクロ波、X線等の放射線など)、イオンビー
ム、電子ビーム、プラズマのように、ガス状の有機金属
化合物に、分解に要するエネルギーを付与するものであ
ればどのようなものでも使用できる。このうち、レーザ
ー、特にエキシマ−レーザーがエネルギー密度が大トく
、また、有機金属化合物に対する吸収断面積が大きく、
効率的に活性種を発生させることができるので好ましい
The energy rays used as the energy source for the chain initiation reaction of the present invention include, for example, electromagnetic waves (ultraviolet, visible and infrared laser beams, constant light such as mercury lamps and xenon lamps, orbital synchrotron radiation, microwaves, X-rays, etc.). Any method can be used as long as it imparts the energy necessary for decomposition to the gaseous organometallic compound, such as radiation (e.g., radiation), ion beam, electron beam, or plasma. Among these, lasers, especially excimer lasers, have a high energy density and a large absorption cross section for organometallic compounds.
This is preferred because active species can be generated efficiently.

本発明におけるエネルギー線の照射は、照射する有機金
属化合物のモル分子吸光係数が大きい条件で実施するの
が望ましい。例えば、テトラメチル鉛を原料として用い
るときは、波長約200nm付近でモル分子吸光係数の
極大値があり、この場合は、波長1930mのArFエ
キシマ−レーザーを使用するのが、好適である。さらに
、ArFエキシマ−レーザーの照射量は、1015光子
以上、好ましくは、1Q16光子以上にして高濃度の活
性種を得ることができる。
The energy ray irradiation in the present invention is preferably carried out under conditions where the molar molecular extinction coefficient of the organometallic compound to be irradiated is large. For example, when tetramethyl lead is used as a raw material, the molar molecular extinction coefficient has a maximum value around a wavelength of about 200 nm, and in this case, it is preferable to use an ArF excimer laser with a wavelength of 1930 m. Further, the irradiation amount of the ArF excimer laser can be set to 1015 photons or more, preferably 1Q16 photons or more to obtain a high concentration of active species.

本発明におけるエネルギー線の照射は、エネルギー密度
が高いほど有利であり、また、照射時間は短いほど有利
である。
In the energy ray irradiation in the present invention, the higher the energy density is, the more advantageous the energy ray irradiation is, and the shorter the irradiation time is, the more advantageous it is.

本発明では、エネルギー密度は、1012当り、105
ジュール/秒以上、好ましくは、106ジュール/秒以
上で照射を実施することが必要であり、これより少ない
密度では連鎖的分解反応がほとんど開始しない。
In the present invention, the energy density is 105 per 1012
It is necessary to carry out the irradiation at joules/second or more, preferably at least 106 joules/second; at densities lower than this, chain decomposition reactions are hardly initiated.

また、照射時間は、原料として使用する有機金属化合物
の種類に対応して、適宜選択されるものであり、通常は
10−5秒以下、好ましくは、10−6秒以下にするの
が望ましい。
Further, the irradiation time is appropriately selected depending on the type of organometallic compound used as a raw material, and is usually 10 −5 seconds or less, preferably 10 −6 seconds or less.

上記の本発明の照射条件によって、発生した活性種によ
り連鎖的分解反応が逐次的に起こり、瞬間的に有機金属
化合物がほとんど完全に分解し、該金属の超微粒子が生
成する。
Under the above-described irradiation conditions of the present invention, a chain decomposition reaction occurs sequentially due to the generated active species, and the organometallic compound is almost completely decomposed instantly, producing ultrafine particles of the metal.

かくして、得られる金属微粒子の径は1μ肩以下であり
、大部分は0.3μI以下の粒子で構成されている。
The diameter of the metal fine particles thus obtained is 1μ or less, and most of the particles are composed of particles with a diameter of 0.3μI or less.

L発明の効果j 本発明の金属微粒子の製造方法によって、種々の高純度
金属微粒子が極めて少ないエネルギーにより効率的に得
られるので黒磯微粒子材料の製造方法として有用である
Effects of the Invention j The method for producing metal fine particles of the present invention allows various high-purity metal particles to be efficiently obtained with extremely little energy, and is therefore useful as a method for producing Kuroiso fine particle materials.

[実施例] 本発明を実施例によりさらに詳細に説明する。[Example] The present invention will be explained in more detail with reference to Examples.

実施例1 テトラメチル鉛0.1ロアミリモルの蒸気を100z1
の合成石英製容器内に、室温、 30.3Torrの圧
力で入れ、1.0XI02”分子を存在させた。
Example 1 100z1 of steam containing 0.1 mmol of tetramethyl lead
The sample was placed in a synthetic quartz container at room temperature and a pressure of 30.3 Torr, and 1.0XI02'' molecules were present.

このとき、系内のテトラメチル鉛の蒸気は1xl当り1
.OXIO”分子の濃度になっている。
At this time, the vapor of tetramethyl lead in the system is 1xl/1xl.
.. OXIO” molecule concentration.

これに、^rFエキシマーレーザー(波長193nI1
1)からのレーザー光を10−8秒照射し、尖頭出力が
1c12当り2,5X 106ジュール/秒のエネルギ
ーを投入した。この結果、2,4X10I6光子が照射
されたことになる。これは、照射表面から、1.8oの
範囲内で、99.9%の光が吸収されたことになる。し
たがって、最初存在したテトラメチル鉛分子が、極めて
高密度に励起され、活性種になっていることになる。
In addition to this, ^rF excimer laser (wavelength 193nI1
The laser beam from 1) was irradiated for 10 −8 seconds, and energy with a peak output of 2.5×10 6 joules/sec per 1c12 was input. As a result, 2,4×10I6 photons were irradiated. This means that 99.9% of the light was absorbed within a range of 1.8o from the irradiated surface. Therefore, the initially existing tetramethyl lead molecules are excited to an extremely high density and become active species.

レーザーの照射後系内に発光が起こり、瞬間的に連鎖的
な分解反応が完了し、テトラメチル鉛は完全に分解し、
1光子あたり約4,000のテトラメチル鉛を連鎖的に
完全に分解した。その結果、黒色の鉛微粒子34Nが得
られた。この鉛微粒子は、大部分が0,3μl以下の粒
径であった。
After laser irradiation, light emission occurs within the system, instantaneously completing a chain decomposition reaction, and tetramethyl lead is completely decomposed.
Approximately 4,000 tetramethyl lead per photon was completely decomposed in a chain. As a result, 34N of black lead fine particles were obtained. Most of these lead fine particles had a particle size of 0.3 μl or less.

反応終了後のガス成分は、エタン(64%)、エチレン
(11%)、メタン(19%)、プロピレン(6%)で
あった。
The gas components after the reaction were ethane (64%), ethylene (11%), methane (19%), and propylene (6%).

以上の結果より、該レーザーを10−8秒照射しただけ
でテトラメチル鉛は完全に鉛微粒子とメチルラジカルに
分解されていることが確認できる。
From the above results, it can be confirmed that tetramethyl lead is completely decomposed into lead fine particles and methyl radicals by just irradiating the laser for 10-8 seconds.

これは従来の方法に比して、数千倍のエネルギー効率で
ある。この効率は、使用容器の容量を倍にすれば、それ
に応じて倍にすることができる。
This is thousands of times more energy efficient than traditional methods. This efficiency can be correspondingly doubled by doubling the capacity of the container used.

実施例2 トリメチルビスマス0.1ミリモルを85inの合成石
英製容器内に21.6 Torrで入れ、6.lX10
19分子を存在させた。このとき、系内のトリメチルビ
スマスの蒸気は11当り7.I XIO”分子の濃度に
なっている。
Example 2 0.1 mmol of trimethyl bismuth was placed in an 85-inch synthetic quartz container at 21.6 Torr; 6. lX10
19 molecules were present. At this time, the amount of trimethyl bismuth vapor in the system is 7. I XIO” molecule concentration.

これ1こへrFエキシマーレーザー(193nm)から
のレーザー光を10−8秒照射し、尖頭出力力弓cz2
当り107ジュール/′秒のエネルギーを投入した。
Laser light from an rF excimer laser (193 nm) was irradiated to this part for 10-8 seconds, and the peak output power bow cz2
Energy of 107 joules/'sec was input per unit.

この結果、連鎖的にトリメチルビスマスの分解反応が、
進行し、大部分が0.3μ屑以下の粒径である黒色のビ
スマス微粒子を20.9B生成した。この量は、トリメ
チルビスマスが完全に分解し、収率が100%で金属ビ
スマスが得られたことに相当する。
As a result, the decomposition reaction of trimethyl bismuth occurs in a chain reaction.
The process progressed to produce 20.9B of black bismuth fine particles, most of which had a particle size of 0.3μ or less. This amount corresponds to complete decomposition of trimethyl bismuth and metal bismuth with a yield of 100%.

反応終了後のガス成分は、エタン(83%)、メタン(
11%)、エチレン(3%)、プロピレン(3%)であ
った。
The gas components after the reaction are ethane (83%), methane (
11%), ethylene (3%), and propylene (3%).

実施例3 トリメチルビスマスを0.046 ミリモル使用したこ
と以外は実施例2と同じ繰作をした6その結果連鎖的に
トリメチルビスマスの分解反応が完全に進行し、大部分
が0.3μ肩以下の粒径の黒色のビスマス微粒子を9.
7旬生成した。
Example 3 The same procedure as in Example 2 was carried out except that 0.046 mmol of trimethyl bismuth was used.6 As a result, the decomposition reaction of trimethyl bismuth proceeded completely in a chain reaction, and most of the particles were 0.3μ or less. Black bismuth fine particles with a particle size of 9.
Generated in July.

比較例1 テトラメチル鉛を0.166ミリモル使用し、エネルギ
ー密度を尖頭出力で1cR2当り1×10コシユ一ル/
秒とした以外は実施例1と同様の揉作を行ったが、連続
的分解反応は全く起こらなかった。反応容器内のレーザ
ー照射部分のみにわずかに鉛の薄膜が生成した。
Comparative Example 1 0.166 mmol of tetramethyl lead was used, and the energy density was 1 x 10 koshels/cR2 at peak output.
The same agitation as in Example 1 was carried out except that the agitation was carried out for seconds, but no continuous decomposition reaction occurred at all. A slight lead film was formed only in the laser irradiated area inside the reaction vessel.

比較例2 テトラメチル鉛を1.IX 10−5ミリモル使用した
こと以外は、実施例2と同じ操作を行なった。
Comparative Example 2 Tetramethyl lead was added to 1. The same procedure as in Example 2 was carried out, except that 10-5 mmol of IX was used.

その結果、連鎖的な分解反応は全く進行しなかった。As a result, the chain decomposition reaction did not proceed at all.

反応容器内のレーザー照射した部分のみ薄膜が生成した
A thin film was formed only in the laser-irradiated area of the reaction vessel.

比較例3 トリメチルビスマスを0.046ミリモル使用し、付与
するエネルギーを0.1ミリジュールとした以外は、実
施例2と同様の操作を行った。
Comparative Example 3 The same operation as in Example 2 was performed except that 0.046 mmol of trimethyl bismuth was used and the applied energy was 0.1 millijoule.

その結果、連鎖的な分解反応は全(進行しなかった。As a result, the chain decomposition reaction did not proceed at all.

反応容器内のレーザー照射した部分のみ薄膜が生成した
A thin film was formed only in the laser-irradiated area of the reaction vessel.

Claims (1)

【特許請求の範囲】[Claims] 1 有機金属化合物の分解により金属微粒子を製造する
方法において、1ml当り10^1^5分子以上の濃度
の気相状態で系内に存在する有機金属化合物に、尖頭出
力が1cm^2当り10^5ジュール/秒以上のエネル
ギー密度のエネルギー線を照射して、系内の一部に高濃
度の活性種を生成させ、次いで該活性種からの連鎖的分
解反応により微粒子の大部分を生成させることを特徴と
する金属微粒子の製造方法。
1. In a method for producing metal fine particles by decomposing an organometallic compound, the organometallic compound existing in the system in a gas phase at a concentration of 10^1^5 molecules or more per ml has a peak output of 10 molecules per 1cm^2. Irradiate energy rays with an energy density of ^5 joules/second or more to generate a high concentration of active species in a part of the system, and then generate most of the fine particles through a chain decomposition reaction from the active species. A method for producing metal fine particles characterized by the following.
JP26253586A 1986-11-04 1986-11-04 Production of fine metallic particle Pending JPS63114909A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP26253586A JPS63114909A (en) 1986-11-04 1986-11-04 Production of fine metallic particle
US07/114,448 US4844736A (en) 1986-11-04 1987-10-29 Method for the preparation of finely divided metal particles
EP87309702A EP0266999B1 (en) 1986-11-04 1987-11-03 A method for the preparation of finely divided metal particles
DE87309702T DE3786143T2 (en) 1986-11-04 1987-11-03 Process for the production of finely divided metal powder.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26253586A JPS63114909A (en) 1986-11-04 1986-11-04 Production of fine metallic particle

Publications (1)

Publication Number Publication Date
JPS63114909A true JPS63114909A (en) 1988-05-19

Family

ID=17377151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26253586A Pending JPS63114909A (en) 1986-11-04 1986-11-04 Production of fine metallic particle

Country Status (1)

Country Link
JP (1) JPS63114909A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328433A (en) * 2005-05-23 2006-12-07 Keio Gijuku Method for forming metallic nanoparticle
KR101424341B1 (en) * 2012-09-18 2014-08-04 고려대학교 산학협력단 Synthesis Method of Germanium Alloy Nano Particle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328433A (en) * 2005-05-23 2006-12-07 Keio Gijuku Method for forming metallic nanoparticle
JP4631095B2 (en) * 2005-05-23 2011-02-16 学校法人慶應義塾 Method for producing metal nanoparticles
KR101424341B1 (en) * 2012-09-18 2014-08-04 고려대학교 산학협력단 Synthesis Method of Germanium Alloy Nano Particle

Similar Documents

Publication Publication Date Title
US20110073462A1 (en) Spectral Catalysts
US5064517A (en) Method for the preparation of fine particulate-metal-containing compound
JPH0624896A (en) Diamond synthesizing method
US4844736A (en) Method for the preparation of finely divided metal particles
US5207878A (en) Method for the preparation of fine particulate metal-containing compound
JPS63114909A (en) Production of fine metallic particle
US6180805B1 (en) Photochemical process for the production of previtamin D3
JPH0759721B2 (en) Method for producing fine metal particles
Takahashi et al. Photochemical abiotic synthesis of amino-acid precursors from simulated planetary atmospheres by vacuum ultraviolet light
JPH02213404A (en) Manufacture of metal fine particles
JPH0455306A (en) Production of metal oxide
JPS632327A (en) Etching of fine pattern
RU2264888C2 (en) Nano-dispersed oxide powder production method
JP3379886B2 (en) Method for synthesizing fullerenes
JPH02190408A (en) Manufacture of multi metal compound
JP2522050B2 (en) Atomic layer dry etching method
JP3000382B2 (en) Ultraviolet light emission source and photo-CVD method using the same
JPH02188410A (en) Production of metal oxide
JP2770620B2 (en) Thermal CVD method
WO1988005087A1 (en) Optical cvd process
JPS6365077A (en) Laser cvd device
JPH05279183A (en) Production of diamond
JP2024009516A (en) Method for generating hydrated electrons
Shimokoshi ESR study of the xenon-photosensitized decomposition of gaseous hydrogen
JPH04338197A (en) Synthesizing method for diamond