JPS631119B2 - - Google Patents

Info

Publication number
JPS631119B2
JPS631119B2 JP10041479A JP10041479A JPS631119B2 JP S631119 B2 JPS631119 B2 JP S631119B2 JP 10041479 A JP10041479 A JP 10041479A JP 10041479 A JP10041479 A JP 10041479A JP S631119 B2 JPS631119 B2 JP S631119B2
Authority
JP
Japan
Prior art keywords
denitrification
wastewater
denitrifying bacteria
aerobic
autolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10041479A
Other languages
Japanese (ja)
Other versions
JPS5626591A (en
Inventor
Takayuki Suzuki
Kazuyuki Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP10041479A priority Critical patent/JPS5626591A/en
Publication of JPS5626591A publication Critical patent/JPS5626591A/en
Publication of JPS631119B2 publication Critical patent/JPS631119B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、下水、し尿、産業廃水、その他の排
水などの有機性廃水を生物学的に浄化処理する方
法、特に脱窒工程の粒状媒体上に付着した脱窒素
菌を利用して脱窒する廃水の生物学的脱窒法に関
するものである。 〔従来技術〕 この生物学的脱窒法は活性汚泥法と活性炭、砂
などを媒体としてこれに微生物を付着して利用す
る生物固定床法に大別されるが、設置面積に制限
のある処理施設では、硝化菌、脱窒素菌を純粋か
つ高濃度に維持でき、装置の縮小が可能な固定床
法が実用化されている。従来の固定床法の脱窒処
理は通常廃水中の窒素化合物、例えばNH4を硝
化工程でNO2あるいはNO3(以下NOxとする)に
硝化したのち、脱窒素菌が付着した粒状媒体によ
つて固定層あるいは流動層の形成されている脱窒
工程でNOxをN2ガスにまで還元分解(脱窒)す
るものである。 〔発明が解決しようとする問題点〕 この従来方法で発生する余剰菌の処理は、粒状
媒体を再利用するため、媒体を脱窒工程より引抜
いた後、前記媒体に付着した菌体と媒体とを分離
し、媒体は脱窒工程に返送し、一方菌体は脱水、
乾燥、焼却されるが、この方法は媒体に対する菌
体の付着が強力なため剥離に大きなエネルギーを
必要とするし、また剥離された菌体は純粋培養化
されているので極めて脱水性が悪い等の欠点があ
る。 また嫌気的消化法を利用して、媒体上の菌体を
可溶化し、媒体より分離する方法でも菌体の可溶
化に長時間を要するうえ消化脱離液の再処理が必
要であるという欠点を有する。いずれにしてもこ
のような従来の余剰菌の処理法は操作が煩雑であ
るうえ前記欠点があり当業界にとつて憂慮されて
いる問題であつた。とりわけ余剰脱窒素菌の処理
法の改良が大きな問題となつているが、これは、
利用する硝化菌の増殖量が0.1増殖菌量/NH4
N(g/g)であるのに対し、脱窒素菌の増殖量
は、菌体収率の小さいメタノール資化性脱窒素菌
でも0.4増殖菌量/NO3―N(g/g)と、除去窒
素あたり硝化菌の4倍量にも達するためである。 また、脱窒素剤としてのメタノールは窒素分の
流入変動に対処しうるように過剰に添加される
が、残留するメタノールは処理水のBOD成分と
なるため、これをさらに工程を設けて除去しなけ
ればならない等欠点があつた。 本発明は、これら従来法の諸欠点を解消するも
のであり、脱窒処理水の浄化と余剰菌体の処理処
分とを極めて簡単に行うことのできる有効な廃水
の生物学的脱窒法を提供することを目的とするも
のである。 〔問題点を解決するための手段〕 本発明は、廃水を脱窒工程と好気的消化工程を
経て処理する方法において、脱窒工程で増加した
余剰の脱窒素菌を粒状媒体とともに溢流させて好
気的自己消化工程に導き、前記脱窒工程より漏洩
するメタノールを酸化除去し処理水BODの増加
を防止するともに、脱窒素菌を空気(酸素)存在
下で脱窒素菌の持つ自己消化能力で好気分解して
その量を減少し、好気的自己消化工程から再び脱
窒工程に移送して粒状媒体を再利用して微生物の
付着繁殖を促進して処理する廃水の生物学的脱窒
法である。 次に本願発明の実施態様を第1図を参照して説
明すると、NH3を含有する廃水1は全部又は一
部が硝化工程2でNO3に硝化され、NO3のみを
含有する硝化水3は、メタノール4とともに脱窒
工程5に流入し脱窒され、漏洩するメタノール
4′は好気的自己消化工程6で酸化除去され、窒
素もBOD成分も除去された処理水9は放流され
る。この場合、前記廃水1は必要に応じその一部
又は全部がバイパス流路1′で直接前記脱窒工程
5に流入して処理することができる。 一方前記脱窒工程5で増殖した余剰の脱窒素菌
は粒状媒体とともに溢流させて媒体移送管7を経
て好気的自己消化工程6に移送され、残留するメ
タノール4の除去と同時に自己酸化分解によつて
媒体上の脱窒素菌は次第にその量を減少する。こ
の脱窒素菌の減少した媒体は媒体移送管8を経て
好気的自己消化工程6から前記脱窒工程5に移送
される。このように媒体上の脱窒素菌は脱窒工程
5と好気的自己消化工程6とを経由しながら増
加、減少を繰り返し、脱窒工程5の脱窒素菌を定
量的に保持することができ、水質良好な処理水9
として好気的自己消化工程6から効率よく得られ
るものである。 なお、前記脱窒工程5の粒状媒体の移送は、脱
窒工程流出水とともに行うと便利であり、その時
期は媒体を脱窒工程流出水とともに溢流管で溢流
させるときに行い好気的自己消化工程6に移送す
るようにする。(第2図) また前記好気的自己消化工程6からの移送は、
脱窒素菌の減少による脱窒素菌量を観察して、脱
窒工程5へ移送すればよい。 〔発明の効果〕 本発明によれば、廃水を嫌気的条件下にある脱
窒工程の次に好気的自己消化工程を経て処理し、
前記脱窒工程の粒状媒体に付着した余剰脱窒素菌
を粒状媒体とともに溢流させて好気的自己消化工
程に移送して、該脱窒素菌を空気(酸素)存在下
で脱窒素菌の持つ自己消化能力で酸化分解したの
ち、粒状媒体を前記脱窒工程へ返送処理すること
により脱窒処理水の浄化が著しく高効率にでき、
その廃水処理に余剰菌体の分離装置、脱水、乾燥
装置、焼却炉などの菌体の処理設備も不要とな
り、しかも余剰脱窒素菌の処理は媒体を好気的自
己消化工程に移送するだけなので極めて簡単であ
つて運転管理も容易で余剰脱窒素菌の処理と同時
に脱窒処理水の浄化も行うことができるので、余
剰脱窒素菌の処理処分に付随する従来の欠点を解
消し、大幅に改良化された脱窒処理法とすること
ができ、余剰脱窒素菌と残留メタノールの合理的
処理と経済的な処理が可能である。 〔実施例〕 次に本発明の実施例を示す。 実験装置 流動層式脱窒塔 50 円筒カラム 2本 (φ200mm、高さ1600mm 有効容積50.2) 実験条件 実験廃水 人工硝化液 NO3―N 30mg/ (脱塩素水道水にNaNO3を添加して調整したも
の) 廃水処理量 1000/日 流動層媒体 砂 流動層菌量は流動層層高をもつて増減をみた実
験開始時の流動層層高 脱窒塔 400mm 好気的消化塔 1000mm メタノール添加量 90g/日
[Industrial Application Field] The present invention relates to a method for biologically purifying organic wastewater such as sewage, human waste, industrial wastewater, and other wastewater, and in particular to a method for biologically purifying organic wastewater such as sewage, human waste, industrial wastewater, and other wastewater. This paper relates to a biological denitrification method for wastewater using denitrification. [Prior art] This biological denitrification method is roughly divided into activated sludge method and biological fixed bed method, which uses activated carbon, sand, etc. as a medium and attaches microorganisms to it, but it requires treatment facilities with limited installation space. A fixed bed method has been put into practical use that allows nitrifying bacteria and denitrifying bacteria to be maintained in a pure and highly concentrated manner, and the equipment can be downsized. In conventional fixed bed denitrification treatment, nitrogen compounds such as NH 4 in wastewater are nitrified to NO 2 or NO 3 (hereinafter referred to as NO Therefore, NO x is reduced and decomposed (denitrified) to N 2 gas in a denitrification process in which a fixed bed or a fluidized bed is formed. [Problems to be solved by the invention] In order to reuse the granular media, the surplus bacteria generated in this conventional method is treated by removing the media from the denitrification process and then removing the bacteria attached to the media from the media. The medium is sent back to the denitrification process, while the bacterial cells are dehydrated and
The bacteria are dried and incinerated, but this method requires a large amount of energy to peel off because the bacteria adhere strongly to the medium, and the peeled bacteria are pure cultures, so dehydration is extremely poor. There are drawbacks. In addition, the method of using anaerobic digestion to solubilize the bacterial cells on the medium and separate them from the medium has the disadvantage that it takes a long time to solubilize the bacterial cells and that the digestion solution must be reprocessed. has. In any case, such conventional methods for treating surplus bacteria are complicated in operation and have the above-mentioned drawbacks, which are problems that are of concern to the industry. In particular, improving the treatment method for surplus denitrifying bacteria has become a major issue;
The growth rate of the nitrifying bacteria used is 0.1 growth rate/NH 4
N (g/g), whereas the growth rate of denitrifying bacteria is 0.4 amount of growing bacteria/NO 3 -N (g/g), even for methanol-assimilating denitrifying bacteria with a small bacterial cell yield. This is because the amount of nitrogen removed reaches four times that of nitrifying bacteria. In addition, methanol as a denitrifying agent is added in excess to cope with fluctuations in nitrogen inflow, but the remaining methanol becomes a BOD component of the treated water, so it must be removed in an additional process. There were some shortcomings such as not being able to handle it. The present invention eliminates the various drawbacks of these conventional methods, and provides an effective biological denitrification method for wastewater that can extremely easily purify denitrified water and process and dispose of surplus microorganisms. The purpose is to [Means for Solving the Problems] The present invention provides a method for treating wastewater through a denitrification process and an aerobic digestion process, in which surplus denitrifying bacteria increased in the denitrification process are overflowed together with granular media. The methanol leaked from the denitrification process is oxidized and removed to prevent an increase in BOD of the treated water, and the denitrification bacteria are introduced into the aerobic autolysis process in the presence of air (oxygen). Biological treatment of wastewater by reducing its amount through aerobic decomposition, transferring it from the aerobic autolysis process to the denitrification process, reusing the granular media, and promoting the attachment and propagation of microorganisms. This is a denitrification method. Next, an embodiment of the present invention will be described with reference to FIG. 1. The wastewater 1 containing NH 3 is completely or partially nitrified to NO 3 in the nitrification step 2, and the nitrified water 3 containing only NO 3 is nitrified. Flows into a denitrification step 5 together with methanol 4 and is denitrified, leaked methanol 4' is oxidized and removed in an aerobic autolysis step 6, and treated water 9 from which both nitrogen and BOD components have been removed is discharged. In this case, part or all of the wastewater 1 can be directly flowed into the denitrification process 5 through the bypass channel 1' and treated, if necessary. On the other hand, the excess denitrifying bacteria grown in the denitrification process 5 are overflowed together with the granular medium and transferred to the aerobic autolysis process 6 via the medium transfer pipe 7, where the remaining methanol 4 is removed and simultaneously decomposed by autooxidation. As a result, the amount of denitrifying bacteria on the medium gradually decreases. This medium containing denitrifying bacteria is transferred from the aerobic autolysis process 6 to the denitrification process 5 via the medium transfer pipe 8. In this way, the denitrifying bacteria on the medium repeatedly increase and decrease through the denitrifying process 5 and the aerobic autolysis process 6, and the denitrifying bacteria in the denitrifying process 5 can be quantitatively retained. , Treated water with good quality 9
can be efficiently obtained from the aerobic autolysis step 6. In addition, it is convenient to transfer the granular media in the denitrification process 5 together with the denitrification process effluent, and this is done when the medium is overflowed with the denitrification process effluent through the overflow pipe. It is then transferred to autolysis step 6. (Figure 2) Furthermore, the transfer from the aerobic autolysis step 6 is as follows:
It is sufficient to observe the amount of denitrifying bacteria due to the decrease in the number of denitrifying bacteria, and then transfer to the denitrifying step 5. [Effects of the Invention] According to the present invention, wastewater is treated through a denitrification step under anaerobic conditions, followed by an aerobic autolysis step,
Excess denitrifying bacteria attached to the granular media in the denitrification process are overflowed with the granular media and transferred to the aerobic autolysis process, and the denitrifying bacteria are absorbed in the presence of air (oxygen). After being oxidized and decomposed by its self-extinguishing ability, the granular media is returned to the denitrification process, making it possible to purify the denitrification treated water with extremely high efficiency.
For wastewater treatment, there is no need for extra bacterial cell separation equipment, dehydration, drying equipment, incinerators, or other bacterial treatment equipment, and the treatment of excess denitrifying bacteria simply involves transferring the medium to the aerobic autolysis process. It is extremely simple and easy to manage, and it is possible to purify denitrified water at the same time as treating surplus denitrifying bacteria, eliminating the conventional drawbacks associated with the treatment and disposal of surplus denitrifying bacteria, and greatly improving An improved denitrification treatment method can be obtained, and surplus denitrification bacteria and residual methanol can be treated rationally and economically. [Example] Next, an example of the present invention will be shown. Experimental equipment Fluidized bed denitrification tower 2 cylindrical columns (φ200mm, height 1600mm, effective volume 50.2) Experimental conditions Experimental wastewater Artificial nitrification solution NO 3 -N 30mg/ (adjusted by adding NaNO 3 to dechlorinated tap water) Wastewater treatment amount: 1000/day Fluidized bed medium: Sand The amount of bacteria in the fluidized bed varied with the height of the fluidized bed.Fluidized bed height at the start of the experiment: Denitrification tower: 400mm Aerobic digestion tower: 1000mm Amount of methanol added: 90g/day Day

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明方法の実施例を示し、第1図は系
統説明図、第2図は他の実施例の系統説明図であ
る。 1…廃水、2…硝化工程、3…硝化水、4,
4′…メタノール、5…脱窒工程、6…好気的自
己消化工程、7,8…媒体移送管、9…処理水。
The drawings show an embodiment of the method of the present invention, with FIG. 1 being a system explanatory diagram and FIG. 2 being a system explanatory diagram of another embodiment. 1...wastewater, 2...nitrification process, 3...nitrified water, 4,
4'... Methanol, 5... Denitrification process, 6... Aerobic autolysis process, 7, 8... Medium transfer pipe, 9... Treated water.

Claims (1)

【特許請求の範囲】 1 廃水を脱窒工程と好気的消化工程とで処理す
るのに粒状媒体に付着した脱窒菌を利用して酸化
態窒素(NOx―N)を廃水中から除去するに際
し、廃水を嫌気的条件下にある脱窒工程の次に好
気的自己消化工程を経て処理すると共に、前記脱
窒工程の粒状媒体に付着した余剰脱窒素菌を粒状
媒体とともに溢流させて好気的自己消化工程に移
送して、該脱窒素菌を空気(酸素)存在下で脱窒
素菌の持つ自己消化能力で酸化分解したのち、粒
状媒体を好気的自己消化工程から前記脱窒工程へ
返送することを特徴とする廃水の生物学的脱窒
法。 2 前記脱窒工程が、脱窒工程から流出水に同伴
して余剰脱窒素菌を粒状媒体とともに溢流させて
好気的自己消化工程に移送処理するものである特
許請求の範囲第1項記載の廃水の脱窒法。 3 前記粒状媒体の移送工程が、粒状媒体の移送
及び/又は返送を間歇的に一定時間行われるよう
に処理されるものである特許請求の範囲第1項又
は第2項記載の廃水の脱窒法。
[Claims] 1. Oxidized nitrogen (NO x -N) is removed from wastewater by using denitrifying bacteria attached to granular media when wastewater is treated in a denitrification process and an aerobic digestion process. In this process, the wastewater is treated through a denitrification process under anaerobic conditions, followed by an aerobic autolysis process, and excess denitrifying bacteria adhering to the granular media from the denitrification process are allowed to flow out together with the granular media. After transferring the denitrifying bacteria to an aerobic autolysis process and oxidizing and decomposing the denitrifying bacteria in the presence of air (oxygen) using the self-digestion ability of the denitrifying bacteria, the granular medium is transferred to the aerobic autolysis process to denitrify the denitrifying bacteria. Biological denitrification of wastewater characterized by its return to the process. 2. According to claim 1, the denitrification process involves causing excess denitrifying bacteria to flow out together with granular media from the denitrification process and transferring them to the aerobic autolysis process. wastewater denitrification method. 3. The wastewater denitrification method according to claim 1 or 2, wherein the granular medium transfer step is such that the granular medium is transferred and/or returned intermittently for a certain period of time. .
JP10041479A 1979-08-07 1979-08-07 Biological denitrifying method for waste water Granted JPS5626591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10041479A JPS5626591A (en) 1979-08-07 1979-08-07 Biological denitrifying method for waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10041479A JPS5626591A (en) 1979-08-07 1979-08-07 Biological denitrifying method for waste water

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP12980787A Division JPS6372397A (en) 1987-05-28 1987-05-28 Biological denitrification of waste water

Publications (2)

Publication Number Publication Date
JPS5626591A JPS5626591A (en) 1981-03-14
JPS631119B2 true JPS631119B2 (en) 1988-01-11

Family

ID=14273314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10041479A Granted JPS5626591A (en) 1979-08-07 1979-08-07 Biological denitrifying method for waste water

Country Status (1)

Country Link
JP (1) JPS5626591A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023485A (en) * 2006-07-24 2008-02-07 Japan Organo Co Ltd Biological denitrification method and apparatus therefor

Also Published As

Publication number Publication date
JPS5626591A (en) 1981-03-14

Similar Documents

Publication Publication Date Title
JP2000015288A (en) Waste water treatment method and apparatus
US4159945A (en) Method for denitrification of treated sewage
JPH11285696A (en) Device and method for sewage treatment
JPS60187396A (en) Apparatus for biologically removing nitrogen in waste water
JPH08238493A (en) Method for processing aqueous waste by means of biofilter using immobilized cultured bacteria or other device
KR100331898B1 (en) Advanced Treatment Process of Domestic Wastewater by Biological and Chemical
JPS6231637B2 (en)
KR100435107B1 (en) Advance Treatment Equipment and Process for Nitrogen and Phosphate Removal in Sewage and Wastewater
KR100911443B1 (en) System for treatment of wastewater and method for treatment of wastewater using the same
JPS631119B2 (en)
JP2007007620A (en) Method for treating nitrogen-containing liquid waste
JPH0839100A (en) Simultaneous treatment of kitchen waste water and garbage
SK282499B6 (en) Municipal waste-water treatment method
JPS5980398A (en) Biological waste water disposal
JPH047099A (en) Waste water treatment apparatus for simultaneously removing organic matter, nitrogen and phosphorus
JPS6354440B2 (en)
JP3819457B2 (en) Biological denitrification of wastewater
JPS59145098A (en) Plant for biological denitrification-dephosphorization of waste water
CN216890532U (en) System for treating harmless treatment wastewater of wet-process livestock and poultry production
KR100426660B1 (en) Device for water treatment improved the removal efficiency of t-n and t-p
KR100433096B1 (en) Equipment and Method of Nitrogen Removal with Down-flow Biofilm System using the Granule Sulfur
KR100504150B1 (en) Method for sewage and wastewater treatment using anaerobic batch reactor and hybrid sequencing batch reactor
JP2007044661A (en) Methane fermentation method
KR20170046244A (en) Sewage disposal system for small-scale village by biofilm process using fluidized bed media
JP3440643B2 (en) Wastewater treatment method