JPS6310912B2 - - Google Patents

Info

Publication number
JPS6310912B2
JPS6310912B2 JP54161198A JP16119879A JPS6310912B2 JP S6310912 B2 JPS6310912 B2 JP S6310912B2 JP 54161198 A JP54161198 A JP 54161198A JP 16119879 A JP16119879 A JP 16119879A JP S6310912 B2 JPS6310912 B2 JP S6310912B2
Authority
JP
Japan
Prior art keywords
displacement
plate
elastic modulus
piezoelectric
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54161198A
Other languages
Japanese (ja)
Other versions
JPS5683983A (en
Inventor
Susumu Nishigaki
Kanji Murano
Yoshihisa Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP16119879A priority Critical patent/JPS5683983A/en
Priority to CA000366256A priority patent/CA1165860A/en
Priority to US06/213,875 priority patent/US4363993A/en
Priority to NL8006692A priority patent/NL8006692A/en
Priority to DE19803046535 priority patent/DE3046535A1/en
Priority to GB8039714A priority patent/GB2066563B/en
Priority to FR8026472A priority patent/FR2472325B1/en
Publication of JPS5683983A publication Critical patent/JPS5683983A/en
Publication of JPS6310912B2 publication Critical patent/JPS6310912B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/04Gramophone pick-ups using a stylus; Recorders using a stylus
    • H04R17/08Gramophone pick-ups using a stylus; Recorders using a stylus signals being recorded or played back by vibration of a stylus in two orthogonal directions simultaneously

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、電気的信号を機械的変位に変換する
電気・機械変換素子、例えばバイモルフに係わ
る。 近時、磁気記録再生装置(VTR)において、
その記録密度をできるだけ上げるために、記録ト
ラツクの幅をできるだけ幅狭とする努力がなされ
ているが、このようにトラツク幅を狭くするもの
にあつては、これに伴つて、再生磁気ヘツドの記
録トラツクに対する位置関係には、より高い正確
さが要求される。そして、この位置関係を単に装
置の機械的精度に依存させることは、技術的に困
難であるか、或いは可成りのコスト高を招来する
ので、電気・機械変換素子を用い、これによつて
磁気ヘツドの記録トラツクに対する位置関係を、
常時、所定の関係に制御する方法が採られる。即
ち、磁気ヘツドを、電気・機械変換素子に機械的
に連結し、この素子に磁気ヘツドと記録トラツク
との位置関係の変化から生ずる再生信号の変化に
よる電気信号を与え、磁気ヘツドが、常時、記録
トラツクに対し正しい位置関係にあるように設定
する。 通常、このようなVTRのトラツキングサーボ
に用いられるバイモルフ素子は、低い電圧で大き
な変位置が得られる必要がある。特にトラツク幅
の広いVTRにおいては、数100〜600μm程度の大
きな変位量が要求される。 通常のバイモルフ素子は、第1図に示すよう
に、夫々両主面に電極1が被着された2枚の圧電
体板2が、これら圧電体板2間に介存させたシム
板と呼称される板状部材4に夫々接着剤3によつ
て接着されて積層されて成る。圧電体板2は、セ
ラミツク、或いは高分子、又はセラミツクと高分
子の複合材等の圧電材料から成り、シム板4は、
チタン、ステンレス、りん青銅等の金属が用いら
れ、接着剤3としては、導電性接着剤が用いられ
る。この構成において、両圧電体板2に、逆向き
の電界を与えるように夫々対向電極1間に電圧を
与えるときは、一方の圧電体板2が伸長し、他方
が収縮することによつて変位が生ずる。即ち、第
1図に示すように、バイモルフの一端を機械的に
固定、すなわちクランプするときは、他端が矢印
で示すように変位する。 ところが、このような通常のバイモルフでは左
程大きな変位量が得られない。 今、第2図に示すように両主面に電極1が被着
された圧電板2に、その両主面の電極1間に所要
の電圧を与えると、圧電板2は、これに与えられ
る電界の向きに応じて伸縮するが、、この伸縮は、
互に直交する方向x及びyに関して生ずるので、
この圧電板2の一方の面に上述したような、金属
板より成るシム板のように、その弾性率がx方向
とy方向とに関して同等の、すなわち等方性を有
する補強板4によつてx及びyの両方向に関して
機械的に固定、すなわちクランプさせると、第3
図に示すように、x及びyの両方向に関して「そ
り」を生ずることになる。したがつて、今、一方
向、例えばx方向に関するそりによる変位のみを
必要とする場合には、y方向に生ずるそりがむし
ろ構造的にx方向のそりの発生を阻害することに
なる。 また、第1図に説明した構造において、接着剤
3としては、一般に高分子系の接着剤を用いる
が、この接着剤の柔軟性によつて圧電体板2に対
する適度なクランプが阻害されて上述のそりの発
生が抑えられる。 本発明においては、上述したように、等方性の
伸縮や、接着剤による影響によつて、上述の電
気・機械変換素子において充分な変位量が得られ
ないことの究明に基いて、バイモルフ或いはモノ
モルフ等の電気・機械変換素子において、大きな
変位置を得ることができるようにするものであ
る。 更に、本発明においては、圧電体板に被着され
る電極が、その変位置とその経時変化に大きな影
響を及ぼすことを見出し、その構成を特定するこ
とによつて更に高い変位量とその経時変化が小さ
く信頼性にすぐれた電気・機械変換素子を提供す
るものである。 すなわち、本発明においては、少くとも両主面
に電極が被着された圧電体板よりなる第1の部材
と、補強ないしはクランプ効果を得る例えばシム
板としての板状の第2の部材とを積層合体して電
気・機械変換素子を構成するものであるが、特に
本発明においては、第2の部材として、弾性率が
異方性を有する部材より構成するものとし、互に
直交する第1及び第2の2方向x及びyに関し
て、その弾性率Ex及びEyがEx>Eyなる関係を有
し、且つ第1の部材の圧電体板の弾性率Eが第2
の部材の小なる方の弾性率より大なる弾性率を有
するすなわちE>Eyなる関係を有するようにし、
更に圧電体板の電極の厚さを0.1μm〜3μmに選定
する。 次に、本発明による電気・機械変換素子につい
て詳細に説明する。 第4図及び第5図を参照して本発明をバイモル
フに適用する場合の一例を説明する。 この例においては、両主面に夫々電極11が被
着された2枚の圧電体板、すなわち、第1の部材
12を設け、両者間に第2の部材13を介存させ
て積層合体する。 第1の部材12、すなわち圧電体板は、例えば
ジルコンチタン酸鉛のような圧電磁器板より構成
される。そして、この圧電磁器板の両主面に被着
される電極11は、ニツケルNi若しくは銅Cu等
の金属を無電解メツキするか、又はこれらニツケ
ル若しくは銅等の無電解メツキ層上に、更に電気
抵抗を下げるとか、耐蝕性を得るなどの目的をも
つて必要に応じて金Au、銀Agを電気メツキする
ことによつて構成するか更に、或いは各種金属、
例えばAu、Ag、Ni、Cu、Cr(クロム)等を蒸着
することによつて構成する。いずれの場合も、各
電極11の夫々の全厚さが0.1μm〜3μmとなるよ
うに選定する。 第2の部材13、すなわち圧電体板間に介存す
るクランプ或いは補強の効果を有するシム板とし
ては、特に弾性率に異方性を有する材料より構成
する。この部材13としては、例えば一方向に沿
つて延長するようなカーボン繊維層に、例えばエ
ポキシ接着を含浸させたカーボン繊維シートを用
い得る。このカーボン繊維シートは、カーボン繊
維の延長方向に関して最大の弾性率を示し、これ
と直交する方向に最小の弾性率を示す。そして、
このカーボン繊維シートによつてバイモルフを構
成するときは、その変位量を得るに寄与する方向
の伸縮が要求される方向、図示の例ではx方向
に、最大の弾性率を示す方向、すなわち、カーボ
ン繊維の延長方向が沿うように配置する。 次に、本発明を実施例について説明する。 実施例 1 第1の部材12、すなわち圧電体板として、厚
さ250μmのジルコンチタン酸鉛(PZT)系の圧
電磁器より成る圧電体板2を用意し、その両主面
に夫々Auを1μmの厚さに蒸着して電極11を形
成する。一方、直径10μmのカーボンフアイバー
15をほぼ一方向に沿つて素子の一端から他端に
まで延長するように配列し、これにエポキシ系接
着剤16を含浸させて成る厚さ100μmのカーボ
ンフアイバーシートを用意し、これをシム板13
として、前述の2枚の圧電体板12間に挾み込
む。この状態で120℃〜130℃で3時間の加熱圧着
を行つて接着剤の硬化を行つて25mm×25mmのバイ
モルフを作る。このバイモルフのシム板13の繊
維の延長方向をx方向としてこれと直交し、バイ
モルフの板面方向に沿う方向をy方向として、x
方向の一端を5mmの幅に亘つて固定してその遊端
のy方向の中央から両側夫々10mmに亘るすなわち
20mmの範囲の各位置での、バイモルフの板面方向
と直交する方向の変位量を測定した結果を第6図
中曲線24に示す。また、y方向に関する一端を
同様に5mmの幅に亘つて固定してその遊端のx方
向の中央から両側夫々10mmに亘るすなわち20mmの
範囲の各位置での、バイモルフの板面方向と直交
する方向の変位量を測定した結果を第6図中曲線
25に示す。これら曲線24及び25を比較する
ことによつて明らかなようにカーボンフアイバー
の延長方向に沿うx方向に関する一端を固定した
場合の変位量(以下x方向に関する変位量とい
う)は、y方向に関する一端を固定した場合の変
位量(以下y方向に関する変位量という)に比
し、中央位置で約2.5倍、両端位置で約1.8倍の大
きな変位量、すなわち高い感度を示す。このよう
にy方向に関する変位量がx方向のそれより低い
のはシム板13のy方向がカーボンフアイバーの
並置方向であるがために、この方向の弾性率が低
く、圧電体板12に圧電効果、或いは電歪効果に
よる伸縮が生じた場合、このy方向に関しては、
圧電体板12の伸縮に伴つてシム板13が或る程
度伸縮してしまつてクランプ効果が小さくなり、
この方向に関して圧電体板12にそりが生じにく
くなつて大きな変位量が得られなくなるものと思
われる。これに比し、x方向に関しては、この方
向がシム板13のカーボンフアイバーの長手方向
に沿う方向であつてその弾性率が大きいので圧電
体板12に対するクランプ効果は大きく、したが
つて大きな変位量が得られ、その上、上述したy
方向のそりの発生が抑えられることによつて、x
方向に関するそりが生じ易くなり、より大きな変
位量が得られる。そして、曲線24を25と比較
してみると、曲線24の場合、曲線25に比し、
中央部での変位量の低下が小さい。これはx及び
y方向のそりの発生は、特に夫々の中央におい
て、他の方向のy及びx方向のそりによつて抑止
され易いが、上述したようにこのバイモルフで
は、y方向に関するそりが生じにくくなつている
ために、x方向に関するそりが中央部でも大きく
得られ、中央部での変位量の低下が回避されるも
のと思われる。 また、上述した例のように、シム板13として
カーボンフアイバーのような繊維に接着剤を含浸
させて圧電体板12間に介存させて圧着硬化を行
つて得たバイモルフは、第7図にその要部の拡大
断面図を示すように、その繊維15が接着剤16
によつて、接合されるがこの場合、繊維15が殆
んど直接的に電極11を有する圧電体板12に接
して接合されるので、両者間には、比較的柔軟性
に富み、ずれの生じ易い接着剤16が殆んど介存
されないか極く薄く介存されるに過ぎないのでこ
の接着剤16によるクランプ効果が阻害されるを
回避できる。 次に、本発明の特徴を明確にするために、弾性
率に異方性のないシム板を用いる場合を比較例と
して説明する。 比較例 1 実施例1で説明したバイモルフにおいて、圧電
体板12として、圧電磁器に代えてポリ弗化ビニ
リデンと圧電セラミツク粉末の複合材より成るい
わゆる高分子圧電体板を用いたバイモルフを作成
した。この比較例によるバイモルフの変位量を、
前述の実施例1によるバイモルフに対する変位量
の測定方法と同様の測定方法によつてx方向に関
する変位量と、y方向に関する変位量の測定結果
は、夫々第8図中曲線17及び18に示す。これ
ら曲線17及び18から明らかなように、x方向
に関する変位量と、y方向に関する変位量とには
殆んど差が生じていない。すなわち、この比較例
ではシム板として、弾性率が異方性を有し、x方
向の弾性率が、y方向の弾性率より大なるものを
用いるにもかかわらず、x及びy方向に関する変
位量には差が生じない。これは、この比較例によ
るバイモルフにおける圧電体板が高分子圧電体板
より成り、これの弾性率がシム板の弾性率の小さ
い値を示すy方向の弾性率より更に小さいがため
に、クランプの効果が強過ぎるためと思われる。
そして、ここに、本発明においては、圧電体板1
2(第1の部材)の弾性率Eがシム板(第2の部
材)のy方向の弾性率Eyより大となる関係を保
持するように第1及び第2の部材の弾性率を選定
する所以がある。 因みに、実施例1における圧電磁器の弾性率
は、5〜10×105Kg/cm2、例えば7×105Kg/cm2でカ
ーボンフアイバーシートの繊維方向のそれは13.5
×105Kg/cm2、これと直交する方向のそれは1.0×
105Kg/cm2で、比較例1における高分子圧電体のそ
れは2.6×104Kg/cm2である。また従来のシム板の
Tiは10×105Kg/cm2である。 尚、実施例1においては、シム板13として、
x方向に最大の弾性率を有し、y方向に最小の弾
性率を有する配置をとつた場合であるがシム板1
3の繊維の延長方向をx方向と一致させずに或る
程度の角度を保有させるようにすることもでき
る。今、実施例1においてシム板13のカーボン
繊維の延長方向と、x方向のなす角度θを0゜から
5゜づつ変化させて得た各バイモルフのx方向に関
する変位量を測定したところ第9図中曲線37に
示す結果が得られた。第9図において破線aで示
す変位量は、従来のように、バイモルフのシム板
として金属板を用いた場合の値で、この値は角度
θが45゜の場合にほぼ相当する。すなわち、角度
θを45゜以下に選定するとき、シム板の弾性率の
異方性が生じ、これによる感度上昇の効果が生ず
る。因みに、表1に実施例1で説明したシム板1
3としのカーボンフアイバーシートにおいて、そ
の繊維の方向とx方向とのなす角度θを変化させ
た場合のx方向の弾性率Exの測定結果と、これ
とy方向の弾性率Eyとの比を示す。
The present invention relates to an electro-mechanical conversion element, such as a bimorph, that converts an electrical signal into a mechanical displacement. Recently, in magnetic recording and reproducing devices (VTR),
In order to increase the recording density as much as possible, efforts are being made to make the recording track width as narrow as possible. Higher accuracy is required for positional relationship to the track. Since it would be technically difficult to simply make this positional relationship depend on the mechanical precision of the device or would result in a considerable increase in cost, an electro-mechanical transducer was used, and thereby the magnetic The positional relationship of the head to the recording track is
A method is adopted that always maintains a predetermined relationship. That is, the magnetic head is mechanically connected to an electromechanical transducer element, and an electric signal is applied to this element due to a change in the reproduction signal caused by a change in the positional relationship between the magnetic head and the recording track, so that the magnetic head always Set it so that it is in the correct position relative to the recording track. Normally, the bimorph element used in the tracking servo of such a VTR needs to be able to achieve a large displacement with a low voltage. Particularly in VTRs with wide track widths, a large displacement amount of several 100 to 600 μm is required. As shown in Fig. 1, a normal bimorph element has two piezoelectric plates 2 each having an electrode 1 adhered to its main surface, and is called a shim plate interposed between these piezoelectric plates 2. They are laminated and bonded to plate-like members 4 with adhesive 3, respectively. The piezoelectric plate 2 is made of a piezoelectric material such as ceramic, polymer, or a composite material of ceramic and polymer, and the shim plate 4 is
A metal such as titanium, stainless steel, or phosphor bronze is used, and the adhesive 3 is a conductive adhesive. In this configuration, when a voltage is applied between the opposing electrodes 1 to give opposite electric fields to both piezoelectric plates 2, one piezoelectric plate 2 expands and the other contracts, causing displacement. occurs. That is, as shown in FIG. 1, when one end of the bimorph is mechanically fixed, that is, clamped, the other end is displaced as shown by the arrow. However, such a normal bimorph cannot obtain such a large amount of displacement. Now, as shown in FIG. 2, if a required voltage is applied between the electrodes 1 on both main surfaces of the piezoelectric plate 2, which has electrodes 1 adhered to both main surfaces, the piezoelectric plate 2 It expands and contracts depending on the direction of the electric field, but this expansion and contraction is
This occurs in mutually orthogonal directions x and y, so
One surface of the piezoelectric plate 2 is provided with a reinforcing plate 4 whose elastic modulus is the same in the x direction and the y direction, that is, is isotropic, such as a shim plate made of a metal plate as described above. When mechanically fixed or clamped in both the x and y directions, the third
As shown in the figure, this results in "warping" in both the x and y directions. Therefore, if only displacement due to warpage in one direction, for example the x direction, is required, the warpage that occurs in the y direction will rather structurally inhibit the occurrence of warp in the x direction. Furthermore, in the structure illustrated in FIG. 1, a polymer adhesive is generally used as the adhesive 3, but the flexibility of this adhesive hinders proper clamping of the piezoelectric plate 2, as described above. The occurrence of warpage is suppressed. In the present invention, as described above, based on the investigation that a sufficient amount of displacement cannot be obtained in the above-mentioned electro-mechanical transducer due to isotropic expansion and contraction and the influence of adhesive, bimorph or This makes it possible to obtain large displacements in electromechanical transducers such as monomorphs. Furthermore, in the present invention, it has been discovered that the electrode attached to the piezoelectric plate has a large effect on its displacement and its change over time, and by specifying its configuration, it is possible to obtain an even higher amount of displacement and its change over time. The present invention provides an electromechanical transducer that exhibits small changes and is highly reliable. That is, in the present invention, a first member is made of a piezoelectric plate having electrodes adhered to at least both principal surfaces, and a plate-shaped second member, for example, a shim plate, which provides a reinforcing or clamping effect. The electromechanical transducer is constructed by laminating and combining them, and in particular in the present invention, the second member is constructed of a member having anisotropic elastic modulus, and the first member is orthogonal to each other. And regarding the second two directions x and y, the elastic moduli E x and E y have the relationship E x >E y , and the elastic modulus E of the piezoelectric plate of the first member is the second
has an elastic modulus greater than the smaller elastic modulus of the member, that is, has the relationship E>E y ,
Furthermore, the thickness of the electrode of the piezoelectric plate is selected to be 0.1 μm to 3 μm. Next, the electro-mechanical conversion element according to the present invention will be explained in detail. An example of applying the present invention to a bimorph will be described with reference to FIGS. 4 and 5. In this example, two piezoelectric plates, that is, a first member 12, each having an electrode 11 adhered to each main surface are provided, and the second member 13 is interposed between the two piezoelectric plates to be laminated together. . The first member 12, that is, the piezoelectric plate, is composed of a piezoelectric ceramic plate made of, for example, lead zirconium titanate. The electrodes 11 to be adhered to both main surfaces of the piezoelectric ceramic plate are formed by electroless plating of a metal such as nickel (Ni) or copper (Cu), or by electroless plating of a metal such as nickel (Ni) or copper (Cu), or by further electroless plating on the electroless plating layer of nickel or copper. For the purpose of lowering resistance or obtaining corrosion resistance, it may be constructed by electroplating gold Au, silver Ag, or various metals, as necessary.
For example, it is constructed by depositing Au, Ag, Ni, Cu, Cr (chromium), etc. In either case, the total thickness of each electrode 11 is selected to be 0.1 μm to 3 μm. The second member 13, that is, the shim plate interposed between the piezoelectric plates and having a clamping or reinforcing effect, is made of a material particularly having anisotropy in elastic modulus. As this member 13, for example, a carbon fiber sheet can be used, in which a carbon fiber layer extending in one direction is impregnated with, for example, epoxy adhesive. This carbon fiber sheet exhibits a maximum elastic modulus in the direction in which the carbon fibers extend, and a minimum elastic modulus in a direction perpendicular to this direction. and,
When constructing a bimorph with this carbon fiber sheet, the direction in which expansion and contraction is required to contribute to obtaining the amount of displacement, in the illustrated example, the x direction, and the direction showing the maximum elastic modulus, that is, the carbon Arrange so that the fibers extend in the same direction. Next, the present invention will be described with reference to examples. Example 1 A piezoelectric plate 2 made of lead zirconate titanate (PZT) piezoelectric ceramic with a thickness of 250 μm is prepared as the first member 12, that is, a piezoelectric plate, and a 1 μm thick layer of Au is coated on each of its main surfaces. The electrode 11 is formed by vapor deposition to a certain thickness. On the other hand, a carbon fiber sheet with a thickness of 100 μm is made by arranging carbon fibers 15 with a diameter of 10 μm so as to extend from one end of the element to the other end along approximately one direction, and impregnating this with an epoxy adhesive 16. Prepare and attach this to shim board 13
As such, it is sandwiched between the two piezoelectric plates 12 described above. In this state, heat and pressure bonding is performed at 120°C to 130°C for 3 hours to harden the adhesive and create a 25mm x 25mm bimorph. The direction in which the fibers of the bimorph shim plate 13 extend is defined as the x direction, which is perpendicular to this, and the direction along the plate surface direction of the bimorph is defined as the y direction.
One end in the direction is fixed over a width of 5 mm, and the width is 10 mm on each side from the center of the free end in the y direction.
Curve 24 in FIG. 6 shows the results of measuring the amount of displacement in the direction perpendicular to the plate surface direction of the bimorph at each position within a range of 20 mm. In addition, one end in the y direction is similarly fixed over a width of 5 mm, and the free end is perpendicular to the plate surface direction of the bimorph at each position within a range of 10 mm on both sides from the center in the x direction, that is, 20 mm. The results of measuring the amount of displacement in the direction are shown in curve 25 in FIG. As is clear from comparing these curves 24 and 25, the amount of displacement when one end in the x direction along the extension direction of the carbon fiber is fixed (hereinafter referred to as the amount of displacement in the x direction) is the same as the amount of displacement when one end in the y direction is fixed. Compared to the amount of displacement when fixed (hereinafter referred to as the amount of displacement in the y direction), the amount of displacement is approximately 2.5 times greater at the center position and approximately 1.8 times greater at both end positions, that is, exhibits high sensitivity. The reason why the displacement amount in the y direction is lower than that in the x direction is because the y direction of the shim plate 13 is the direction in which the carbon fibers are juxtaposed, so the elastic modulus in this direction is low, and the piezoelectric plate 12 has a piezoelectric effect. , or when expansion and contraction occurs due to the electrostrictive effect, regarding this y direction,
As the piezoelectric plate 12 expands and contracts, the shim plate 13 expands and contracts to a certain extent, reducing the clamping effect.
It is thought that the piezoelectric plate 12 is less likely to warp in this direction, making it impossible to obtain a large amount of displacement. In contrast, in the x direction, since this direction is along the longitudinal direction of the carbon fibers of the shim plate 13 and has a large elastic modulus, the clamping effect on the piezoelectric plate 12 is large, and therefore a large displacement amount is generated. is obtained, and in addition, the above-mentioned y
By suppressing the occurrence of warpage in the x direction,
Warpage in the direction is more likely to occur, and a larger amount of displacement can be obtained. Then, when comparing curve 24 with curve 25, in the case of curve 24, compared to curve 25,
The drop in displacement at the center is small. This is because the occurrence of warpage in the x and y directions is likely to be suppressed by warpage in the other directions, especially in the respective centers, but as mentioned above, in this bimorph, warpage in the y direction occurs. It is thought that because of this, a large warp in the x direction is obtained even at the center, and a decrease in the amount of displacement at the center is avoided. In addition, as in the above-mentioned example, a bimorph obtained by impregnating a fiber such as carbon fiber with adhesive as the shim plate 13, interposing it between the piezoelectric plates 12, and performing pressure hardening is shown in FIG. As shown in the enlarged cross-sectional view of the main part, the fibers 15 are bonded to the adhesive 16.
In this case, the fibers 15 are joined almost directly to the piezoelectric plate 12 having the electrodes 11, so there is a relatively high degree of flexibility between the two and there is no misalignment. Since the adhesive 16, which tends to form easily, is hardly present or is only present very thinly, the clamping effect of the adhesive 16 can be prevented from being inhibited. Next, in order to clarify the features of the present invention, a case where a shim plate having no anisotropy in elastic modulus is used will be described as a comparative example. Comparative Example 1 In the bimorph described in Example 1, a so-called polymer piezoelectric plate made of a composite material of polyvinylidene fluoride and piezoelectric ceramic powder was used as the piezoelectric plate 12 instead of the piezoelectric ceramic. The amount of displacement of the bimorph according to this comparative example is
The results of measuring the amount of displacement in the x direction and the amount of displacement in the y direction by a measuring method similar to the method of measuring the amount of displacement for the bimorph according to Example 1 described above are shown in curves 17 and 18 in FIG. 8, respectively. As is clear from these curves 17 and 18, there is almost no difference between the amount of displacement in the x direction and the amount of displacement in the y direction. That is, in this comparative example, although a shim plate having an anisotropic elastic modulus and a larger elastic modulus in the x direction than the elastic modulus in the y direction is used as the shim plate, the amount of displacement in the x and y directions is There is no difference. This is because the piezoelectric plate in the bimorph according to this comparative example is made of a polymeric piezoelectric plate, and its elastic modulus is even smaller than the elastic modulus in the y direction, which indicates a small value of the elastic modulus of the shim plate. This seems to be because the effect is too strong.
Here, in the present invention, the piezoelectric plate 1
The elastic modulus of the first and second members is selected so that the elastic modulus E of the shim plate (second member) is larger than the elastic modulus E of the shim plate (second member) in the y direction. There is a reason to do so. Incidentally, the elastic modulus of the piezoelectric ceramic in Example 1 is 5 to 10×10 5 Kg/cm 2 , for example 7×10 5 Kg/cm 2 , and that of the carbon fiber sheet in the fiber direction is 13.5.
×10 5 Kg/cm 2 , and that in the direction perpendicular to this is 1.0 ×
10 5 Kg/cm 2 , and that of the polymer piezoelectric material in Comparative Example 1 is 2.6×10 4 Kg/cm 2 . Also, the conventional shim plate
Ti is 10×10 5 Kg/cm 2 . In addition, in Example 1, as the shim plate 13,
This is a case where the shim plate 1 has the maximum elastic modulus in the x direction and the minimum elastic modulus in the y direction.
It is also possible to make the extension direction of the fibers of No. 3 not coincident with the x direction but at a certain angle. Now, in Example 1, the angle θ between the extension direction of the carbon fibers of the shim plate 13 and the x direction is changed from 0°.
When the displacement in the x direction of each bimorph obtained by changing the angle by 5 degrees was measured, the results shown by curve 37 in FIG. 9 were obtained. The amount of displacement indicated by the broken line a in FIG. 9 is the value when a metal plate is used as the shim plate of the bimorph as in the conventional case, and this value approximately corresponds to the case where the angle θ is 45°. That is, when the angle θ is selected to be 45° or less, anisotropy in the elastic modulus of the shim plate occurs, thereby producing the effect of increasing sensitivity. Incidentally, Table 1 shows the shim plate 1 explained in Example 1.
Measurement results of the elastic modulus E x in the x direction and the ratio of this to the elastic modulus E y in the y direction when the angle θ between the fiber direction and the x direction is changed in the carbon fiber sheet No. 3 shows.

【表】【table】

【表】 また上述したように、弾性率に異方性を有する
第2の部材13として、カーボンフアイバーのよ
うな繊維配列によるシートを用いる場合、その繊
維の延長方向は上述したように角度θを0゜〜45゜
をもつて一方向に配列する場合に限られるもので
はなく、例えば第10図に細線をもつて示すよう
にx方向に角度+θをもつてカーボンフアイバー
のような繊維15を配列したシートと、同様に細
線をもつて示すようにy方向に角度−θをもつて
カーボンフアイバーのような繊維15を配列した
シートとを積層合体するか渾然一体に構成するこ
ともできるし、更に或る場合は、y方向の補強の
ために、例えば両シート間にθ=90゜をもつて図
示しないが同様の繊維を配列したシートを介存さ
せて積層合体するか全体として渾然一体に構成す
ることもできる。 更に、また本発明においては、上述したよう
に、圧電体板12への電極11の厚さを0.1μm〜
3μmに選定するものであるが、次にこの電極1
1の厚さについてみる。 実施例 2 厚さ200μmのジルコンチタン酸鉛系の圧電磁
器より成る圧電体板2を2枚設け、その夫々の両
主面の全面に、Niを1μmの厚さに無電解メツキ
し、その上に夫々Auを0.1μmの厚さに電気メツ
キして電極11を構成する。両圧電体2間に厚さ
170μmのカーボンフアイバーをエポキシ系接着
剤を含浸させた状態で挾み込み、加熱圧着して全
体の厚さが580μmの第11図に示すバイモルフ
19を構成する。このバイモルフ19は、第11
図に示すようにカーボンフアイバーの延長方向に
沿う長さLを27mmとし、その一端側を第12図に
示すように、固定台20上に、ホルダー21をも
つて長さls=9mmをもつて固定し、他端側を長さ
l=18mmだけ変位自在に支持する。固定端側の幅
Wsは26mmに選定し、遊端側は先端に向つて幅狭
となして先端の幅wは4mmに選定する。このよう
な構成のサンプルを5個作成した。これらを試料
1〜5とした。 比較例 2 実施例1と同様の構成において圧電体板に対す
る電極を、銀ペイントの焼付けによつて構成した
厚さ8mmの銀電極とし、この構成のものを5個作
成した。これらを試料6〜10とした。 これら試料1〜10のバイモルフにピーク・ト
ウ・ピークの電圧Vppが200Vの周波数60Hzの電
圧を与えたときの先端における振れを測定した結
果を表2に示す。
[Table] Furthermore, as described above, when a sheet made of fiber arrangement such as carbon fiber is used as the second member 13 having anisotropy in elastic modulus, the extending direction of the fibers is set at an angle θ as described above. The fibers 15, such as carbon fibers, are not limited to being arranged in one direction at an angle of 0° to 45°; for example, as shown by the thin line in FIG. It is also possible to laminate or combine a sheet with a sheet in which fibers 15 such as carbon fibers are arranged at an angle -θ in the y direction as shown by a thin line, or to form an integrated structure. In some cases, for reinforcement in the y direction, for example, both sheets may be laminated together with sheets arranged with similar fibers interposed (not shown) with θ = 90° between them, or they may be constructed as a whole in a harmonious manner. You can also. Furthermore, in the present invention, as described above, the thickness of the electrode 11 on the piezoelectric plate 12 is set to 0.1 μm to 0.1 μm.
This electrode is selected to have a diameter of 3 μm.
Let's look at the thickness of 1. Example 2 Two piezoelectric plates 2 made of zirconate lead titanate-based piezoelectric ceramic having a thickness of 200 μm were provided, and Ni was electrolessly plated to a thickness of 1 μm on both main surfaces of each plate. The electrodes 11 are formed by electroplating Au to a thickness of 0.1 μm. Thickness between both piezoelectric bodies
Carbon fibers of 170 .mu.m impregnated with epoxy adhesive were sandwiched together and bonded under heat to form a bimorph 19 shown in FIG. 11 having a total thickness of 580 .mu.m. This bimorph 19 is the 11th
As shown in the figure, the length L along the extending direction of the carbon fiber is 27 mm, and one end of the carbon fiber is placed on a fixed base 20 with a holder 21 having a length l s =9 mm, as shown in Figure 12. The other end is supported so that it can be freely displaced by a length l = 18 mm. Fixed end width
W s is selected to be 26 mm, and the free end side is made narrower toward the tip, and the width w of the tip is selected to be 4 mm. Five samples with such a configuration were created. These were designated as samples 1 to 5. Comparative Example 2 In the same structure as in Example 1, the electrodes for the piezoelectric plate were silver electrodes with a thickness of 8 mm formed by baking silver paint, and five pieces of this structure were produced. These were designated as samples 6 to 10. Table 2 shows the results of measuring the deflection at the tip when a voltage with a peak-to-peak voltage Vpp of 200 V and a frequency of 60 Hz was applied to the bimorphs of Samples 1 to 10.

【表】 これより明らかなように、本発明によるもの
は、同一電圧で大きな振れ、すなわち大きな変位
量を得ることができ、前述したように弾性率に異
方性を有するシム板を用いることによつて大きな
変位量を得ることができるものであるが、更に電
極が大きな影響を与えていることが判る。 第13図中曲線30は、実施例2の構成におい
て、その電極を無電解メツキによるNiによつて
構成した場合の、厚みと感度(変位量)の関係を
測定したものであつて、従来一般の電極の厚さ
8μmに対しての相対値として示した。また同図
中曲線31は、ピーク・トウ・ピークのふれが
500μmとなるような電圧(周波数60Hz)を与え
て500時間連続動作させて後の変位量の変化を測
定したものである。これら曲線30及び31より
明らかなように、電極11の厚さが大となるにつ
れ、感度が低下してくるが、これは電極11が厚
くなると、圧電板の伸縮が電極によるクランプに
よつて阻害されてくることに因ると思われ、また
電極の厚さが薄くなると、特に0.1μm未満では変
位量の変化率が顕著となるが、これは圧電体板の
繰返えし撓曲による電極の疲労が激しくなつて圧
電体板の全域において所要の電圧が与えられなく
なつてくることに因るものと思われる。そこで、
電極の厚さは、従来に比し十分高い感度を得るた
めに3μm以下とし、変化率を低くするために0.1μ
m以上に選定するものであり、ここに、本発明に
おける電極の厚さの特定の所以がある。 以上したように本発明構成によれば、大きな変
位量を得ることができるので、冒頭に述べたよう
に、例えばVTRにおける磁気ヘツドのトラツキ
ングサーボに用いて好適であり、同一変位量に対
しては、低電圧駆動を可能にするものである。 また、上述した例のように、第2の部材、すな
わちシム板としてカーボンフアイバーのような繊
維に、接着剤を含浸させたシートを用いるとき
は、従来のように接着剤を塗布する工程が不要と
なるので、製造工程の簡略化、ひいては価格の低
廉化をはかることができる。また、変位量を得る
に供しないy方向に関する変位はこれを抑えるよ
うにしたので、大振幅動作時の亀裂の発生を回避
できる効果もある。 尚、上述した例では、主として2枚の圧電体板
が積層されて成るバイモルフに本発明を適用する
場合について説明したが、モノモルフを始めとし
て種々の構成を採る電気・機械変換素子に本発明
を適用できることは明らかであろう。
[Table] As is clear from this, the device according to the present invention can obtain a large swing, that is, a large amount of displacement with the same voltage, and as mentioned above, it is possible to obtain a large amount of displacement by using a shim plate having anisotropy in the elastic modulus. Therefore, it is possible to obtain a large amount of displacement, but it can be seen that the electrodes have a large influence. Curve 30 in FIG. 13 is a curve 30 obtained by measuring the relationship between thickness and sensitivity (displacement) when the electrode is made of electroless plated Ni in the configuration of Example 2. electrode thickness
It is shown as a relative value to 8 μm. In addition, curve 31 in the same figure shows the peak-to-peak fluctuation.
A voltage (frequency: 60 Hz) was applied to give a voltage of 500 μm, and the change in displacement was measured after continuous operation for 500 hours. As is clear from these curves 30 and 31, as the thickness of the electrode 11 increases, the sensitivity decreases. This is because as the electrode 11 becomes thicker, the expansion and contraction of the piezoelectric plate is inhibited by the clamping by the electrode. Furthermore, as the electrode thickness becomes thinner, the rate of change in displacement becomes remarkable, especially when the electrode thickness is less than 0.1 μm. This is thought to be due to the fact that the piezoelectric plate becomes increasingly fatigued and the required voltage cannot be applied to the entire area of the piezoelectric plate. Therefore,
The thickness of the electrode is 3 μm or less to obtain sufficiently high sensitivity compared to conventional methods, and 0.1 μm to reduce the rate of change.
m or more, and this is the reason why the thickness of the electrode is specified in the present invention. As described above, according to the configuration of the present invention, a large amount of displacement can be obtained, so as mentioned at the beginning, it is suitable for use in a tracking servo of a magnetic head in a VTR, for example, and for the same amount of displacement. This enables low voltage driving. In addition, as in the above example, when a sheet made of carbon fiber or other fibers impregnated with adhesive is used as the second member, that is, the shim plate, the conventional process of applying adhesive is unnecessary. Therefore, the manufacturing process can be simplified and the price can be reduced. Further, since the displacement in the y direction, which is not used to obtain the amount of displacement, is suppressed, it is possible to avoid the occurrence of cracks during large amplitude operation. In the above example, the present invention was mainly applied to a bimorph formed by laminating two piezoelectric plates, but the present invention can also be applied to electromechanical transducers having various configurations including a monomorph. It is obvious that it can be applied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のバイモルフの拡大断面図、第2
図及び第3図はその説明図、第4図は本発明によ
る電気・機械変換素子の一例の拡大断面図、第5
図はその要部の一部を切り欠いた拡大斜視図、第
6図はその変位量の測定結果を示す図、第7図は
本発明素子の更に要部の拡大断面図、第8図は本
発明に対する比較例の変位量の測定結果を示す
図、第9図は本発明の説明に供する第2の部材の
繊維の方向と変位量の関係の測定結果を示す図、
第10図は、本発明素子の他の例の第2の部材の
拡大平面図、第11図は本発明素子の上面図、第
12図はその支持状態の側面図、第13図は電極
の厚さと感度及び変位量の変化率との関係の測定
曲線図である。 12は圧電体板、すなわち第1の部材、11は
その電極、13はシム板ないしは補強板、すなわ
ち第2の部材である。
Figure 1 is an enlarged cross-sectional view of a conventional bimorph;
3 and 3 are explanatory diagrams thereof, FIG. 4 is an enlarged sectional view of an example of the electromechanical conversion element according to the present invention, and FIG.
The figure is an enlarged perspective view with a part of the main part cut away, Fig. 6 is a view showing the measurement results of the displacement amount, Fig. 7 is an enlarged sectional view of the main part of the element of the present invention, and Fig. 8 is FIG. 9 is a diagram showing the measurement results of the displacement amount of a comparative example with respect to the present invention, and FIG.
FIG. 10 is an enlarged plan view of the second member of another example of the device of the invention, FIG. 11 is a top view of the device of the invention, FIG. 12 is a side view of the device in its supported state, and FIG. 13 is an electrode FIG. 3 is a measurement curve diagram of the relationship between thickness and rate of change in sensitivity and displacement amount. 12 is a piezoelectric plate, that is, a first member; 11 is an electrode thereof; and 13 is a shim plate or a reinforcing plate, that is, a second member.

Claims (1)

【特許請求の範囲】[Claims] 1 両主面に電極が被着された圧電体板よりなる
第1の部材と、該第1の部材の一主面に固着され
た第2の部材とより成り、該第2の部材は、第1
の方向の弾性率が該第1の方向に直交する第2の
方向の弾性率より大きく、且つ上記第1の部材の
弾性率が上記第2の部材の上記第2の方向の弾性
率より大きく選ばれ上記電極の厚さが0.1μm〜3μ
mに選ばれた電気・機械変換素子。
1. Consists of a first member made of a piezoelectric plate with electrodes adhered to both main surfaces, and a second member fixed to one main surface of the first member, the second member comprising: 1st
the elastic modulus in the direction is greater than the elastic modulus in the second direction perpendicular to the first direction, and the elastic modulus of the first member is greater than the elastic modulus of the second member in the second direction. The thickness of the selected electrode is 0.1μm to 3μm.
Electrical/mechanical conversion element selected as m.
JP16119879A 1979-12-12 1979-12-12 Electricity-machinery conversion element Granted JPS5683983A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP16119879A JPS5683983A (en) 1979-12-12 1979-12-12 Electricity-machinery conversion element
CA000366256A CA1165860A (en) 1979-12-12 1980-12-05 Piezoelectric electro-mechanical bimorph transducer
US06/213,875 US4363993A (en) 1979-12-12 1980-12-08 Piezoelectric electro-mechanical bimorph transducer
NL8006692A NL8006692A (en) 1979-12-12 1980-12-09 ELECTROMECHANICAL TRANSDUCENT.
DE19803046535 DE3046535A1 (en) 1979-12-12 1980-12-10 ELECTROMECHANICAL CONVERTER
GB8039714A GB2066563B (en) 1979-12-12 1980-12-11 Electromechanical transducers
FR8026472A FR2472325B1 (en) 1979-12-12 1980-12-12 ELECTROMECHANICAL TRANSDUCER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16119879A JPS5683983A (en) 1979-12-12 1979-12-12 Electricity-machinery conversion element

Publications (2)

Publication Number Publication Date
JPS5683983A JPS5683983A (en) 1981-07-08
JPS6310912B2 true JPS6310912B2 (en) 1988-03-10

Family

ID=15730444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16119879A Granted JPS5683983A (en) 1979-12-12 1979-12-12 Electricity-machinery conversion element

Country Status (1)

Country Link
JP (1) JPS5683983A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022084A1 (en) * 2004-08-24 2006-03-02 Taiheiyo Cement Corporation Piezoelectric device and piezoelectric switch employing same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2739043B2 (en) * 1988-04-06 1998-04-08 三菱電機株式会社 Optical disk recording and playback device
JPH02164284A (en) * 1988-04-12 1990-06-25 Tomio Kotaki Ultrasonic actuator
JP3405618B2 (en) * 1995-04-11 2003-05-12 松下電器産業株式会社 Bimorph piezoelectric actuator
DK1019972T3 (en) * 1997-09-30 2007-03-12 Argillon Gmbh Piezoelectric element
WO2006025138A1 (en) * 2004-08-30 2006-03-09 Murata Manufacturing Co., Ltd. Piezoelectric electroacoustic transducer
JP5776270B2 (en) * 2011-03-29 2015-09-09 セイコーエプソン株式会社 Piezoelectric actuators, motors, robot hands and robots

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022084A1 (en) * 2004-08-24 2006-03-02 Taiheiyo Cement Corporation Piezoelectric device and piezoelectric switch employing same
US7535155B2 (en) 2004-08-24 2009-05-19 Taiheiyo Cement Corporation Piezoelectric device and piezoelectric switch provided with the same

Also Published As

Publication number Publication date
JPS5683983A (en) 1981-07-08

Similar Documents

Publication Publication Date Title
US4363993A (en) Piezoelectric electro-mechanical bimorph transducer
JPS6048112B2 (en) Electrical/mechanical conversion element
JP3675315B2 (en) Head gimbal assembly having an actuator for minute positioning of a head element and disk apparatus having the head gimbal assembly
US6724127B2 (en) Piezoelectric/electrostrictive device
US4374402A (en) Piezoelectric transducer mounting structure and associated techniques
US7099115B2 (en) Head gimbal assembly with precise positioning actuator for head element, disk drive apparatus with the head gimbal assembly, and manufacturing method of the head gimbal assembly
JP4075475B2 (en) Head gimbal assembly having an actuator for minute positioning of a head element and disk apparatus having the head gimbal assembly
US6934127B2 (en) Precise positioning actuator for head element, head gimbal assembly with the actuator and disk drive apparatus with the head gimbal assembly
JP2002133803A (en) Very small positioning actuator for head element, head gimbal assembly equipped with the actuator, disk device equipped with the head gimbal assembly, actuator manufacturing method, and head gimbal assembly manufacturing method
US7242132B2 (en) Piezoelectric actuator and head assembly using the piezoelectric actuator
JPS6310912B2 (en)
JP3210011B2 (en) Piezoelectric bending transducer and method of manufacturing the same
JP2001211668A (en) Fine positioning actuator, thin film magnetic head device positioning actuator and head suspension assembly having the same
JP4360053B2 (en) Head slider bonded to micropositioning actuator, head gimbal assembly provided with head slider, method of bonding head slider and actuator, and method of manufacturing head gimbal assembly
JP3535111B2 (en) Piezo actuator
JP2000317898A (en) Piezoelectric/electrostrictive device
JP4110802B2 (en) Head element micropositioning actuator, head gimbal assembly including the actuator, and disk device including the head gimbal assembly
JP2893765B2 (en) Method for manufacturing multimorph element
JP3717141B2 (en) Piezoelectric actuator
JP2001185773A (en) Piezoelectric/electrostrictive device
JP2001025093A (en) Compound piezoelectric diaphragm and production thereof
WO2005110235A1 (en) Ultrasonic probe and method for the fabrication thereof
JPH11126318A (en) Actuator and magnetic head device