JPS63108007A - Polymerization of olefin - Google Patents

Polymerization of olefin

Info

Publication number
JPS63108007A
JPS63108007A JP25356186A JP25356186A JPS63108007A JP S63108007 A JPS63108007 A JP S63108007A JP 25356186 A JP25356186 A JP 25356186A JP 25356186 A JP25356186 A JP 25356186A JP S63108007 A JPS63108007 A JP S63108007A
Authority
JP
Japan
Prior art keywords
catalyst
transition metal
olefin
polymerization
hydrocarbon residue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25356186A
Other languages
Japanese (ja)
Other versions
JPH0794493B2 (en
Inventor
Tadashi Asanuma
正 浅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP61253561A priority Critical patent/JPH0794493B2/en
Publication of JPS63108007A publication Critical patent/JPS63108007A/en
Publication of JPH0794493B2 publication Critical patent/JPH0794493B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To obtain a polyolefin in good yields, by polymerizing an olefin in the presence of a catalyst comprising a specified transition metal catalyst and an organometallic compound of a Group I-III metal of the periodic table. CONSTITUTION:A compound (a), as a carrier, of formula III, obtained by reacting a Grignard reagent of formula I (wherein R<1> is a hydrocarbon residue and X<1> is Br or I) with a chlorinated silicon compound of formula II (wherein R<2> is R<1>, X<2> is Cl and n is 0-3) at room temperature to the b.p. of the solvent used is allowed to support a titanium halide (e.g., TiCl4) to obtain a transition metal catalyst (B). An olefin (e.g., ethylene) is polymerized in the presence of a catalyst comprising component B and an organometallic compound (C) of a Group I-III metal of the periodic table (e.g., organoaluminum).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はオレフィンの重合方法に関する。詳しくは特定
の方法で得たハロゲン化マグネシウムを担体とする触媒
を用いるオレフィンの重合方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for polymerizing olefins. Specifically, the present invention relates to a method for polymerizing olefins using a catalyst having a magnesium halide obtained by a specific method as a carrier.

〔従来の技術〕[Conventional technology]

オレフィンの重合用にハロゲン化マグネシウムなどの担
体にハロゲン化チタンを担持してなる遷移金属触媒と有
機金属化合物からなる触媒を用いることは特公昭39−
12105号で開示されて以来、種々の改良方法が提案
されており、かなり優れた性能のものが得られている。
The use of a transition metal catalyst consisting of a titanium halide supported on a carrier such as magnesium halide and a catalyst consisting of an organometallic compound for the polymerization of olefins was disclosed in Japanese Patent Publication No. 39-1989.
Since the disclosure in No. 12105, various improved methods have been proposed, and some with considerably superior performance have been obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

オレフィンを重合して得たポリオレフィン中に残存する
触媒残渣の量は少なければ少ない方が良く、又かさ比重
も大きければ大きい方が良い。したがって、さらに高性
能の触媒の開発が望まれている。
The smaller the amount of catalyst residue remaining in the polyolefin obtained by polymerizing olefin, the better, and the larger the bulk specific gravity, the better. Therefore, it is desired to develop a catalyst with even higher performance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記問題を解決する方法について鋭意検
討し、特定の方法で製造できるハロゲン化マグネシウム
が担体として好適であることを見出し、本発明を完成し
た。
The present inventors have conducted extensive studies on methods for solving the above problems, and have found that magnesium halide, which can be produced by a specific method, is suitable as a carrier, and have completed the present invention.

即ち、本発明は一般式1?1MgX1(式中、R1は炭
化水素残基、χ1は臭素又は沃素原子である。)で表わ
されるグリニヤール試薬と一般式R”、、SiX24−
n(式中、R2は炭化水素残基、Xlは塩素原子、nは
0〜3の整数である。)で表される塩素化ケイ素化合物
との反応で得られる)’IgX’X2にハロゲン化チタ
ンを担持して得た遷移金属触媒と周期律表第1族ないし
第3族の有機金属化合物からなる触媒を用いることを特
徴とするオレフィンの重合方法である。
That is, the present invention provides a Grignard reagent represented by the general formula 1?1MgX1 (wherein R1 is a hydrocarbon residue and χ1 is a bromine or iodine atom) and a Grignard reagent represented by the general formula R'', SiX24-
halogenated 'IgX'X2 (obtained by reaction with a chlorinated silicon compound represented by This is an olefin polymerization method characterized by using a transition metal catalyst obtained by supporting titanium and a catalyst consisting of an organometallic compound of Groups 1 to 3 of the periodic table.

本発明は、担体として用いるMgX’X2(式中、Xl
は臭素又は沃素、×2は塩素である。)の製法に特徴が
あり、得られた担体にハロゲン化チタンを担持する方法
については特に制限はなく、種々の方法を採用すること
ができる。例えば担体を予めカルボン酸エステル、エー
テル、オルソエステル、アルコキシケイ素、リン酸エス
テル、アルコール、ケトンなどの含酸素化合物と接触或
いは共粉砕し、次いでハロゲン化チタンと接触処理する
か或いは共粉砕する方法が挙げられる。
The present invention provides MgX'X2 (wherein Xl
is bromine or iodine, and x2 is chlorine. ) is characterized by its manufacturing method, and there is no particular restriction on the method of supporting titanium halide on the obtained carrier, and various methods can be adopted. For example, there is a method in which the carrier is contacted or co-milled in advance with an oxygen-containing compound such as a carboxylic acid ester, ether, orthoester, alkoxy silicon, phosphoric acid ester, alcohol, or ketone, and then contacted with or co-milled with a titanium halide. Can be mentioned.

ここでハロゲン化チタンとしては好ましくは塩化チタン
が例示でき、四塩化チタン、三塩化チタンが具体例とし
て挙げられる。
Here, the titanium halide is preferably titanium chloride, and specific examples include titanium tetrachloride and titanium trichloride.

本発明において重要なMgX’X2で示されるハロゲン
化マグネシウムを製造するに際して用いられるR1Mg
X1(式中、R1は炭化水素残基、Xlは臭素又は沃素
原子である)は公知の方法で製造することができ、一般
にはRIXIで示されるハロゲン化炭化水素と金属マグ
ネシウムを反応せしめることで製造できる。ここで炭化
水素残基としては脂肪族、脂環族、芳香族、などの炭化
水素残基が使用でき特に制限はないが、炭素数1〜20
程度のものが用いられる。また、Xlとしてはヨウ素、
臭素原子である。
R1Mg used in producing magnesium halide represented by MgX'X2, which is important in the present invention
X1 (wherein R1 is a hydrocarbon residue and Xl is a bromine or iodine atom) can be produced by a known method, generally by reacting a halogenated hydrocarbon represented by RIXI with magnesium metal. Can be manufactured. Here, as the hydrocarbon residue, aliphatic, alicyclic, aromatic, etc. hydrocarbon residues can be used, and there is no particular restriction, but the number of carbon atoms is 1 to 20.
A certain degree is used. In addition, as Xl, iodine,
It is a bromine atom.

MgX1X2を製造するに際し用いる一方の成分である
一般式17”、 SiX”n−7(式中、R2は炭化水
素残基、Xlは塩素原子nは0〜3の整数である。)で
表される塩素化ケイ素化合物としては、炭化水素残基R
2として水素の他に炭素数1〜20の飽和又は不飽和の
炭化水素残基を有し、具体例として、例えばテトラクロ
ロシラン、トリクロロシラン、メチルトリクロルシラン
、ジメチルジクロルシラン、トリメチルクロルシラン、
エチルトリクロルシラン、ジエチルジクロルシラン、ト
リエチルクロルシランなどの飽和炭化水素残基を有する
化合物、又はビニルトリクロルシラン、ビニルメチルジ
クロルシラン、フェニルトリクロルシラン、ジフェニル
トリクロルシラン、フェニルメチルジクロルシランなど
の不飽和炭化水素残基を存する化合物が例示される。
One component used in producing MgX1X2 is represented by the general formula 17'', SiX''n-7 (wherein, R2 is a hydrocarbon residue, Xl is a chlorine atom, and n is an integer from 0 to 3). As the chlorinated silicon compound, hydrocarbon residue R
2 has a saturated or unsaturated hydrocarbon residue having 1 to 20 carbon atoms in addition to hydrogen, and specific examples include tetrachlorosilane, trichlorosilane, methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane,
Compounds with saturated hydrocarbon residues such as ethyltrichlorosilane, diethyldichlorosilane, and triethylchlorosilane, or compounds with saturated hydrocarbon residues such as vinyltrichlorosilane, vinylmethyldichlorosilane, phenyltrichlorosilane, diphenyltrichlorosilane, and phenylmethyldichlorosilane. Compounds containing saturated hydrocarbon residues are exemplified.

上記グリニヤール試薬と塩素化ケイ素化合物の反応は極
めて早く、室温ないし使用した触媒の沸点付近で、収率
良< MgX1X2が得られる。
The reaction between the Grignard reagent and the chlorinated silicon compound is extremely fast, and MgX1X2 can be obtained in good yield at room temperature or around the boiling point of the catalyst used.

本発明において用いる周期律表第1族ないし第3族金属
の有機金属化合物としては、有機リチウム、有機ナトリ
ウム、有機マグネシウム、有機ベリラム、有機アルミニ
ウムなどが例示され、なかでも有機アルミニウムが好ま
しく用いられる。
Examples of the organometallic compounds of metals from Groups 1 to 3 of the periodic table used in the present invention include organolithium, organosodium, organomagnesium, organoberyllum, and organoaluminium, among which organoaluminum is preferably used.

本発明において用いられるオレフィンとしてはエチレン
、プロピレン、ブテン−1、ペンテン−1、ヘキセン−
1、オクテン−1、スチレン、ビニルナフタレンなどが
例示され、それらの単独重合或いは相互の共重合さらに
はジエンとの共重合などに用いられる。
The olefins used in the present invention include ethylene, propylene, butene-1, pentene-1, and hexene-1.
Examples include 1, octene-1, styrene, and vinylnaphthalene, which are used for homopolymerization, copolymerization with each other, and copolymerization with diene.

本発明において、オレフィンの重合は、上記した方法で
製造したハロゲン化マグネシウム担体を用いる他は従来
のオレフィンの重合方法が適用でき、溶媒を用いる溶液
重合、オレフィン自身を媒体とする塊状重合或いは溶媒
の実質的に含まない気相重合などがとりうる。
In the present invention, conventional olefin polymerization methods can be applied to the olefin polymerization except for using the magnesium halide carrier produced by the method described above, such as solution polymerization using a solvent, bulk polymerization using the olefin itself as a medium, or solvent polymerization. Gas-phase polymerization, which does not contain substantially any of the above substances, can be used.

〔実施例〕〔Example〕

以下、実施例を挙げ本発明を説明する。 The present invention will be explained below with reference to Examples.

実施例1 300mlの丸底フラスコにマグネシウム7.4g、ジ
エチルエーテル20m I入れ、エーテルの還流下に臭
化シクロヘキサン5(Igとジエチルエーテル100m
1の混合物を2時間かけて滴下した。その後さらに1時
間還流下撹拌処理し、C6HI +MgBrのエチルエ
ーテル溶液を調製した。
Example 1 7.4 g of magnesium and 20 m of diethyl ether were placed in a 300 ml round bottom flask, and under reflux of ether, cyclohexane bromide (5 g and 100 m of diethyl ether) was added.
1 was added dropwise over 2 hours. Thereafter, the mixture was further stirred under reflux for 1 hour to prepare an ethyl ether solution of C6HI + MgBr.

次いでエチルエーテルの還流下に四塩化ケイ素13gを
501W1のn−ヘキサンに溶解したものを3時間かけ
て滴下し、さらに還流下に4時間攪拌した。
Next, a solution of 13 g of silicon tetrachloride dissolved in 501W1 n-hexane was added dropwise to the ethyl ether under reflux over 3 hours, and the mixture was further stirred for 4 hours under reflux.

次いで室温でろ過し、固形分をエチルエーテルで洗浄し
、窒素気流で乾燥して、固形分40gを得た。得られた
固形分はMg:CIt :Brがほぼ1:1:1であり
、MdrCllであった。
Then, it was filtered at room temperature, and the solid content was washed with ethyl ether and dried with a nitrogen stream to obtain 40 g of solid content. The solid content obtained had a ratio of Mg:CIt:Br of approximately 1:1:1, and was MdrClI.

上記固形分10gを200m1丸底フラスコに入れ、四
塩化チタン50m1、トルエン50+nlを入れ、90
°Cで1時間攪拌処理し、次いで静置して上澄を除去し
た。さらに四塩化チタン50m1. )ルエン50m1
を入れ、90℃で1時間攪拌処理し、次いで静置して上
澄を除去し、得られた固形分をトルエンで7回洗浄して
遷移金属触媒とした。分析の結果はチタンを1.3ts
t%含有していた。
Put 10g of the above solid content into a 200ml round bottom flask, add 50ml of titanium tetrachloride, 50+nl of toluene,
The mixture was stirred at °C for 1 hour, then allowed to stand and the supernatant was removed. Additionally, 50ml of titanium tetrachloride. ) Ruen 50m1
The mixture was stirred at 90° C. for 1 hour, then left to stand, the supernatant was removed, and the resulting solid content was washed seven times with toluene to obtain a transition metal catalyst. The result of the analysis was 1.3ts of titanium.
It contained t%.

上記操作で得た遷移金属触媒を用いてエチレンを重合し
た。内容積2βのオートクレーブにn−へブタンll入
れ、上記遷移金属触媒20mg、トリエチルアルミニウ
ム0.5mlを加え、水素を2Kg/cJゲージまで入
れ、さらにエチレンを6Kg/c4ゲージまで加えた後
75℃に昇温し、10Kg/cJゲージになるようにエ
チレンを追加しなから75°Cで2時間重合した。その
後冷却し、未反応のエチレンをパージした後ろ過して、
ポリエチレンパウダーを得た。
Ethylene was polymerized using the transition metal catalyst obtained in the above operation. Pour 1 liter of n-hebutane into an autoclave with an internal volume of 2β, add 20 mg of the above transition metal catalyst and 0.5 ml of triethylaluminum, add hydrogen up to 2 Kg/cJ gauge, and then add ethylene up to 6 Kg/c4 gauge, then heat to 75°C. The temperature was raised and polymerization was carried out at 75°C for 2 hours without adding ethylene to give a gauge of 10 kg/cJ. After that, it is cooled, unreacted ethylene is purged, and then filtered.
Polyethylene powder was obtained.

乾燥秤量したところ195gであった。このパウダーの
極限粘度数は3.01(135℃テトラリン溶液で測定
した。)かさ比重は0.43、粒度は200メソシユ以
下の微粉0.3%、10メツシュ以上の粗粒0.0%で
あった。Ti当たりの収率は、750h/g−Tiであ
り、かさ比重も良好であり、粒度分布も比較的シャープ
であった。
The dry weight was 195 g. The intrinsic viscosity of this powder is 3.01 (measured with a tetralin solution at 135°C), the bulk specific gravity is 0.43, and the particle size is 0.3% of fine particles of 200 mesh or less and 0.0% of coarse particles of 10 mesh or more. there were. The yield per Ti was 750 h/g-Ti, the bulk specific gravity was also good, and the particle size distribution was also relatively sharp.

実施例2 実施例1で得た遷移金属触媒を用いてプロピレンを重合
した。21のオートクレーブにn−へブタンll入れ、
遷移金属触媒30mg 、ジエチルアルミニウムクロラ
イド0 、32m l、トルイル酸メチル0.12m1
、トリエチルアルミニウム0.20m1を加え、水素0
.1Kg/catゲージ、プロピ1フ2Kg/cn!ゲ
ージ入れ、次いで内温を70℃とし、全圧6Kg/an
tゲージで2時間重合した。重合終了後未反応のプロピ
レンをパージし、スラリーをろ過してポリプロピレンパ
ウダー149gを得、ろ液よりアククチツクポリプロピ
レンを3.9g得た。
Example 2 The transition metal catalyst obtained in Example 1 was used to polymerize propylene. Put 1 liter of n-hebutane into a No. 21 autoclave,
Transition metal catalyst 30mg, diethylaluminum chloride 0, 32ml, methyl toluate 0.12ml
, add 0.20ml of triethylaluminum, and add 0.20ml of triethylaluminum.
.. 1Kg/cat gauge, propi 1f 2Kg/cn! Insert the gauge, then set the internal temperature to 70°C and increase the total pressure to 6Kg/an.
Polymerization was carried out on a t-gauge for 2 hours. After the polymerization was completed, unreacted propylene was purged, the slurry was filtered to obtain 149 g of polypropylene powder, and 3.9 g of acid polypropylene was obtained from the filtrate.

ポリプロピレンパウダーの沸騰n−へブタン抽出残率の
割合は97.4%(ソツクレスレー抽出器を用い沸騰n
−へブタンで6時間抽出)であり、極限粘度数は2.0
8、かさ比重は0.42であった。
The residual ratio of polypropylene powder extracted with boiling n-hebutane is 97.4% (boiling
-extracted with hebutane for 6 hours) and has an intrinsic viscosity of 2.0.
8. The bulk specific gravity was 0.42.

実施例3 四塩化ケイ素13gにかえてトリクロロビニルシラン1
6.5gにかえた他は実施例1と同様にしたところチタ
ン1.2i+t%の遷移金属触媒を得、同様に重合した
ところポリエチレンパウダー225gを得た。
Example 3 Trichlorovinylsilane 1 instead of 13 g silicon tetrachloride
The same procedure as in Example 1 was carried out except that the amount was changed to 6.5 g to obtain a transition metal catalyst containing 1.2i+t% of titanium, and 225 g of polyethylene powder was obtained by polymerizing in the same manner.

このパウダーの極限粘度数は2.95、かさ比重は0゜
39であった。
This powder had an intrinsic viscosity of 2.95 and a bulk specific gravity of 0°39.

〔発明の効果〕〔Effect of the invention〕

本発明の方法を実施することにより収率よくポリオレフ
ィンを製造することが可能となり工業的に価値がある。
By carrying out the method of the present invention, it is possible to produce polyolefins in good yield, which is industrially valuable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はオレフィン重合触媒に関するフローチャート図
である。
FIG. 1 is a flowchart regarding an olefin polymerization catalyst.

Claims (1)

【特許請求の範囲】[Claims] 一般式R^1MgX^1(式中、R^1は炭化水素残基
、X^1は臭素又は沃素原子である。)で表わされるグ
リニャール試薬と一般式R^2_nSiX^2_4_−
_n(式中、R^2は炭化水素残基、X^2は塩素原子
、nは0〜3の整数である。)で表される塩素化ケイ素
化合物との反応で得られるMgX^1X^2にハロゲン
化チタンを担持して得た遷移金属触媒と周期律表第1族
ないし第3族の有機金属化合物からなる触媒を用いるこ
とを特徴とするオレフィンの重合方法。
A Grignard reagent represented by the general formula R^1MgX^1 (wherein R^1 is a hydrocarbon residue, and X^1 is a bromine or iodine atom) and the general formula R^2_nSiX^2_4_-
MgX^1X^ obtained by reaction with a chlorinated silicon compound represented by _n (wherein R^2 is a hydrocarbon residue, X^2 is a chlorine atom, and n is an integer from 0 to 3). A method for polymerizing olefins, which comprises using a transition metal catalyst obtained by supporting titanium halide on 2 and a catalyst comprising an organometallic compound of Groups 1 to 3 of the periodic table.
JP61253561A 1986-10-27 1986-10-27 Olefin Polymerization Method Expired - Lifetime JPH0794493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61253561A JPH0794493B2 (en) 1986-10-27 1986-10-27 Olefin Polymerization Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61253561A JPH0794493B2 (en) 1986-10-27 1986-10-27 Olefin Polymerization Method

Publications (2)

Publication Number Publication Date
JPS63108007A true JPS63108007A (en) 1988-05-12
JPH0794493B2 JPH0794493B2 (en) 1995-10-11

Family

ID=17253078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61253561A Expired - Lifetime JPH0794493B2 (en) 1986-10-27 1986-10-27 Olefin Polymerization Method

Country Status (1)

Country Link
JP (1) JPH0794493B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5274686A (en) * 1975-12-18 1977-06-22 Sumitomo Chem Co Ltd Process for polymerizing olefins
JPS54112983A (en) * 1978-02-23 1979-09-04 Sumitomo Chem Co Ltd Preparation of highly crystalline olefin polymer
JPS5630407A (en) * 1979-08-22 1981-03-27 Sumitomo Chem Co Ltd Preparation of highly stereoregular alpha-olefin polymer
JPS5759903A (en) * 1980-09-26 1982-04-10 Sumitomo Chem Co Ltd Preparation of polyolefin
JPS57115407A (en) * 1981-11-19 1982-07-17 Sumitomo Chem Co Ltd Preparation of solid catalytic system for olefin polymerization

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5274686A (en) * 1975-12-18 1977-06-22 Sumitomo Chem Co Ltd Process for polymerizing olefins
JPS54112983A (en) * 1978-02-23 1979-09-04 Sumitomo Chem Co Ltd Preparation of highly crystalline olefin polymer
JPS5630407A (en) * 1979-08-22 1981-03-27 Sumitomo Chem Co Ltd Preparation of highly stereoregular alpha-olefin polymer
JPS5759903A (en) * 1980-09-26 1982-04-10 Sumitomo Chem Co Ltd Preparation of polyolefin
JPS57115407A (en) * 1981-11-19 1982-07-17 Sumitomo Chem Co Ltd Preparation of solid catalytic system for olefin polymerization

Also Published As

Publication number Publication date
JPH0794493B2 (en) 1995-10-11

Similar Documents

Publication Publication Date Title
EP0507876B1 (en) Supported ionic metallocene catalysts for olefin polymerization
JPH03115310A (en) Composition and catalyst for polymerization of olefin
JP4165720B2 (en) Metallocene compounds
JP4166086B2 (en) Nonmetallocenes, their production and their use in the polymerization of olefins
JP3421086B2 (en) Olefin polymerization method
JPS63108007A (en) Polymerization of olefin
KR20170009597A (en) Metallocene compounds, catalyst compositions comprising the same, and method for preparing olefin polymers using the same
JPH03124705A (en) Ziegler-natta catalyst composition
KR20170009598A (en) Metallocene compounds, catalyst compositions comprising the same, and method for preparing olefin polymers using the same
JPH05186523A (en) Method of polymerizing alpha-olefin
KR102022685B1 (en) Metallocene compounds, catalyst compositions comprising the same, and method for preparing olefin polymers using the same
JPS623163B2 (en)
JP2553042B2 (en) Olefin Polymerization Method
JPS63108006A (en) Polymerization of olefin
JP2537220B2 (en) Olefin Polymerization Method
JPS63186706A (en) Polymerization of olefin
JP2537221B2 (en) Method for producing catalyst component for olefin polymerization
JPS60152511A (en) Polymerization of alpha-olefin
JPH0772209B2 (en) Olefin Polymerization Method
KR102023168B1 (en) Metallocene compounds, catalyst compositions comprising the same, and method for preparing olefin polymers using the same
JPS63132907A (en) Polymerization of olefin
JPS63210105A (en) Polymerization of olefin
JPS62273204A (en) Method for polymerizing olefin
JPS63132906A (en) Polymerization of olefin
JPS63132908A (en) Polymerization of olefin