JPS63106552A - Continuous quantitative analysis of creatinine and amylase - Google Patents

Continuous quantitative analysis of creatinine and amylase

Info

Publication number
JPS63106552A
JPS63106552A JP61251204A JP25120486A JPS63106552A JP S63106552 A JPS63106552 A JP S63106552A JP 61251204 A JP61251204 A JP 61251204A JP 25120486 A JP25120486 A JP 25120486A JP S63106552 A JPS63106552 A JP S63106552A
Authority
JP
Japan
Prior art keywords
creatinine
conductivity
electrode
change
amylase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61251204A
Other languages
Japanese (ja)
Inventor
Masami Kuroda
昌美 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61251204A priority Critical patent/JPS63106552A/en
Publication of JPS63106552A publication Critical patent/JPS63106552A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To rapidly and accurately perform quantitative analysis by allowing different enzymatic reactions to continuously advance in two measuring cells and detecting the change quantities or change rates of conductivity and hydrogen peroxide by respective reactions. CONSTITUTION:In a conductivity measuring cell 5, a conductivity measuring electrode 1 is mounted and a porous membrane 3 is mounted to the lower end of said electrode 1 and the change quantity or change rate of conductivity due to enzymatic reaction is measured by a conductivity measuring device 9. A hydrogen peroxide measuring electrode 2 is mounted to a glucose measuring cell 6 and an immobilized glucose oxidase membrane 4 is mounted to the lower end of said electrode 2. The change quantity or change rate of glucose due to enzymatic reaction is measured by a hydrogen peroxide measuring device 10 using the membrane 4 and the electrode 2 and predetermined operation is performed by an operator 11 to display the concn. of creatinine and amylase activity on a display device 12. By this method, quantitative analysis can be performed rapidly and accurately.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は酵素クレアチニンデイミナーゼ(E。[Detailed description of the invention] [Technical field to which the invention pertains] This invention is based on the enzyme creatinine deiminase (E.

C,3,5,1,5)を用いて被検液中のクレアチニン
を電導度法により゛定食し、リジウムスターチグリコレ
ートと酵素グルコアミラーゼ(E、C,3,2,1,:
う)と酵素電極すなわち固定化グルコースオキシダーゼ
膜−過酸化水素電極を用いてアミラーゼを定量する方法
に関する。
Creatinine in the test solution was determined by the conductivity method using lysium starch glycolate and the enzyme glucoamylase (E, C, 3, 2, 1,:
c) and a method for quantifying amylase using an enzyme electrode, that is, an immobilized glucose oxidase membrane-hydrogen peroxide electrode.

〔従来技術とその問題点〕[Prior art and its problems]

この種の測定法に関連して、本件出願人は先に特開昭6
0−151560および特開昭59−72056により
クレアチニンの定食法とアミラーゼの定量法をそれぞれ
別個に提案している。前者は、試料に対してクレアチニ
ンデイミナーゼを添加することによりクレアチニンを分
解し、生成するアンモニウムイオンによる導を率の変化
量あるいは変化率を多孔性膜を有する電導度測定電極に
より検出して試料中のクレアチニンを定量するものであ
る。後者は、アミラーゼの基質としてリジウムスターチ
グリコレートと酵素グルコアミラーゼを用い、アミラー
ゼの作用により生成するグルコースを固定化グルコース
オキシダーゼ膜−過酸化水素電極により電流値の変化量
あるいは変化率として検出し、試料中のアミラーゼを定
量するものである。両者は、いずれも被検液中の共存物
質の影響を受けずにクレアチニンあるいはアミラーゼを
定量することができ、また長期間にわたり安定した測定
が行なえるといった長所がある。
In connection with this type of measurement method, the present applicant has previously published
No. 0-151560 and JP-A No. 59-72056 separately propose a set meal method for creatinine and a method for quantifying amylase. In the former method, creatinine is decomposed by adding creatinine deiminase to the sample, and the amount or rate of change in conductivity due to the generated ammonium ions is detected using a conductivity measuring electrode with a porous membrane. creatinine. The latter uses lysium starch glycolate and the enzyme glucoamylase as a substrate for amylase, and detects the glucose produced by the action of amylase as the amount or rate of change in current value using an immobilized glucose oxidase membrane-hydrogen peroxide electrode. This is to quantify amylase in the sample. Both methods have the advantage of being able to quantify creatinine or amylase without being affected by coexisting substances in the test solution, and of being able to perform stable measurements over a long period of time.

しかしながら、近年臨床検を分野にたいて、生体液中の
クレアチニンとアミラーゼの測定はより正確な診断・治
療を行う上で重要視されており、両者のより簡便で迅速
・正確な定量方法が要望されている。
However, in recent years, in the field of clinical examination, the measurement of creatinine and amylase in biological fluids has become important for more accurate diagnosis and treatment, and there is a need for a simpler, faster, and more accurate method for quantifying both. has been done.

〔発明の目的〕[Purpose of the invention]

本発明は上記に鑑みなされたものであり、2つの611
1定セル堅内において酵素反応を連続的に進め、酵素反
応による導1℃尤の変化量からクレアチニン濃度を・ま
たグルコースの変化量からアミラーゼを、互いに影響さ
れることなく正確に定量する方法を提供することである
The present invention has been made in view of the above, and includes two 611
We developed a method to proceed with the enzyme reaction continuously in one fixed cell, and to accurately quantify creatinine concentration from the change in temperature by 1°C due to the enzyme reaction, and amylase from the change in glucose, without being influenced by each other. It is to provide.

〔発明の要点〕[Key points of the invention]

この発明は、2つの測定セル室を用い、第1の測定セル
室において被検液に対してクレアチニンデイミナーゼを
添加することによる導電率の変化量を電導度測定電極に
より検出し、第2の測定セル室において、前記被検液に
対してさらにソジウムスターチグリコレートとグルコア
ミラーゼを添加することによるグルコースの変化量を固
定化グイコースオキシダーゼ膜−過酸化水素電極により
検出することにより、被検液中のクレアチニンとアミラ
ーゼを定量しようとするものである。
This invention uses two measurement cell chambers, detects the amount of change in conductivity due to the addition of creatinine deiminase to a test liquid in the first measurement cell chamber, and detects the amount of change in conductivity by a conductivity measurement electrode. In the measurement cell chamber, the amount of change in glucose due to the addition of sodium starch glycolate and glucoamylase to the test solution is detected using an immobilized glucose oxidase membrane-hydrogen peroxide electrode. The purpose is to quantify creatinine and amylase in liquid.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例である分析装置の系統図であ
る。第1図において、電導度測定セル5に電導度測定電
極1が取り付けられ、1の下端には多孔性膜3が装着さ
れている。注入ロアより被検液とクレアチニンデイミナ
ーゼ溶液を一定量注入すると次の反応が進行する。
FIG. 1 is a system diagram of an analyzer that is an embodiment of the present invention. In FIG. 1, a conductivity measuring electrode 1 is attached to a conductivity measuring cell 5, and a porous membrane 3 is attached to the lower end of the conductivity measuring electrode 1. When a fixed amount of the test liquid and creatinine deiminase solution are injected from the injection lower, the next reaction proceeds.

イア + N H4+ OH−・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
四・・(1)従って、被検液とクレアチニンデイミナー
ゼ溶液を注入した後送液ポンプ13を作動させて被検液
とクレアチニンデイミナーゼ溶液を電導度測定セル5に
導き、(1)の反応により生成するアンモニウムイオン
による導電率の変化量あるいは変化率を検出しクレアチ
ニンを測定する。
Ia + N H4+ OH-・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
(1) Therefore, after injecting the test liquid and creatinine deiminase solution, the liquid pump 13 is activated to guide the test liquid and creatinine deiminase solution to the conductivity measurement cell 5, and the reaction of (1) is carried out. Creatinine is measured by detecting the amount or rate of change in conductivity due to ammonium ions generated.

クレアチニン測定後、送液ポンプ13を再び作動させ、
被検液をグルコース測定セル6に導く。6にA酸化水素
電極2が取り付けられ、2の下端にハ固定化グルコース
オキシダーゼ膜4が装着されている。被検液中にグルコ
ースが含まれる場合には次の反応により、まず被検液中
に含まれるグルコースを電流値として測定する。
After measuring creatinine, the liquid pump 13 is operated again,
The test liquid is led to the glucose measurement cell 6. A hydrogen oxide electrode 2 is attached to 6, and a fixed glucose oxidase membrane 4 is attached to the lower end of 2. When the test liquid contains glucose, the glucose contained in the test liquid is first measured as a current value by the following reaction.

被検液をグルコース測定セルに導いた後、一定時間後注
入口8よりソジウムスターヂグリコレートとグルコアミ
ラーゼ溶液を一定量注入すると次の酵素反応が進行する
After introducing the test liquid into the glucose measurement cell, a certain amount of sodium stardi glycolate and glucoamylase solution is injected from the injection port 8 after a certain period of time, and the next enzymatic reaction proceeds.

ソジウムスターチグリコレート+n H20ゲルコアξ
ラーゼ ーーー−−−−→ −一一一一一−→n−グルコース 
・・・・・・・・・(3)従って、(3)の反応により
生成するグルコースを(2)の反応により固定化グルコ
ースオキシダーゼ膜−過酸化水素電極を用いて、電流値
の変化量あるいは変化率を検出しアミラーゼを測定する
。すなわち、電導度測定セルにおいて電導度測定電極を
用いて酵素反応による導電率の変化量あるいは変化率を
電導度測定器9により測定し、グルコース測定セルにお
いて、固定化グルコースオキシダーゼ膜−過酸化水素電
極を用いて酵素反応によるグルコースの変化量あるいは
変化率を過酸化水素測定器10により測定し、演算器1
1で所定の演算を行うことによりクレアチニン濃度とア
ミラーゼ活性を表示器12に表示する。
Sodium starch glycolate +n H20 gel core ξ
rase---→ -11111-→n-glucose
(3) Therefore, the glucose produced by the reaction (3) can be measured by the amount of change in current value or by using the immobilized glucose oxidase membrane-hydrogen peroxide electrode by the reaction (2). Detect rate of change and measure amylase. That is, in the conductivity measuring cell, the amount or rate of change in conductivity due to the enzyme reaction is measured using the conductivity measuring electrode, and in the glucose measuring cell, the immobilized glucose oxidase membrane-hydrogen peroxide electrode is measured. The amount or rate of change in glucose due to the enzymatic reaction is measured using the hydrogen peroxide measuring device 10, and the arithmetic unit 1
By performing a predetermined calculation in step 1, the creatinine concentration and amylase activity are displayed on the display 12.

この発明に用いる電導度測定電極は、白金以外に白金−
白金黒ステンレスなどで電極間には交流電圧(好ましく
は0.5kH2,l V程度)を印加して使用し、また
多孔性膜としてはポリカーボネート膜、セルロースアセ
テート膜、ボ11ビニルクロライド膜などを用いること
ができ、好ましくは孔径0.015〜0.1 、am、
 膜厚2〜10μmである。一方、過酸化水素電極とし
ては、陽極として白金、陰極ととして銀あるいは成句化
銀が好ましく、両標間には0.6〜0.75Vの一定電
圧を印加して使用し、固定化グルコースオキシダーゼ膜
としては、前記多孔性膜にグルコースを物理的あるいは
化学的に固定化したものを用いることができる。また測
定セル室は、図示されていない温度調整手段により加〜
40°Cの一定温度に保たれ、さらにエアーポンプなど
によりシリコンダイヤフラムを介して攪拌されている。
In addition to platinum, the conductivity measuring electrode used in this invention also includes platinum-
An alternating current voltage (preferably about 0.5 kHz, 1 V) is applied between the electrodes using platinum black stainless steel, etc., and a polycarbonate membrane, cellulose acetate membrane, polyvinyl chloride membrane, etc. is used as the porous membrane. and preferably a pore size of 0.015 to 0.1 am,
The film thickness is 2 to 10 μm. On the other hand, as the hydrogen peroxide electrode, it is preferable to use platinum as the anode and silver or silver as the cathode. As the membrane, a porous membrane with glucose physically or chemically immobilized can be used. The measurement cell chamber is also heated by a temperature control means (not shown).
The temperature is maintained at a constant temperature of 40°C, and the mixture is stirred via a silicon diaphragm using an air pump or the like.

第2図と第3図は第1図の測定系を用いた場合のクレア
チニンとアミラーゼの検量線図である。
FIGS. 2 and 3 are calibration curves of creatinine and amylase when the measurement system shown in FIG. 1 is used.

第2図は電導度測定開始後4分間における導電率の変化
量とクレアチニン濃度との関係を示し、第3図はソジウ
ムスターチグリコレートトクルコアミラーゼ溶液注入後
加〜匍秒間の過酸化水素電極による電流値の変化量とア
ミラーゼ活性との関係を示す。共に良好な直線関係を示
すことから、あらかじめクレアチニンとアミラーゼそれ
ぞれについて検量線を作成しておけば未知濃度のクレア
チニンとアミラーゼを簡単に定量することができる。
Figure 2 shows the relationship between the amount of change in conductivity and creatinine concentration for 4 minutes after the start of conductivity measurement, and Figure 3 shows the relationship between the hydrogen peroxide electrode and the creatinine concentration after injection of the sodium starch glycolate tocurcoamylase solution. The relationship between the amount of change in current value and amylase activity is shown. Since both show a good linear relationship, if a calibration curve is created for each of creatinine and amylase in advance, unknown concentrations of creatinine and amylase can be easily quantified.

なお、前記実施例においては、導電率の変化量を検出す
る工程を先に行っているが、本発明はこれに限られるも
のではなく、先に酵素反応によるグルコースの変化ti
検出する工程を行った後、導電率の変化量を検出する工
程を行うことも可能である。
In the above embodiments, the step of detecting the amount of change in electrical conductivity is performed first, but the present invention is not limited to this.
After performing the step of detecting, it is also possible to perform the step of detecting the amount of change in conductivity.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなようにこの発明によれば、2つ
の測定セルを用い被検液に対して異なる酵素反応を連続
的に進行させ、それぞれの反応による導i11藁および
過酸化水素の変化量あるいは変化率を検出し、クレアチ
ニンとアミラーゼを定量することとしたため、簡単な操
作でじん蔵およびすい蔵機能の診断に欠かすことのでき
ないクレアチニンとアミラーゼを、少量の被検液で互い
に影響されることなく簡便で迅速・正確に定量すること
ができる。また被検液として血液と尿を測定することが
でき、この場合にはアミラーゼとクレアチニンのクリア
ランス比を容易に求めることができ、より正確な診断・
治療に寄与するという効果が得られる。
As is clear from the above description, according to the present invention, two measurement cells are used to continuously carry out different enzyme reactions on the test liquid, and the amount of change in the concentration of hydrogen peroxide and hydrogen peroxide due to each reaction is Alternatively, by detecting the rate of change and quantifying creatinine and amylase, it is possible to easily measure creatinine and amylase, which are essential for diagnosing gastrointestinal and pancreatic functions, by detecting their mutual influence in a small amount of test liquid. It can be easily, quickly, and accurately quantified. In addition, blood and urine can be measured as test fluids, and in this case, the clearance ratio between amylase and creatinine can be easily determined, allowing for more accurate diagnosis and
The effect of contributing to treatment can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す分析装置の系統図、第
2図は第1図の分析装置によるクレアチニンの検量線図
、第3図は第1図の分析装置によるアミラーゼの検量線
図である。 1・・・電導度測定電極、2・・・過酸化水素測定電極
、3・・・多孔性膜、4・・・固定化グルコースオキシ
ダーゼ膜、5・・・電導度測定セル、6・・・グルコー
ス測定セル、9・・・電導度測定器、10・・・過酸化
水素測定器、1】・・・演算器、12・・・表示器。 第10
Fig. 1 is a system diagram of an analyzer showing an embodiment of the present invention, Fig. 2 is a calibration curve for creatinine using the analyzer shown in Fig. 1, and Fig. 3 is a calibration curve for amylase using the analyzer shown in Fig. 1. It is a diagram. DESCRIPTION OF SYMBOLS 1... Conductivity measurement electrode, 2... Hydrogen peroxide measurement electrode, 3... Porous membrane, 4... Immobilized glucose oxidase membrane, 5... Conductivity measurement cell, 6... Glucose measuring cell, 9... Conductivity measuring device, 10... Hydrogen peroxide measuring device, 1]... Arithmetic unit, 12... Display device. 10th

Claims (1)

【特許請求の範囲】[Claims] 被検液に対してクレアチニンデイミナーゼを添加するこ
とによりクレアチニンを分解し、生成するアンモニアに
よる導電率の変化量を多孔性膜を有する電導度測定電極
により検出する工程と、前記被検液に対してリジウムス
ターチグリコレートとグルコアミラーゼを添加反応させ
、生成するグルコースの変化量を固定化グルコースオキ
シダーゼ膜−過酸化水素電極により検出する工程とを連
続して行うことを特徴とするクレアチニンとアミラーゼ
の連続定量法。
A step of decomposing creatinine by adding creatinine deiminase to the test liquid and detecting the amount of change in conductivity due to the generated ammonia using a conductivity measuring electrode having a porous membrane; A continuous process of creatinine and amylase, characterized in that the steps of adding and reacting lysium starch glycolate and glucoamylase and detecting the amount of change in the produced glucose using an immobilized glucose oxidase membrane and a hydrogen peroxide electrode are performed continuously. Quantitative method.
JP61251204A 1986-10-22 1986-10-22 Continuous quantitative analysis of creatinine and amylase Pending JPS63106552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61251204A JPS63106552A (en) 1986-10-22 1986-10-22 Continuous quantitative analysis of creatinine and amylase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61251204A JPS63106552A (en) 1986-10-22 1986-10-22 Continuous quantitative analysis of creatinine and amylase

Publications (1)

Publication Number Publication Date
JPS63106552A true JPS63106552A (en) 1988-05-11

Family

ID=17219240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61251204A Pending JPS63106552A (en) 1986-10-22 1986-10-22 Continuous quantitative analysis of creatinine and amylase

Country Status (1)

Country Link
JP (1) JPS63106552A (en)

Similar Documents

Publication Publication Date Title
US9857324B2 (en) Analyte determination method and analyte meter
Sokolov et al. Metrological opportunities of the dynamic mode of operating an enzyme amperometric biosensor
US5312590A (en) Amperometric sensor for single and multicomponent analysis
JPH01219661A (en) Analysis method and apparatus using enzyme electrode type sensor
JPH0617889B2 (en) Biochemical sensor
JP2004515784A5 (en)
JP4751302B2 (en) Potential difference sensor and analytical element
CN105784814A (en) Sensor based on concentration cell principle
Petersson Amperometric assay of glucose and lactic acid by flow injection analysis
US20070105232A1 (en) Voltammetric detection of metabolites in physiological fluids
CN113358726A (en) Electrode, test paper and preparation method thereof for detecting creatinine by electrochemical method
TWI603083B (en) System and method for measuring an analyte in a sample and calculating hematocrit-insensitive glucose concentrations
JPS63106552A (en) Continuous quantitative analysis of creatinine and amylase
CN110243914B (en) All-solid-state electrochemical polymer sensor for measuring dissolved oxygen
JPS6325301B2 (en)
CN111982989A (en) SiO (silicon dioxide)2Preparation method and application of-MWCNTs (multi-wall carbon nanotubes) enzymatic glucose electrochemical sensor
JP2001242133A (en) Disposable bun sensor and production method thereof
WO2020005683A1 (en) Stacked sensor assembly for fluid analyzer
RU2696499C1 (en) Biosensor for simultaneous glucose and blood lactate determination
Vokhmyanina et al. Prussian Blue-Based Thin-Layer Flow-Injection Multibiosensor for Simultaneous Determination of Glucose and Lactate
RU2731411C1 (en) Biosensor with high sensitivity factor
JPS61155847A (en) Quantitative determination of urea nitrogen and creatinine
Kalidas et al. Biosensors
JPS6317181B2 (en)
JPS613048A (en) Measurement using biosensor