JP2687633B2 - Method for producing silicon nitride sintered body - Google Patents

Method for producing silicon nitride sintered body

Info

Publication number
JP2687633B2
JP2687633B2 JP1302986A JP30298689A JP2687633B2 JP 2687633 B2 JP2687633 B2 JP 2687633B2 JP 1302986 A JP1302986 A JP 1302986A JP 30298689 A JP30298689 A JP 30298689A JP 2687633 B2 JP2687633 B2 JP 2687633B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
powder
sintering
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1302986A
Other languages
Japanese (ja)
Other versions
JPH03164473A (en
Inventor
慎二 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1302986A priority Critical patent/JP2687633B2/en
Publication of JPH03164473A publication Critical patent/JPH03164473A/en
Application granted granted Critical
Publication of JP2687633B2 publication Critical patent/JP2687633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ガスタービン部品やデイーゼルエンジン部
品などの耐熱性の構造材料として使用できる窒化珪素焼
結体の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a silicon nitride sintered body that can be used as a heat-resistant structural material for gas turbine parts, diesel engine parts, and the like.

[従来の技術] 従来、耐熱性にすぐれた窒化珪素焼結体は、窒化珪素
粉末にイットリア、スピネルとイットリア、イットリヤ
とアルミナなどの焼結助剤を加えて成形し、得られる成
形体をホットプレスや加圧下で窒素雰囲気中で焼結して
製造されている。
[Prior Art] Conventionally, a silicon nitride sintered body having excellent heat resistance is formed by adding sintering aids such as yttria, spinel and yttria, yttria and alumina to silicon nitride powder, and then forming the obtained molded body into a hot body. It is manufactured by sintering in a nitrogen atmosphere under press or pressure.

たとえば特開平1-188471号公報には、ムライトおよび
酸化イットリウムを焼結助剤(0.8〜6重量%)として
窒化珪素粉末(94〜99.2重量%)に添加して成形し、非
酸化性雰囲気中で焼結する焼結体の製造方法の開示があ
る。
For example, in Japanese Unexamined Patent Publication No. 1-188471, mullite and yttrium oxide are added as sintering aids (0.8 to 6% by weight) to silicon nitride powder (94 to 99.2% by weight) and the mixture is molded in a non-oxidizing atmosphere. There is a disclosure of a method for manufacturing a sintered body that is sintered in the above.

しかしながら、上記の焼結助剤は焼結時に液相を形成
して窒化珪素の焼結を促進するが、焼結後はガラス相を
形成して焼結体中の粒界に残存している。このため焼結
体が高温にさらされると粒界に存在する焼結助剤成分が
再度液相を形成する。その結果焼結体の強度が低下する
ので高温度で使用される部品としての使用は好ましくな
い。すなわち窒化珪素−ムライト−イットリア系の焼結
体では、粒界相が通常非晶質相を形成していることが電
子顕微鏡による分析などにより確認されている。このた
め1200℃以上で使用するには、この非晶質相が結晶化
(高融点の結晶)していないかぎり強度の低下を防ぐこ
とができない。
However, the above-mentioned sintering aid forms a liquid phase at the time of sintering to promote the sintering of silicon nitride, but after the sintering, it forms a glass phase and remains at the grain boundaries in the sintered body. . Therefore, when the sintered body is exposed to a high temperature, the sintering aid component existing in the grain boundary again forms a liquid phase. As a result, the strength of the sintered body is reduced, so that it is not preferable to use it as a component used at a high temperature. That is, in the silicon nitride-mullite-yttria type sintered body, it has been confirmed by an electron microscope analysis or the like that the grain boundary phase usually forms an amorphous phase. Therefore, when used at 1200 ° C. or higher, the strength cannot be prevented from decreasing unless the amorphous phase is crystallized (high melting point crystal).

セラミックス製ガスタービンエンジン部品としては、
使用時の温度が1300〜1400℃の高い温度域となる。この
ため1400℃においても強度の低下の少ない窒化珪素焼結
体とすることが必要となる。
As a ceramic gas turbine engine part,
The temperature during use is in the high temperature range of 1300 to 1400 ℃. For this reason, it is necessary to obtain a silicon nitride sintered body whose strength is not significantly reduced even at 1400 ° C.

[発明が解決しようとする課題] 本発明は、上記の事情に鑑みてなされたもので、1400
℃の温度域においても強度の低下の少ない窒化珪素焼結
体とすることを目的とする。
[Problems to be Solved by the Invention] The present invention has been made in view of the above circumstances.
It is an object of the present invention to provide a silicon nitride sintered body whose strength is not significantly reduced even in the temperature range of ° C.

[課題を解決するための手段] 本発明の窒化珪素焼結体の製造方法は、窒化珪素粉末
と焼結助剤粉末との混合粉末から成形体を成形する成形
工程と、該成形体を非酸化性雰囲気で焼結して焼結体と
する焼結工程とからなる窒化珪素焼結体の製造方法にお
いて、該成形工程では、該混合粉末100重量%とした場
合、該窒化珪素粉末99〜94重量%に、酸化イッテルビウ
ム(Yb2O3)粉末とムライト(3Al2O3・2SiO2)粉末の比
率が3/1〜1/1の割合で混合した該焼結助剤粉末1〜6重
量%を配合して該混合粉末とすることを特徴とする。
[Means for Solving the Problems] A method for manufacturing a silicon nitride sintered body according to the present invention comprises a forming step of forming a formed body from a mixed powder of silicon nitride powder and a sintering aid powder, and In a method for producing a silicon nitride sintered body, which comprises a sintering step of sintering in an oxidizing atmosphere to obtain a sintered body, in the molding step, when the mixed powder is 100% by weight, the silicon nitride powder 99 to The sintering aid powders 1 to 6 mixed with 94% by weight of the ytterbium oxide (Yb 2 O 3 ) powder and the mullite (3Al 2 O 3 .2SiO 2 ) powder in a ratio of 3/1 to 1/1. It is characterized in that the mixed powder is blended in a weight percentage to obtain the mixed powder.

本発明の窒化珪素焼結体の製造方法は、窒化珪素粉末
に特定の組成割合の焼結助剤の微粉末を配合して成形体
を形成し、次いでその成形体を焼結する方法である。
The method for producing a silicon nitride sintered body of the present invention is a method in which silicon nitride powder is mixed with a fine powder of a sintering aid having a specific composition ratio to form a molded body, and then the molded body is sintered. .

窒化珪素粉末は、平均粒径が1.0μm以下の微粉末を
用いるのが焼結性を高め緻密な焼結体を形成するために
好ましい。窒化珪素粉末の量は、99〜94重量%である。
窒化珪素の量が99重量%を超えると焼結助剤の量が不足
して焼結性が高まらず、かつ粒界結晶相が生成できず好
ましくない。窒化珪素の量が94重量%未満であると焼結
助剤が多くなりすぎて焼結性が高まり相対密度は高くな
るが粒界相が多くなり非晶質相が多く生成するため高温
度域での強度が低下するので好ましくない。
As the silicon nitride powder, it is preferable to use a fine powder having an average particle size of 1.0 μm or less in order to enhance the sinterability and form a dense sintered body. The amount of silicon nitride powder is 99-94% by weight.
When the amount of silicon nitride exceeds 99% by weight, the amount of the sintering aid is insufficient, the sinterability does not increase, and the grain boundary crystal phase cannot be generated, which is not preferable. If the amount of silicon nitride is less than 94% by weight, the sintering aid will be too much and the sinterability will be high, and the relative density will be high, but the grain boundary phase will be abundant and the amorphous phase will be abundant in the high temperature range. It is not preferable because the strength at the point of time decreases.

焼結助剤は、酸化イッテルビウム(Yb2O3)粉末とム
ライト粉末の混合物で形成される。その混合比率は、酸
化イッテルビウム:ムライトが3:1〜1:1の範囲の割合と
する。酸化イッテルビウムの量が多くその比率が3:1を
超えると相対密度が低下し高温度での強度が低下するの
で好ましくない。また酸化イッテルビウムの量が少なく
その比率が1:1より小さいと高温度の強度がさらに低下
するので好ましくない。さらにこの焼結助剤の合計量が
1〜6重量%の範囲であることが高温度での強度を保持
するために必要である。焼結助剤の量が1重量%未満で
は、粒界にYb4Si2N2O7の粒界結晶相を形成することがで
きず、6重量%を超えると粒界相の量が多くなり非晶質
相が生成しやすく高温強度が低下するため好ましくな
い。この焼結助剤は平均粒径が0.5μm以下の微粉末で
あることが焼結性を高めるために好ましい。
The sintering aid is formed of a mixture of ytterbium oxide (Yb 2 O 3 ) powder and mullite powder. The mixing ratio is ytterbium oxide: mullite in the range of 3: 1 to 1: 1. If the amount of ytterbium oxide is large and the ratio thereof exceeds 3: 1, the relative density decreases and the strength at high temperature decreases, which is not preferable. Further, if the amount of ytterbium oxide is small and the ratio is less than 1: 1, the strength at high temperature is further lowered, which is not preferable. Further, it is necessary that the total amount of the sintering aids is in the range of 1 to 6% by weight in order to maintain the strength at high temperature. If the amount of the sintering aid is less than 1% by weight, the grain boundary crystal phase of Yb 4 Si 2 N 2 O 7 cannot be formed, and if it exceeds 6% by weight, the amount of the grain boundary phase is large. It is not preferable because the amorphous phase is easily generated and the high temperature strength is lowered. This sintering aid is preferably a fine powder having an average particle size of 0.5 μm or less in order to improve sinterability.

焼結工程は通常の条件、たとえば非酸化性の窒素雰囲
気中で1750〜1850℃で常圧または加圧下でおこなうこと
ができる。焼結温度が1750℃未満では充分に緻密化した
焼結体とならず、1850℃を超えると異常粒成長により組
織が微細化せず曲げ強度が低下するので好ましくない。
また雰囲気のガス圧は、焼結体の緻密性を高めるために
5kg f/cm2以上の窒素ガス中でおこなうのが好ましい。
The sintering step can be performed under normal conditions, for example, in a non-oxidizing nitrogen atmosphere at 1750 to 1850 ° C. under normal pressure or pressure. If the sintering temperature is less than 1750 ° C., the sintered body will not be sufficiently densified, and if it exceeds 1850 ° C., the grain size will not be refined due to abnormal grain growth and bending strength will decrease, which is not preferable.
Also, the gas pressure of the atmosphere is set to increase the compactness of the sintered body.
It is preferably carried out in a nitrogen gas of 5 kg f / cm 2 or more.

得られる焼結体は、静的酸化試験(1400℃、空気中、
300hr)において酸化増量が少なく従来の窒化珪素焼結
体より耐酸化性が向上した。この理由は充分解明されて
いないが、粒界の結晶質相であるYb4Si2N2O7が生成する
ため、非晶質界のSi3N4がより酸化されにくくなってい
るものと推測される。
The obtained sintered body was subjected to a static oxidation test (1400 ° C, in air,
After 300 hours, the increase in oxidation was small and the oxidation resistance was improved compared to the conventional silicon nitride sintered body. The reason for this has not been fully clarified, but Yb 4 Si 2 N 2 O 7, which is the crystalline phase of the grain boundary, is generated, and Si 3 N 4 in the amorphous boundary is more difficult to be oxidized. Guessed.

[作用] 本発明の窒化珪素焼結体の製造方法では、酸化イッテ
ルビウムとムライトを特定割合で混合した混合粉末を焼
結助剤として窒化珪素を焼結する。その結果得られる焼
結体の粒界では、焼結助剤と窒化珪素とにより形成され
るYb4Si2N2O7が存在するため、液相部分が少なくなるた
め高温度域に於ける焼結体の強度低下は少ないものとな
る。
[Operation] In the method for producing a silicon nitride sintered body of the present invention, silicon nitride is sintered using a mixed powder obtained by mixing ytterbium oxide and mullite at a specific ratio as a sintering aid. At the grain boundaries of the resulting sintered body, Yb 4 Si 2 N 2 O 7 formed by the sintering aid and silicon nitride is present, so that the liquid phase portion is reduced, so that the temperature range is high. The decrease in strength of the sintered body is small.

さらに粒界に結晶質相であるYb4Si2N2O7が存在するた
め窒化珪素の耐酸化性が向上する。
Further, since the crystalline phase of Yb 4 Si 2 N 2 O 7 is present at the grain boundaries, the oxidation resistance of silicon nitride is improved.

[実施例] 以下実施例により具体的に説明する。[Examples] Specific examples will be described below.

成形工程は、平均粒径が0.5μmの高純度の窒化珪素
粉末と、焼結助剤として平均粒径が0.2μmの酸化イッ
テルビウム(Yb2O3)とムライト(3Al2O3・2SiO2)の粉
末を表に示す割合で秤量した混合粉末を加え、さらにエ
タノールを加えてボールミル中で混合をおこなった。エ
タノールを除去し乾燥した混合粉末を金型で角棒状に成
形した。得られた成形体を二次成形として3000kg/cm2
静水圧を負荷して(5×4×50mm)の成形体を作製し
た。
Molding step, the average particle size of 0.5μm high purity silicon nitride powder of an average particle diameter as a sintering aid is 0.2μm ytterbium oxide (Yb 2 O 3) and mullite (3Al 2 O 3 · 2SiO 2 ) The mixed powder was weighed in the ratio shown in the table, ethanol was further added, and the mixture was mixed in a ball mill. The ethanol-removed and dried mixed powder was molded into a square rod shape with a mold. The obtained molded body was subjected to secondary molding to apply a hydrostatic pressure of 3000 kg / cm 2 to prepare a molded body (5 × 4 × 50 mm).

焼結工程は、上記の成形体を窒素雰囲気下でガス圧を
10kg f/cm2とし1750〜1850℃で焼結した。
In the sintering step, the gas pressure of the above molded body under a nitrogen atmosphere is maintained.
Sintering was carried out at 1750 to 1850 ° C at 10 kg f / cm 2 .

表に各試料の原料の組成割合と焼結温度と焼結体の相
対密度および4点曲げ強度(室温、1200℃、1400℃)を
示す。
In the table, the composition ratio of the raw material of each sample, the sintering temperature, the relative density of the sintered body, and the four-point bending strength (room temperature, 1200 ° C, 1400 ° C) are shown.

相対密度は、アルキメデス法により測定した。 The relative density was measured by the Archimedes method.

4点曲げ強度は、JIS規格の曲げ試験片(3×4×36m
m)に加工し、JIS規格に基づき室温、1200℃、1400℃の
曲げ強度を測定した。
4-point bending strength is based on JIS standard bending test pieces (3 x 4 x 36 m
Then, the bending strength at room temperature, 1200 ° C and 1400 ° C was measured according to JIS standard.

その結果、実施例のNo.1〜9は、密度が98.0%TD以上
あり、曲げ強度は室温で800(MPa)以上あり、1200℃で
は690〜790(MPa)あり、1400℃では605〜670(MPa)で
低下の度合が著しく少ない。特にNo.5は温度による強度
の低下が特に少ない焼結体である。
As a result, Nos. 1 to 9 of the examples have a density of 98.0% TD or more, a bending strength of 800 (MPa) or more at room temperature, 690 to 790 (MPa) at 1200 ° C, and 605 to 670 at 1400 ° C. (MPa), the degree of decrease is extremely small. In particular, No. 5 is a sintered body whose strength is not significantly reduced by temperature.

比較例No.1、2では焼結助剤の量が多いため1400℃の
強度が450、300(MPa)と低下が著しい。しかし相対密
度は99.2、99.5%で焼結温度が1750℃でも充分な緻密 性を有する。No.3は、ムライトが少ない場合で、焼結温
度が高くても相対密度が97.0%で緻密化していない。そ
して1200℃および1400℃における強度低下は、比較例の
No.1および2の場合より少ないが実施例よりは低い値で
ある。No.4はNo.3の逆でムライトの多い場合で、室温で
の強度はNo.3より高いが1200℃および1400℃ではNo.3よ
り強度が低い。No.5、6は従来のスピネルとイットリア
を焼結助剤としその量と割合を変えた場合で、高温度で
の強度の低下が大きい。
In Comparative Examples Nos. 1 and 2, since the amount of the sintering aid was large, the strength at 1400 ° C. was significantly reduced to 450 and 300 (MPa). However, the relative densities are 99.2 and 99.5%, and the density is sufficient even if the sintering temperature is 1750 ° C. Has the property. No. 3 is a case where the amount of mullite is small, and the relative density is 97.0% even if the sintering temperature is high, and it is not densified. And the decrease in strength at 1200 ° C and 1400 ° C is
Although it is less than in the case of Nos. 1 and 2, the value is lower than that of the example. No. 4 is the reverse of No. 3 and has a lot of mullite. The strength at room temperature is higher than that of No. 3, but it is lower than that of No. 3 at 1200 ℃ and 1400 ℃. Nos. 5 and 6 are the cases where the conventional spinel and yttria were used as the sintering aids and the amounts and proportions thereof were changed, and the decrease in strength at high temperature was large.

[効果] 本発明の窒化珪素焼結体の製造方法によれば、焼結助
剤に酸化イッテルビウムとムライトとを特定組成割合の
混合物を用いて焼結することにより、焼結体中の粒界に
Yb4Si2N2O7の結晶質相が形成されるので、焼結体の高温
度での強度低下が抑制できる。またこの方法で製造され
た窒化珪素の焼結体は、酸化による増量が少なくエンジ
ン部品としての使用が可能となる。
[Effect] According to the method for manufacturing a silicon nitride sintered body of the present invention, the grain boundary in the sintered body is obtained by sintering ytterbium oxide and mullite as a sintering aid with a mixture having a specific composition ratio. To
Since the crystalline phase of Yb 4 Si 2 N 2 O 7 is formed, it is possible to suppress the strength reduction of the sintered body at high temperature. In addition, the silicon nitride sintered body produced by this method can be used as an engine part because the amount of increase due to oxidation is small.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】窒化珪素粉末と焼結助剤粉末との混合粉末
から成形体を成形する成形工程と、該成形体を非酸化性
雰囲気で焼結して焼結体とする焼結工程とからなる窒化
珪素焼結体の製造方法において、 該成形工程では、該混合粉末を100重量%とした場合、
該窒化珪素粉末99〜94重量%に、酸化イッテルビウム
(Yb2O3)粉末とムライト(3Al2O3・2SiO2)粉末の比率
が3/1〜1/1の割合で混合した該焼結助剤粉末1〜6重量
%を配合して該混合粉末とすることを特徴とする窒化珪
素焼結体の製造方法。
1. A molding step of molding a molded body from a mixed powder of silicon nitride powder and a sintering aid powder, and a sintering step of sintering the molded body in a non-oxidizing atmosphere to form a sintered body. In the method for producing a silicon nitride sintered body consisting of, in the molding step, when the mixed powder is 100% by weight,
The sintering, in which 99 to 94% by weight of the silicon nitride powder is mixed with the ytterbium oxide (Yb 2 O 3 ) powder and the mullite (3Al 2 O 3 .2SiO 2 ) powder in a ratio of 3/1 to 1/1. A method for producing a silicon nitride sintered body, characterized in that 1 to 6% by weight of auxiliary powder is blended to obtain the mixed powder.
JP1302986A 1989-11-21 1989-11-21 Method for producing silicon nitride sintered body Expired - Fee Related JP2687633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1302986A JP2687633B2 (en) 1989-11-21 1989-11-21 Method for producing silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1302986A JP2687633B2 (en) 1989-11-21 1989-11-21 Method for producing silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPH03164473A JPH03164473A (en) 1991-07-16
JP2687633B2 true JP2687633B2 (en) 1997-12-08

Family

ID=17915558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1302986A Expired - Fee Related JP2687633B2 (en) 1989-11-21 1989-11-21 Method for producing silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JP2687633B2 (en)

Also Published As

Publication number Publication date
JPH03164473A (en) 1991-07-16

Similar Documents

Publication Publication Date Title
JP2842723B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JP2687632B2 (en) Method for producing silicon nitride sintered body
JPH0449509B2 (en)
JP2687633B2 (en) Method for producing silicon nitride sintered body
JP3208181B2 (en) Silicon nitride based sintered body
JP2736386B2 (en) Silicon nitride sintered body
JPH07330436A (en) Silicon nitride heat resistant member and its production
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JP2687634B2 (en) Method for producing silicon nitride sintered body
JPH09157028A (en) Silicon nitride sintered compact and its production
JP2746761B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2892186B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2671539B2 (en) Method for producing silicon nitride sintered body
JPH078746B2 (en) Silicon nitride ceramics and method for producing the same
JP3271123B2 (en) Method for producing composite of silicon nitride and boron nitride
JP2684250B2 (en) Silicon nitride sintered body and method for producing the same
JP3216973B2 (en) Silicon nitride sintered body and method for producing the same
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JP3034099B2 (en) Silicon nitride sintered body and method for producing the same
JP3667145B2 (en) Silicon nitride sintered body
JP2783702B2 (en) Silicon nitride sintered body
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JPH0535107B2 (en)
JPH05170542A (en) Silicon nitride-silicon carbide composite sintered product
JPH03141163A (en) Production of sintered silicon nitride

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees