JPS63103933A - Measuring instrument for large area optical distortion - Google Patents

Measuring instrument for large area optical distortion

Info

Publication number
JPS63103933A
JPS63103933A JP25028386A JP25028386A JPS63103933A JP S63103933 A JPS63103933 A JP S63103933A JP 25028386 A JP25028386 A JP 25028386A JP 25028386 A JP25028386 A JP 25028386A JP S63103933 A JPS63103933 A JP S63103933A
Authority
JP
Japan
Prior art keywords
light
inspected
lens
plate
convex lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25028386A
Other languages
Japanese (ja)
Inventor
Yasuo Ueda
植田 安生
Chiyotsugu Hitomi
人見 千代次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP25028386A priority Critical patent/JPS63103933A/en
Publication of JPS63103933A publication Critical patent/JPS63103933A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To detect the entire surface of a scanned body such as a large-area transparent molding within one visual field by passing light beams from a light source through a sensitive red detection plate after passing it through a convex lens and a 1st polarizing plate, and further passing the light through a convex lens right after that. CONSTITUTION:The light beams emitted by the light source 1 after passing through a heat insulation filter 2 are made into parallel light by the convex lens 3 and the light beams are passed through the 1st polarizing plate 4 and sensitive red detection plate 5, and expanded by the convex lens 6. The expanded light beams are further passed through a light scattering plate 7, the large- area body 12 to be inspected, a 2nd polarizing plate 9, and a condenser lens 10 to reach a detection part 11. The measurable area of the body 12 whose optical distortion is to be measured is determined by the focal length of the convex lens 6 and the distance between the lens 6 and light scattering plate 7 (in strict, lens 6 and body 12 to be inspected). When the distance is long or when the focal length of the lens 6 is short, the measurable area increases. Further, the focal length of the projection lens 6 is preferably short on condition that a chromatic aberration is not obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光学的に透明あるいは半透明な物質の光学歪
みを測定して、該物質の光学的性吠を測定する装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an apparatus for measuring the optical distortion of an optically transparent or translucent substance to measure the optical distortion of the substance. .

(従来の技術) 光学的に透明なプラスチックシー)、成E物、ガラス製
品などの成形時の光学歪みを簡単に測定する方法として
、これら成形体すなわち被測定物の複屈折を光強度的に
測定する方法が従来から既に知られている。この方法は
、第2図に示すように相直交する二枚の偏光板4,9の
間に測定しようとする被検査物12を置き、該被検査物
の複屈折に応じた光強度で表示する方法である。光[+
から出た光は、被検査物12を通過しない部分では、第
2偏光板に遮断されて観測者に届かず、従って暗視野に
なる(E)。
(Prior art) As a method to easily measure the optical distortion during molding of optically transparent plastic sheets, electronic products, glass products, etc., the birefringence of these molded objects, that is, the object to be measured, is measured in terms of light intensity. Methods for measuring this have already been known. In this method, as shown in Fig. 2, an object to be measured 12 is placed between two orthogonal polarizing plates 4 and 9, and the light intensity is displayed according to the birefringence of the object. This is the way to do it. light [+
The portion of the light that does not pass through the object to be inspected 12 is blocked by the second polarizing plate and does not reach the observer, resulting in a dark field (E).

他方、複屈折を存する被検査物12を通過する場合、光
は、被検査物12で歪みを生じるため、複屈折の程度に
応じて第2偏光板0を通過するため明るくなる(D)。
On the other hand, when passing through the object to be inspected 12 that has birefringence, the light becomes distorted in the object to be inspected 12 and becomes brighter as it passes through the second polarizing plate 0 depending on the degree of birefringence (D).

従って被検査物12の複屈折の程度に応じた明るい像が
表示される。ところが、表示が白黒であり、且つ複屈折
の主軸方向を表わすことが不可能である。このため、例
えば、光デイスク基板の射出成形現場において、複屈折
の方向に対応して、簡単に成形条件を変更するといった
用途には使用不可能であった。また光学歪みの程度を定
量に把握することができず、定性評価用途に限定されて
いた。
Therefore, a bright image corresponding to the degree of birefringence of the object 12 to be inspected is displayed. However, the display is black and white, and it is impossible to indicate the principal axis direction of birefringence. For this reason, it cannot be used, for example, in an application where molding conditions are easily changed in response to the direction of birefringence at an injection molding site for optical disk substrates. Furthermore, it was not possible to quantitatively determine the degree of optical distortion, and the use of this method was limited to qualitative evaluation.

(発明が解決しようとする問題点) これらの欠点を改良するために、第3図に示すように相
直交する偏光板4.9の間に鋭敏赤色検板5を入れ光学
歪みの主軸を表わすことを可能にした光学歪み検査装置
も知られている。この鋭敏赤色検板5は、相直交する偏
光板の主軸と45゜の角度で挿入すると、被検査物12
が複屈折のない場合には赤色をしめすが、複屈折を有す
る場合その程度と方向に応じて、色相が鋭敏に変化する
性質を有する透明な位相板である。このときの鋭敏赤色
検[5のレターデージ9ン値(複屈折XvL厚)は約5
30nmであるが、複屈折に対して、上記の被検査物の
光学歪みを主軸に対して検出する機能を発揮しさえすれ
ば、レターデーションfJ1の範囲は限定されない。こ
の性質を利用して、被検査物12を通過して検出された
色相から、被検査物の複屈折と、その主軸方向を検出で
きる(F)。ところが用いられる鋭敏赤色検板5は、上
述したように微少のレターデーション値の変動に対し色
相を赤色から鋭敏に変化させる性質を仔しているため、
加工精度が要求され、大面積の鋭敏赤色検板の作成は困
nであり、該鋭敏赤色検板5は高々50■■直径程度の
ものしか得られていない。従って従来の光学歪み検査装
置では、大面積の被検査物を1回のセットでは検出およ
び測定はできなかった。ここで大面積の被検査物として
は例えば直径120■−から直径300.、の光ディス
クの基板などがあげられる。さらに大面積の被検査物の
測定も可能である。
(Problems to be Solved by the Invention) In order to improve these drawbacks, a sensitive red detector plate 5 is inserted between the mutually orthogonal polarizing plates 4 and 9 to represent the principal axis of optical distortion, as shown in FIG. An optical distortion inspection device that makes it possible to do this is also known. When this sensitive red detection plate 5 is inserted at an angle of 45 degrees with the main axis of the polarizing plate, which is orthogonal to the main axis, the object to be inspected 12
It is a transparent phase plate that exhibits a red color when there is no birefringence, but when it has birefringence, its hue changes sharply depending on the degree and direction of birefringence. At this time, the retardage 9 value (birefringence XvL thickness) of the sensitive red test [5] was approximately 5
Although the retardation fJ1 is 30 nm, the range of the retardation fJ1 is not limited as long as it exhibits the function of detecting the optical distortion of the object to be inspected with respect to the principal axis with respect to birefringence. Utilizing this property, the birefringence of the object to be inspected and its principal axis direction can be detected from the hue detected after passing through the object 12 to be inspected (F). However, the sensitive red detection plate 5 used has the property of sensitively changing the hue from red in response to minute changes in the retardation value, as described above.
Processing accuracy is required, and it is difficult to produce a large-area sensitive red detection plate, and the sensitive red detection plate 5 has only been available with a diameter of about 50mm. Therefore, conventional optical distortion inspection devices cannot detect and measure large-area objects to be inspected in one set. Here, as a large-area object to be inspected, for example, the diameter is 120mm to 300mm. , substrates for optical discs, etc. It is also possible to measure large-area objects.

また、第4図に示すように点光源1′を用いることによ
り、光を拡大して大面積の被検査物の光学歪みを検出す
る試みもなされている。点光源1′から出た光11Jは
、鋭敏赤色検板5と角度aを保ち光散乱板7を経て被検
査物12に達する。
Further, as shown in FIG. 4, an attempt has been made to use a point light source 1' to expand the light and detect optical distortion of a large-area object to be inspected. The light 11J emitted from the point light source 1' reaches the object to be inspected 12 through the light scattering plate 7 while maintaining an angle a with the sensitive red detection plate 5.

この時の鋭敏赤色検板5中での光I!Jの光路を第5図
に拡大して示す、鋭敏赤色検板5の厚みをda %光路
Jと該検板5の垂線とのなす角度をaとすると斜めに通
過する時の光路長dはd、 / cos(a)で表わさ
れ、d、X(1/co s (a)−1)増加する。レ
ターデーション値は光路長に比例するため、レターデー
ション値も変動する。
At this time, light I in the sensitive red detection plate 5! The optical path of J is enlarged in Fig. 5. If the thickness of the sensitive red detection plate 5 is da%, and the angle between the optical path J and the perpendicular to the detection plate 5 is a, then the optical path length when passing obliquely is d. It is expressed as d, /cos(a) and increases by d,X(1/cos(a)-1). Since the retardation value is proportional to the optical path length, the retardation value also varies.

従って、検出位置に、Lにて色相の変化を生じるため、
結局、大面積の物体の光学歪みの評価は不可能であった
Therefore, since a hue change occurs at the detection position at L,
In the end, it was impossible to evaluate the optical distortion of a large-area object.

(問題点を解決するための手段) 本発明は、従来の光学歪測定機のこれらの欠点を改良し
、大面積の成形体等の被検査物の光学歪みを光学的に検
出可能にした装置に関するものである。
(Means for Solving the Problems) The present invention improves these drawbacks of conventional optical strain measuring machines and provides a device that is capable of optically detecting optical distortion of objects to be inspected such as large-area molded bodies. It is related to.

本発明は、前記問題点を解決し、比較的簡単な構成によ
り被検査物の面積が大きくても、被検査物の全体を、1
回のセットで光学歪みを検出し、かつ該被検査物の光学
的性状を測定することができる大面積光学歪み測定装置
である。
The present invention solves the above-mentioned problems, and uses a relatively simple configuration to cover the entire inspected object in one piece even if the area of the inspected object is large.
This is a large-area optical distortion measuring device that can detect optical distortion in one set and measure the optical properties of the object to be inspected.

すなわち本発明は 光源1、第1偏光板4、被検査物12、第2偏光板9、
検出部11の順に配設され、被検査物12の光学歪みを
検出部11にて検出することによって該被検査物の光学
性状を測定する装置において、光源1からの光を、凸レ
ンズ3を通過させ、次いで第1偏光板4を通過させ、次
いで鋭敏赤色検板5を通過させ、その直後に凸レンズ6
を通過させ、次いで被検査物12を通過させ、次いで第
2偏光板9を通過させ、次いで検出部11で検出するこ
とによって、該被検査物12の光学性状を測定すること
を特徴とする大面積光学歪み測定装置である。
That is, the present invention includes a light source 1, a first polarizing plate 4, an object to be inspected 12, a second polarizing plate 9,
In the apparatus, which is arranged in the order of the detection section 11 and measures the optical properties of the object to be inspected by detecting the optical distortion of the object 12 with the detection section 11, light from the light source 1 passes through the convex lens 3. Then, it passes through the first polarizing plate 4, then the sensitive red detection plate 5, and immediately after that, the convex lens 6
The optical property of the object to be inspected 12 is measured by passing the object to be inspected, passing the object to be inspected 12, passing the second polarizing plate 9, and then detecting with the detection section 11. This is an area optical distortion measurement device.

以下、図面により、本発明の原理、および実施例を説明
する。第1図は、本発明の実施例の1例である。1は光
源、2は断熱フィルター、3は凸レンズ、4,9は、相
直交する偏光板である。偏光板4.9は、例えば、ポリ
ビニールアルコール−よう素糸、ポリビニールアルコー
ル−染料系などの吸収型プラスチック偏光板が用いられ
るが、光源に近いif偏光板は、グラ/トムソンプリズ
ム、とコル氏偏光プリズム、薄膜型偏光板なども用いる
ことができる。5は鋭敏赤色横板、Gは凸レンズ、7は
光散乱板である。光散乱板7は、例えば擦りガラス、マ
ット加工したプラスチック板であり、光源および光学系
の不必要な光をカットするものである。なお、図中の矢
印は、光または光路を示す。12は測定しようとする成
形体等であり、すなわち被検査物である。
Hereinafter, the principle and embodiments of the present invention will be explained with reference to the drawings. FIG. 1 is an example of an embodiment of the present invention. 1 is a light source, 2 is a heat insulating filter, 3 is a convex lens, and 4 and 9 are mutually orthogonal polarizing plates. As the polarizing plate 4.9, for example, an absorptive plastic polarizing plate such as polyvinyl alcohol-iodine yarn or polyvinyl alcohol-dye type is used, but the IF polarizing plate near the light source is a Gra/Thomson prism, A polarizing prism, a thin film type polarizing plate, etc. can also be used. 5 is a sensitive red horizontal plate, G is a convex lens, and 7 is a light scattering plate. The light scattering plate 7 is, for example, frosted glass or a matte-treated plastic plate, and serves to cut unnecessary light from the light source and the optical system. Note that arrows in the figures indicate light or optical paths. Reference numeral 12 indicates a molded object or the like to be measured, that is, an object to be inspected.

10は集光用の凸レンズで、v52偏光板9を通過した
光を検出部11に集光する。8はカラースケールである
。カラースケール8は、例えば、透明プラスチックフィ
ルムを引きのばして所定の光学歪みを持たせたものを段
階的に並べて色により光学歪みの大きさを判定できるよ
うにしたものである。カラースケール8は、他に写真或
いは印刷された色見本を用いてもよい。
Reference numeral 10 denotes a convex lens for condensing light, which condenses the light that has passed through the V52 polarizing plate 9 onto the detection section 11 . 8 is a color scale. The color scale 8 is, for example, a transparent plastic film that has been stretched to have a predetermined optical distortion and is arranged in stages so that the magnitude of the optical distortion can be determined based on the color. The color scale 8 may also be a photograph or a printed color sample.

光源1から出た光は断熱フィルター2を通過後、凸し/
ズ3により平行光線にされ、第1偏光板4、鋭敏赤色横
板5を通り凸し/ズ6にて拡大される。拡大された光線
は更に光散乱板7、大面積の被検査物12、第2偏光板
9、集光レンズ10を経て検出部11に達する。
After the light emitted from the light source 1 passes through the heat insulating filter 2, it becomes convex/
The light is made into parallel light by the lens 3, passes through the first polarizing plate 4 and the sensitive red horizontal plate 5, and is expanded by the lens 6. The expanded light beam further passes through the light scattering plate 7, the large-area object to be inspected 12, the second polarizing plate 9, and the condensing lens 10, and reaches the detection unit 11.

光学歪みを検出しようとする被検査物12の測定可能な
面積は、凸レンズ6の焦点距離と、該レンズと光散乱板
7との距離(正確には、該レンズと被検査物12との距
離)で決まる。該距離が長いか、レンズ6の焦点距離が
短いと、測定可能な面積は増加する。凸レンズ6の焦点
距mは、色集差をおこさなければ短い方が好ましい。こ
れは、該装置の高さまたは長さを減少できるためである
。また、本発明に使用する全ての凸レンズは、凹レンズ
、フィルター、他の光学系と凸レンズの組み合わせであ
ってもより、機能的に凸レンズとしての光路拡散(拡大
)機能を有するものであればよ(、円筒型の凸レンズで
あってもよい。
The measurable area of the inspected object 12 for which optical distortion is to be detected is determined by the focal length of the convex lens 6 and the distance between the lens and the light scattering plate 7 (more precisely, the distance between the lens and the inspected object 12). ) is determined. If the distance is long or the focal length of the lens 6 is short, the measurable area increases. The focal length m of the convex lens 6 is preferably short unless chromatic aggregation occurs. This is because the height or length of the device can be reduced. In addition, all convex lenses used in the present invention may be concave lenses, filters, or combinations of other optical systems and convex lenses, as long as they have the optical path diffusion (expansion) function of a convex lens. , or may be a cylindrical convex lens.

凸レンズ3は鋭敏赤色横板5中での高踏が実質的に垂直
に通過することが好ましいため、光路を平行光線に直す
ためのものである。この凸レンズ3を入れる位置は、光
源lとフィルター2との間であってもよいし、フィルタ
ー2ト第1偏光板4との間であってもよいし、第1偏光
板4と鋭敏赤色検板5との間でもよい。
The convex lens 3 is for converting the optical path into a parallel light beam, since it is preferable that the tread in the sensitive red horizontal plate 5 pass substantially perpendicularly. The convex lens 3 may be inserted between the light source 1 and the filter 2, between the filter 2 and the first polarizing plate 4, or between the first polarizing plate 4 and the sensitive red detector. It may also be between the plate 5.

断熱フィルター2は、光源1の熟練をカットするため、
偏光板等の熱に対する保護が必要な場合に使用すること
が好ましい。
The heat insulation filter 2 cuts the light source 1's skill.
It is preferable to use it when protection against heat, such as a polarizing plate, is required.

光源1は特にに限定されないが、例えば5 Q光源、ハ
ロゲンランプ等である。高強度の光源の使用により、よ
り大面積の検査物の測定ができる。
The light source 1 is not particularly limited, but may be, for example, a 5Q light source, a halogen lamp, or the like. The use of a high-intensity light source allows measurement of larger areas of test objects.

また、光の強度を変えられるように、光強度:!!4 
節部を皐りつけておくのが好ましい。
Also, you can change the intensity of the light:! ! 4
It is preferable to tighten the joints.

凸し7ズ10は色収差のないものであれば、凹レンズ、
フィルター、他の光学系凸レンズの組み合わせや、フレ
ネルレンズ等であってもよ<、機能的に凸レンズとして
の集光機能ををするものであればよい。
If the convex lens 7 lens 10 has no chromatic aberration, it can be a concave lens.
It may be a filter, a combination of other optical convex lenses, a Fresnel lens, etc., as long as it functions as a convex lens to condense light.

検出部11は肉眼でもよいが、受光素子を用いて画像処
理機器により図面や数値データを取り出した方がより筒
便正確であり、被測定物の生産ラインにおいて、合格、
不合格の信号を出させる方法でもよい。この受光素子は
例えば、MOS形、或いはCCD形のエリアイメージセ
ンサ、ラインイメージセンサ等である。またカメラによ
り撮影記録してもよい。
The detection unit 11 may be detected with the naked eye, but it is more accurate to extract the drawings and numerical data using an image processing device using a light receiving element.
It is also possible to issue a signal of failure. This light receiving element is, for example, a MOS type or CCD type area image sensor, line image sensor, or the like. Alternatively, it may be photographed and recorded using a camera.

(発明の効果) 以上説明したように、本発明の大面積光学歪み検査装置
は、鋭敏赤色検板5と凸レンズ6を用いることにより、
大面積の透明な成形体等の被検査物12の全面を1視野
で検出することができ、且つ、該被検査物の光学歪みを
、その大きさと歪みの主軸方向につき定量的に検出(ま
たは表示)可能とするものである。例えば、直径120
〜300−■の大きさの光デイスク基板の射出成形現場
や、プラスチックフィルムの製造条件へのフィードバッ
クを可能にする。
(Effects of the Invention) As explained above, the large-area optical distortion inspection device of the present invention uses the sensitive red detection plate 5 and the convex lens 6 to achieve the following:
It is possible to detect the entire surface of an inspection object 12 such as a large-area transparent molded object in one field of view, and quantitatively detect (or display). For example, diameter 120
This makes it possible to provide feedback to injection molding sites for optical disk substrates up to 300 mm in size and to manufacturing conditions for plastic films.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の1実施例を示す構成図、第2図は、
従来の光学歪み検出のための概略構成図、第3図は、従
来の鋭敏赤色検板を用いたときの小面積の光学歪みの大
きさと主軸の方向を定址的に検出するための概略構成図
、第71図は、従来の点光源を用いての大面積の光学歪
みを検出するだめの概略構成図、第5図は、第4図にお
ける鋭敏赤色検板中での光路の拡大図である。 図中1は光源、1′は点光源、2は断熱フィルター、3
は凸レンズ、4は第1偏光板、5は鋭敏赤色検板、6は
凸レンズ、7は光散乱板、8はカラースケール、9はi
2偏光板、10は凸レンズ、11は検出部(肉眼または
光学的検出機器)、12は被検査物である。図中の矢印
は、光または光路を示す。 特許出願人  東洋紡績株式会社 羊2 図 E 嬰32 FG)−1 第 4 B 手5 凹
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG. 2 is a configuration diagram showing one embodiment of the present invention.
A schematic configuration diagram for conventional optical distortion detection. Figure 3 is a schematic configuration diagram for constant detection of the magnitude of optical distortion and the direction of the principal axis in a small area when using a conventional sensitive red detection plate. , FIG. 71 is a schematic configuration diagram of a device for detecting optical distortion in a large area using a conventional point light source, and FIG. 5 is an enlarged view of the optical path in the sensitive red detection plate in FIG. 4. . In the figure, 1 is a light source, 1' is a point light source, 2 is a heat insulating filter, and 3
is a convex lens, 4 is a first polarizing plate, 5 is a sensitive red detection plate, 6 is a convex lens, 7 is a light scattering plate, 8 is a color scale, 9 is i
2 polarizing plates, 10 is a convex lens, 11 is a detection unit (naked eye or optical detection device), and 12 is an object to be inspected. Arrows in the figures indicate light or optical paths. Patent applicant Toyobo Co., Ltd. Sheep 2 Figure E 32 FG)-1 4th B Hand 5 Concave

Claims (1)

【特許請求の範囲】[Claims] 光源1、第1偏光板4、被検査物12、第2偏光板9、
検出部11の順に配設され、被検査物12の光学歪みを
検出部11にて検出することによって該被検査物の光学
性状を検査測定する装置において、光源1からの光を、
凸レンズ3を通過させ、次いで第1偏光板4を通過させ
、次いで鋭敏赤色検板5を通過させ、その直後に凸レン
ズ6を通過させ、次いで被検査物12を通過させ、次い
で第2偏光板9を通過させ、次いで検出部11で検出す
ることによって、該被検査物12の光学歪みを光学的に
検出し、該被検査物12の光学性状を測定することを特
徴とする大面積光学歪み測定装置。
Light source 1, first polarizing plate 4, object to be inspected 12, second polarizing plate 9,
In an apparatus for inspecting and measuring the optical properties of the object to be inspected by detecting the optical distortion of the object to be inspected 12 by detecting the optical distortion of the object to be inspected 11, the light from the light source 1 is
It passes through the convex lens 3, then the first polarizing plate 4, then the sensitive red detection plate 5, immediately after that, the convex lens 6, the object to be inspected 12, and then the second polarizing plate 9. A large area optical distortion measurement characterized in that the optical distortion of the object to be inspected 12 is optically detected by passing through the object 12 and then detected by the detection unit 11, and the optical properties of the object to be inspected 12 are measured. Device.
JP25028386A 1986-10-20 1986-10-20 Measuring instrument for large area optical distortion Pending JPS63103933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25028386A JPS63103933A (en) 1986-10-20 1986-10-20 Measuring instrument for large area optical distortion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25028386A JPS63103933A (en) 1986-10-20 1986-10-20 Measuring instrument for large area optical distortion

Publications (1)

Publication Number Publication Date
JPS63103933A true JPS63103933A (en) 1988-05-09

Family

ID=17205595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25028386A Pending JPS63103933A (en) 1986-10-20 1986-10-20 Measuring instrument for large area optical distortion

Country Status (1)

Country Link
JP (1) JPS63103933A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102998096A (en) * 2012-12-17 2013-03-27 吉林大学 Method for measuring focal distance of convex lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102998096A (en) * 2012-12-17 2013-03-27 吉林大学 Method for measuring focal distance of convex lens

Similar Documents

Publication Publication Date Title
CN101086483B (en) Apparatus and method for inspecting film defect
JP5024935B2 (en) Device and method for detecting defect of light transmitting member
JPH03267745A (en) Surface property detecting method
JPH0478137B2 (en)
US6486951B2 (en) Method of evaluating an anisotropic thin film and an evaluating apparatus
US3804522A (en) System for remote reading the angular position of a surface by detecting polarized light reflected therefrom
JP2002517717A (en) Turbidimeter calibration test system
JP2000028546A (en) Defect inspecting method and device for optically compensating film
JPS63103933A (en) Measuring instrument for large area optical distortion
US4398822A (en) Two-axis angular deviation measurement system with target image rotating means
CN106403829B (en) Coating thickness detector based on double light path infrared reflection method
JP2001124538A (en) Method and device for detecting defect in surface of object
CN114371151A (en) Transmittance testing method and transmittance testing system
JPS60228943A (en) Inspection of surface state of stainless steel plate
JPS62287131A (en) Large-area optical strain inspection instrument
US2923198A (en) Method and apparatus for examining sheet materials
JPS63269045A (en) Image processing type double refractive index meter
JP3365881B2 (en) Lens refractive index inspection device
JPH0943139A (en) On-line polarimeter
JPH10122833A (en) Surface measuring equipment
KR20090018278A (en) Image-forming apparatus and laser processing apparatus including the same, image forming method
JPS60210745A (en) Visual sensor system
JPS5995444A (en) Inspection device for flaw of transparent sheet-like object and flaw inspecting method of transparent sheet-like object using said device
JPH03296649A (en) Apparatus for detecting flaw in transparent body
KR20220117060A (en) Defect inspection apparatus