JPS63103012A - Production of molten iron containing chromium - Google Patents

Production of molten iron containing chromium

Info

Publication number
JPS63103012A
JPS63103012A JP24667986A JP24667986A JPS63103012A JP S63103012 A JPS63103012 A JP S63103012A JP 24667986 A JP24667986 A JP 24667986A JP 24667986 A JP24667986 A JP 24667986A JP S63103012 A JPS63103012 A JP S63103012A
Authority
JP
Japan
Prior art keywords
furnace
chromium
tuyere
powdered
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24667986A
Other languages
Japanese (ja)
Inventor
Katsuhiro Tanaka
勝博 田中
Tomiya Fukuda
福田 富也
Fumiaki Orimo
下茂 文秋
Yoshiaki Nishimoto
西本 義明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP24667986A priority Critical patent/JPS63103012A/en
Publication of JPS63103012A publication Critical patent/JPS63103012A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0026Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide in the flame of a burner or a hot gas stream

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To execute the smelting reduction to chrome ore under stable condition and good heat efficiency by controlling blowing condition from a tuyere and blowing quantity of powdery material under the prescribed condition in a verti cal type furnace having upper step tuyere, wherefrom the powdery material is supplied into furnace. CONSTITUTION:The chrome source, iron source, carbonic material and slag making agent 10-12 are changed from a raw material charging hole 1 at the upper part of furnace. Next, the high temp. oxygen-rich air is blown from the upper and lower tuyeres 2, 3 arranged near at the lower part of furnace. Further, at the same time, the powdery chrome ore 15 and powdery slag making agent 16 are supplied in the furnace from the upper step tuyere 2. And the blowing condition for the above air and the blowing quantity for the powdery material are controlled, so as to satisfy the conditional inequality, in which uses QS for sensible heat (kcal/min) of the high temp. oxygen rich air supplied in the furnace from the upper step tuyere 2, QR for heat of reaction (kcal/min) of the carbonic material to the above air supplied in the furnace from the tuyere 2 and WP for weight (kg/min) of powdery material supplied in the furnace from the tuyere 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電力を製錬用の・エネルギーとして使用する
ことなく含クロム溶銑を製造する方法において、クロム
源の一部としてクロム鉱石を使用しこのクロム鉱石の溶
融還元も同時に行えるようにした熱経済的な含クロム溶
銑の製造法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention uses chromium ore as part of the chromium source in a method for producing chromium-containing hot metal without using electricity as energy for smelting. This invention relates to a thermoeconomic method for producing chromium-containing hot metal that enables simultaneous reduction of chromium ore.

〔従来の技術〕[Conventional technology]

従来より、ステンレス鋼製造用の含クロム溶銑の製造法
としては、電気炉による方法が一つの技術体系を形成し
ている。この方法は、製鋼用アーク炉に、クロム源1 
コークス、フラックスおよび必要に応じて副材料を装入
して溶解し、含クロム溶銑を得るものである。そのさい
のクロム源としては、高炭素フェロクロムが使用される
のが通常である、この高炭素フェロクロムを製造するの
にも電気炉が使用され、この場合にはクロム鉱石の半還
元ベレー/ ト等が使用されたり焼結鉱が使用されたり
する。この従来法によると電力消費量が非常に大きいの
で、近年、クロム鉱石を炭材等の還元材によって直接的
に溶融還元する方法の開発が推進されている。その傾向
としては1転炉によってクロム鉱石の溶融還元を行う方
間に注力されているようである1例えば特開昭58−7
7548号公報。
BACKGROUND ART Conventionally, as a method for producing chromium-containing hot metal for producing stainless steel, a method using an electric furnace has formed one technological system. In this method, a chromium source is added to a steelmaking arc furnace.
Coke, flux, and auxiliary materials as necessary are charged and melted to obtain chromium-containing hot metal. High carbon ferrochrome is usually used as the chromium source in this case. Electric furnaces are also used to produce this high carbon ferrochrome, and in this case, semi-reduced berets of chromium ore, etc. or sintered ore. Since this conventional method consumes a very large amount of electricity, in recent years there has been a push to develop a method for directly melting and reducing chromium ore using a reducing agent such as carbonaceous material. The trend seems to be to focus on methods of melting and reducing chromium ore using a converter.
Publication No. 7548.

特開昭59−145758号公報、特開昭59−150
059号公報、特開昭59−150060号公報、特開
昭59−150061号公報、特開昭59−15006
2号公報等は転炉によるクロム鉱石の溶融還元を開示し
ている。また特開昭50−1)6317号公報は特殊な
混合槽を使用してクロム鉱石の溶融還元を行う方法を開
示する。
JP-A-59-145758, JP-A-59-150
059, JP 59-150060, JP 59-150061, JP 59-15006
Publication No. 2 and others disclose melting and reduction of chromium ore using a converter. Furthermore, Japanese Patent Application Laid-Open No. 1983-6317 discloses a method for melting and reducing chromium ore using a special mixing tank.

一方1本願と同一出願人に係る特願昭59−18219
号(特開昭60−162718号公報)において、特殊
な竪型炉を使用し、この竪型炉の羽口にクロム源の一部
としての粉状のクロム鉱石を吹込むことによってその溶
融還元を図る方法を提案した。この出願人の提案に係る
竪型炉による方法の骨子は、炉の上部に原料装入口をそ
して炉の下部付近に上下二段の羽口をもつ竪型炉を用い
て含クロム溶銑を製造するものであり、上部の原料装入
口からクロム源、鉄源、炭材および造滓材を装入し、該
上下の羽口から熱風を吹込むと同時に0羽口から粉状ク
ロム鉱石および発熱材を炉内に供給することにより、こ
の粉状クロム鉱石を溶融還元しながら含クロム溶銑を得
るものである。
On the other hand, Japanese Patent Application No. 18219/1989 filed by the same applicant as the present application
No. 60-162718), a special vertical furnace was used to melt and reduce powdered chromium ore as part of the chromium source by injecting it into the tuyeres of the vertical furnace. We proposed a method to achieve this. The gist of the method using a vertical furnace proposed by this applicant is to produce chromium-containing hot metal using a vertical furnace that has a raw material charging port in the upper part of the furnace and two stages of upper and lower tuyere near the bottom of the furnace. The chromium source, iron source, carbon material, and slag material are charged from the upper raw material charging port, and hot air is blown from the upper and lower tuyeres, and at the same time, powdered chromium ore and heat-generating material are charged from the zero tuyere. By supplying this powdered chromium ore into the furnace, chromium-containing hot metal is obtained while melting and reducing the powdered chromium ore.

また、この特開昭60−162718号公報に提案した
方法を部分的に改善した含クロム溶銑の製造法を特願昭
60−192751号、特願昭61−9585号および
特願昭61−9586号に提案した。
In addition, a method for producing chromium-containing hot metal that is a partial improvement of the method proposed in JP-A-60-162718 has been disclosed in Japanese Patent Application No. 60-192751, Japanese Patent Application No. 61-9585, and Japanese Patent Application No. 61-9586. I proposed the issue.

〔発明の目的〕[Purpose of the invention]

本発明の目的とするところは、前記の特願昭59−18
219号(特開昭60−162718号公報)に提案し
た竪型炉による含クロム溶銑製造法の一層の改善にあり
、具体的には、該竪型炉の上段羽口付近での粉体の融液
化挙動について未解決であった問題を解決して、クロム
鉱石を安定してしかも良好な熱効率のもとで溶融還元で
きるようにすることである。
The object of the present invention is to
The purpose is to further improve the method for producing chromium-containing hot metal using a vertical furnace proposed in No. 219 (Japanese Unexamined Patent Publication No. 60-162718). The purpose of the present invention is to solve the unresolved problems regarding the melting behavior and to make it possible to melt and reduce chromium ore stably and with good thermal efficiency.

〔目的を達成する手段〕[Means to achieve the purpose]

本発明は、炉の上部に原料装入口をそして炉の下部付近
に上下二段の羽口をもつ竪型炉を用いて含クロム溶銑を
製造するにさいし、該上部の原料装入口からクロム源、
鉄源、炭材および造滓材を装入し、該上下の羽口から高
温酸素富化空気を吹込むと同時に、上段羽口から粉状ク
ロム鉱石および粉状造滓材からなる粉状材料を炉内に供
給することにより、この粉状クロム鉱石を溶融還元しな
がら含クロム溶銑を製造する方法において。
The present invention provides a method for producing chromium-containing hot metal using a vertical furnace having a raw material charging port in the upper part of the furnace and upper and lower tuyeres near the bottom of the furnace. ,
Iron source, carbon material, and slag material are charged, and high temperature oxygen-enriched air is blown from the upper and lower tuyeres, and at the same time, powdered material consisting of powdered chromium ore and powdered slag material is blown from the upper tuyere. In a method for producing chromium-containing hot metal while melting and reducing this powdered chromium ore by supplying it into a furnace.

上段羽口から炉内に供給する高温酸素富化空気の送風条
件と粉状材料の吹込み量を下記の条件式(1)を満足す
るように制御することを特徴とする。
It is characterized by controlling the blowing conditions of high-temperature oxygen-enriched air supplied into the furnace from the upper tuyere and the amount of powdered material blown so as to satisfy the following conditional expression (1).

1300≧(Q ! + Q l ) / W P ≧
830   ・・(1まただし、Qsは上段羽ロ一本か
ら炉内に供給する高温酸素富化空気の単位時間当りの顕
熱(kcal/min) *  Q 貢は上段羽口一本
から炉内に供給する高温酸素富化空気と炭材との単位時
間当りの反応熱(Kcal/■in)、  そしてWp
は上段羽ロ一本から炉内に供給する粉状材料の単位時間
当りの重!t(Kg/min)を表す。
1300≧(Q!+Ql)/WP≧
830...(1 However, Qs is the sensible heat per unit time (kcal/min) of high-temperature oxygen-enriched air supplied into the furnace from one upper tuyere. The heat of reaction per unit time between the high temperature oxygen-enriched air supplied to the carbonaceous material (Kcal/■in), and Wp
is the weight of powdered material fed into the furnace from one upper impeller per unit time! t (Kg/min).

第1図に本発明法を実施する竪型炉の例を示した0図示
のように、この竪型炉は全体としては縦長のシャフトか
らなり、この炉の上部には、原料装入口1が、また下部
には、上段羽口(複数個)2と下段羽口(複数個)3と
からなる二段羽口が設けられている。4は熱風炉であり
、この熱風炉4で得られた熱風が各羽口2と3に供給さ
れる。
Figure 1 shows an example of a vertical furnace for carrying out the method of the present invention.As shown in Figure 1, this vertical furnace consists of a vertically long shaft as a whole, and a raw material charging port 1 is installed in the upper part of the furnace. Further, in the lower part, two-stage tuyere consisting of upper tuyeres (plurality) 2 and lower tuyeres (plurality) 3 is provided. 4 is a hot air stove, and hot air obtained from this hot air stove 4 is supplied to each tuyere 2 and 3.

そのさい、酸素源5によって熱風に酸素を富化すること
ができるようになっている。上段羽口2にはこの高温酸
素富化空気と共に容器6内の粉状クロム鉱石15と容器
7内の造滓材16キヤリヤガス8によって供給され、こ
れらが上段羽口2から炉内に吹き込まれる。なお図にお
いて、lO〜12は、クロム源としての高炭素フェロク
ロム、鉄源としての鋼屑、炭材としてのコークス、造滓
材としての石灰石や螢石などを収容する容器群であり、
これらの1炉頂装入原料は計量器13によって所定の量
となるように計量されながら原料装入口1から炉内に装
入される。17は出銑0.18は生成した炉内含クロム
溶銑を示している。
At this time, the hot air can be enriched with oxygen by the oxygen source 5. The high-temperature oxygen-enriched air is supplied to the upper tuyere 2 by powdered chromium ore 15 in a container 6, slag material 16 in a container 7, and carrier gas 8, and these are blown into the furnace from the upper tuyere 2. In the figure, 10~12 is a group of containers that contain high carbon ferrochrome as a chromium source, steel scrap as an iron source, coke as a carbon material, limestone and fluorite as a slag material,
These raw materials charged at the top of the furnace are charged into the furnace from the raw material charging port 1 while being weighed to a predetermined amount by a measuring device 13. 17 shows the tapped iron and 0.18 shows the generated chromium-containing hot metal in the furnace.

本発明者らは、このような竪型炉によるクロム鉱石の吹
き込みにさいし、上段羽口から炉内に吹込む粉状クロム
鉱石をどのようにしたら熱効率的に良好に且つ安定して
溶融還元せしめることができるかという点を重点項目に
して実験を重ねた。
In blowing chromium ore into such a vertical furnace, the present inventors have investigated how to melt and reduce the powdered chromium ore, which is blown into the furnace from the upper tuyere, in a thermally efficient and stable manner. We conducted repeated experiments with a focus on whether it could be done.

上段羽口から炉内に吹き込まれた粉状クロム鉱石および
粉状造滓材は、下段羽口前のコークス燃焼領域で溶融し
、その溶融物がコークス充填層を滴下する間にクロム鉱
石が還元されることになるであろうが、この還元反応は
吸熱反応である。したがって、この部分へは適切な熱の
供給が必要となる0本発明者らは、上段羽口前と下段羽
口前で生成する燃焼ガスによって供給される熱量の総和
を一定としたうえで、下段羽口前の燃焼ガスによって供
給される熱量と上段羽口前の燃焼ガスによって供給され
る熱量との相対割合を変化させる実験を行った。
Powdered chromium ore and powdered slag material injected into the furnace from the upper tuyere are melted in the coke combustion area in front of the lower tuyere, and while the melt drips down the coke packed bed, the chromium ore is reduced. However, this reduction reaction is endothermic. Therefore, it is necessary to supply appropriate heat to this part.The present inventors set the total amount of heat supplied by the combustion gas generated in front of the upper and lower tuyeres to be constant, and then An experiment was conducted in which the relative proportion of the amount of heat supplied by the combustion gas in front of the lower tuyere and the amount of heat supplied by the combustion gas in front of the upper tuyere was varied.

すなわち、上下段羽口前の燃焼ガスによる供給熱量は、
炉内に吹き込まれる高温酸素富化空気の顕熱Q、と、こ
の高温酸素富化空気と炭材との反応28Q8との和であ
ると考えることができるが。
In other words, the amount of heat supplied by the combustion gas before the upper and lower tuyeres is:
It can be considered that it is the sum of the sensible heat Q of the high-temperature oxygen-enriched air blown into the furnace and the reaction 28Q8 between this high-temperature oxygen-enriched air and the carbonaceous material.

上下段羽口前での燃焼ガスの供給熱量の全体量は一定と
なるように全体の高温酸素富化空気の送風条件を規制し
たうえ、下段羽口から吹き込む高温酸素富化空気の流量
、温度または酸素富化率を相対的に下げた場合には、こ
れに対応させて、上段羽口から吹き込む高温酸素富化空
気の流量、温度または酸素富化率を相対的に上げるとい
う上下羽口前での燃焼ガスによる供給熱量の相対変化を
与えながら、上段羽口から粉状クロム鉱石と粉状造滓材
からなる粉状材料を単位時間当りW、の量で吹き込みを
行う実験を行った。その実験結果の一例を第2図に示し
た。
The overall blowing conditions of high-temperature oxygen-enriched air are regulated so that the total amount of heat supplied from the combustion gas in front of the upper and lower tuyeres remains constant, and the flow rate and temperature of the high-temperature oxygen-enriched air blown from the lower tuyeres are controlled. Alternatively, if the oxygen enrichment rate is relatively lowered, the flow rate, temperature, or oxygen enrichment rate of the high-temperature oxygen-enriched air blown from the upper tuyeres will be relatively increased. An experiment was conducted in which powdered material consisting of powdered chromium ore and powdered slag material was injected from the upper tuyere at an amount of W per unit time while giving a relative change in the amount of heat supplied by the combustion gas. An example of the experimental results is shown in FIG.

第2図は上段羽口での(Qs+QR)/WPでクロム収
率を整理したものである。第2図の横軸に示す(Qs+
Qa)/Wpの値が大きくなることは、上段羽口前での
粉体の単位重量当りの燃焼ガスの熱量が大きくなること
であり、これに対応して、下段羽口前の燃焼ガスによる
熱量が相対的に小さくなることを示している。第2図に
見られるように、クロム収率は全体的に右下がりに低下
している。つまり、下段羽口前での燃焼ガスによる熱量
が相対的に小さくなるとクロム収率は低下してくる。そ
して、(Qs+Ql)/WFの値が1300(Kcal
/にg)となるところを境にしてこの値を超えるとクロ
ム収率は急激に低下することがわかる。一方+ (Q 
s + Q * ) / W rの値が約800(Kc
al/Kg)となるところを境にしてこの値より小さく
なると粉状物質が羽口前で未溶融のまま滞留する現象が
生じて運転の続行が不可能になることがわかった。
Figure 2 shows the chromium yield in terms of (Qs+QR)/WP at the upper tuyere. (Qs+
An increase in the value of Qa)/Wp means that the amount of heat of the combustion gas per unit weight of powder in front of the upper tuyere increases, and correspondingly, the amount of heat generated by the combustion gas in front of the lower tuyere increases. This shows that the amount of heat becomes relatively small. As seen in FIG. 2, the chromium yield is decreasing downward to the right as a whole. In other words, when the amount of heat generated by the combustion gas in front of the lower tuyere becomes relatively small, the chromium yield decreases. Then, the value of (Qs+Ql)/WF is 1300 (Kcal
It can be seen that when this value is exceeded, the chromium yield decreases rapidly. On the other hand + (Q
s + Q * ) / W r value is about 800 (Kc
It has been found that when the value becomes smaller than this value, a phenomenon occurs in which powdery substances remain unmelted in front of the tuyere, making it impossible to continue operation.

すなわち、(Qs +Q訛)/W、が800〜1300
(Kcal/Kg)となるように、上段羽口の各々から
吹込む高温酸素富化空気の送風条件と粉状物質の量を制
御すれば粉状クロム鉱石の還元が安定して且つ良好に行
われることが判明した。この場合、上段羽口と下段羽口
から吹込む高温酸素富化空気の全体の量は装入物質の量
や種類によって成る値以上に規制することが必要となる
が、この全送風量を上段羽口と下段羽口に配分するさい
の配分割合を適切に調整することによって(QS +Q
つ)/W、が800〜1300(Kcal/Kg)とな
るように制御するのが好適である。そのさい、 (Qs
 +Q、l)/W、の値が800〜1300(Kcal
/Kg)の範囲内であっても操業上許容できる範囲での
出来るだけ小さな値となるようにして下段羽口前での熱
量の供給を増大させるのがよい。すなわち、クロム鉱石
の溶融還元反応(吸熱反応)に要する熱量は主として下
段羽口から供給するのが望ましい。
In other words, (Qs + Q accent)/W is 800 to 1300
(Kcal/Kg), the reduction of powdered chromium ore can be performed stably and well by controlling the blowing conditions of the high-temperature oxygen-enriched air blown from each upper tuyere and the amount of powdery material. It turned out that it was. In this case, it is necessary to regulate the total amount of high-temperature oxygen-enriched air blown from the upper and lower tuyeres to a value greater than or equal to the value determined by the amount and type of charged material; By appropriately adjusting the distribution ratio when distributing to the tuyere and lower tuyere (QS +Q
It is preferable to control the temperature so that the ratio (Kcal/Kg) is 800 to 1300 (Kcal/Kg). At that time, (Qs
+Q, l)/W, value is 800 to 1300 (Kcal
/Kg), it is preferable to increase the amount of heat supplied in front of the lower tuyeres so that the value is as small as possible within the operationally acceptable range. That is, it is desirable that the amount of heat required for the melting reduction reaction (endothermic reaction) of the chromium ore is mainly supplied from the lower tuyere.

実施例1 第1図に示したような炉内径がO,fl+wの竪型炉で
あって、底部に一本の上段羽口と一本の下段羽口を取り
付けたの竪型炉の上部から、第1表に示すような量で炉
頂装入原料を装入し、上段羽口および下段羽口からそれ
ぞれ0.9N+w”/minおよび1.IN+w’/+
*inの流量で、温度が800℃1酸素濃度が28.5
%、1湿分が5g/N+w’の高温酸素富化空気を炉内
に吹き込み、且つ上段羽口からは、第2表に示す粉末の
混合物を(Q s + C++) / W ? −86
8(Kcal/Kg)となる条件で炉内に吹き込んだ、
粉体の滞留は認められず、安定して含クロム溶銑を製造
できた。
Example 1 A vertical furnace with an inner diameter of O, fl+w as shown in Fig. 1, with one upper tuyere and one lower tuyere attached to the bottom. , the top charging material was charged in the amount shown in Table 1, and the flow rate was 0.9N+w"/min and 1.IN+w'/+ from the upper and lower tuyeres, respectively.
*In flow rate, temperature is 800℃ 1 oxygen concentration is 28.5
%, high temperature oxygen-enriched air with a moisture content of 5 g/N+w' was blown into the furnace, and from the upper tuyere, a mixture of powders shown in Table 2 was added (Q s + C++) / W ? -86
8 (Kcal/Kg) into the furnace,
No powder retention was observed, and chromium-containing hot metal could be produced stably.

この結果として、出滓口から取り出されたスラグ中の未
還元クロム濃度は0.8%、またクロムの収率は97.
2%と良好にクロム鉱石の溶融還元を行うことができ、
第3表に示すような組成の含クロム溶銑を得ることがで
きた。
As a result, the unreduced chromium concentration in the slag taken out from the slag port was 0.8%, and the chromium yield was 97%.
It is possible to melt and reduce chromium ore with a good rate of 2%.
It was possible to obtain chromium-containing hot metal having the composition shown in Table 3.

第1表(炉頂装入原料) 第2表(上段羽口吹き込み物質) 第3表(含クロム溶銑の組成 重量%)実施例2 上段羽口からの高温酸素富化空気の吹き込み流量を1.
1Nm”/min、下段羽口からの高温酸素富化空気流
量を0.9Nm’/sinとし、  (Q s + Q
 *)  / W ?= 1061(Kcal/にg)
とした以外は、実施例1と同一の条件で含クロム溶銑を
製造した。本例でも第4表に示す組成の含クロム溶銑を
安定して製造できたが、スラグ中の未還元クロム濃度は
1.3%となり、クロム収率は95.7%であった。
Table 1 (Materials charged at the top of the furnace) Table 2 (Materials blown into the upper tuyere) Table 3 (Composition of chromium-containing hot metal, weight %) Example 2 The flow rate of high-temperature oxygen-enriched air from the upper tuyere was set at 1 ..
1Nm''/min, the flow rate of high-temperature oxygen-enriched air from the lower tuyere is 0.9Nm'/sin, (Q s + Q
*) / W? = 1061 (Kcal/g)
Chromium-containing hot metal was produced under the same conditions as in Example 1 except for the following. In this example as well, chromium-containing hot metal having the composition shown in Table 4 was stably produced, but the unreduced chromium concentration in the slag was 1.3% and the chromium yield was 95.7%.

第4表(含クロム溶銑の組成 重量%)実施例3(比較
例) 上段羽口からの高温酸素富化空気の吹き込み流量を1.
5Nm、’/min、下段羽口からの高温酸素富化空気
流量を0.5Nm3/s+inとし、(Q s ” C
++)  / W ?= 1460(Kcalハg)と
した以外は、実施例1と同一の条件で含クロム溶銑を製
造した。炉外に排出されたスラグ中には未還元クロムが
2.9%含有されており、クロム収率は90.4%であ
った。本例で得られた含クロム溶銑の組成を第5表に示
したが。
Table 4 (Composition of chromium-containing hot metal, weight %) Example 3 (comparative example) The flow rate of high-temperature oxygen-enriched air from the upper tuyere was set at 1.
5Nm, '/min, the flow rate of high-temperature oxygen-enriched air from the lower tuyere is 0.5Nm3/s+in, (Q s "C
++) / W? Chromium-containing hot metal was produced under the same conditions as in Example 1, except that = 1460 (Kcal hag). The slag discharged outside the furnace contained 2.9% unreduced chromium, and the chromium yield was 90.4%. The composition of the chromium-containing hot metal obtained in this example is shown in Table 5.

含クロム溶銑中の(Si)は1.8%となり、実施例1
に比べて高い値を示した。
(Si) in the chromium-containing hot metal was 1.8%, and in Example 1
It showed a higher value compared to .

第5表(含クロム溶銑の組成 重量%)実施例4(比較
例) 上段羽口からの高温酸素富化空気の吹き込み流量を0.
7N+m”/min+ 下段羽口からの高温酸素富化空
気流量を1.3Nm”/sinとし、(QS+Ql)/
WP= 675(Kcal/Kg) とした以外は、実
施例1と同一の条件で含クロム溶銑を製造を試みた。し
かし。
Table 5 (Composition of chromium-containing hot metal, weight %) Example 4 (comparative example) The flow rate of high-temperature oxygen-enriched air from the upper tuyere was set at 0.
7N+m”/min+ The flow rate of high-temperature oxygen-enriched air from the lower tuyere is 1.3Nm”/sin, (QS+Ql)/
An attempt was made to produce chromium-containing hot metal under the same conditions as in Example 1 except that WP = 675 (Kcal/Kg). but.

上段羽口前に粉体が滞留したので含クロム溶銑の製造は
不可能となった。
Powder remained in front of the upper tuyere, making it impossible to produce chromium-containing hot metal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法に実施するのに好適な竪型炉の略断面
図、第2図は本発明法に従って制御する(Qs+Q*)
/WPとクロム収率との関係図である。 1・・炉上部の原料装入口、2・・上段羽口。 3・・下段羽口、4・・熱風炉、5・・酸素源。 15・・粉状クロム鉱石、16・・造滓材。
Figure 1 is a schematic cross-sectional view of a vertical furnace suitable for implementing the method of the present invention, and Figure 2 is a furnace controlled according to the method of the present invention (Qs+Q*).
FIG. 2 is a diagram showing the relationship between /WP and chromium yield. 1. Raw material charging inlet at the top of the furnace, 2. Upper tuyere. 3. Lower tuyere, 4. Hot blast furnace, 5. Oxygen source. 15... Powdered chromium ore, 16... Slag material.

Claims (1)

【特許請求の範囲】 炉の上部に原料装入口をそして炉の下部付近に上下二段
の羽口をもつ竪型炉を用いて含クロム溶銑を製造するに
さいし、該上部の原料装入口からクロム源、鉄源、炭材
および造滓材を装入し、該上下の羽口から高温酸素富化
空気を吹込むと同時に上段羽口から粉状クロム鉱石およ
び粉状造滓材からなる粉状材料を炉内に供給することに
より、該粉状クロム鉱石を溶融還元しながら含クロム溶
銑を製造する方法において、 該上段羽口から炉内に供給する高温酸素富化空気の送風
条件と粉状材料の吹込み量を下記の条件式(1)を満足
するように制御することを特徴とする含クロム溶銑の製
造法、 1300≧(Q_3+Q_R)/W_P≧830・・(
1)ただし、Q_3は上段羽口一本から炉内に供給する
高温酸素富化空気の単位時間当りの顕熱(Kcal/m
in)、Q_Rは上段羽口一本から炉内に供給する高温
酸素富化空気と炭材との単位時間当りの反応熱(kca
l/min)、そしてW_Pは上段羽口一本から炉内に
供給する粉状材料の単位時間当りの重量(Kg/min
)を表す。
[Claims] When producing chromium-containing hot metal using a vertical furnace having a raw material charging port in the upper part of the furnace and upper and lower tuyeres near the bottom of the furnace, A chromium source, iron source, carbon material, and slag material are charged, and high-temperature oxygen-enriched air is blown through the upper and lower tuyeres.At the same time, powder consisting of powdered chromium ore and powdered slag material is blown from the upper tuyere. In the method of producing chromium-containing hot metal while melting and reducing the powdered chromium ore by supplying powdered chromium ore into the furnace, A method for producing chromium-containing hot metal, characterized by controlling the amount of blown metal such that it satisfies the following conditional expression (1), 1300≧(Q_3+Q_R)/W_P≧830...(
1) However, Q_3 is the sensible heat per unit time (Kcal/m
in), Q_R is the reaction heat per unit time (kca
l/min), and W_P is the weight per unit time (Kg/min) of the powdered material fed into the furnace from one upper tuyere.
) represents.
JP24667986A 1986-10-17 1986-10-17 Production of molten iron containing chromium Pending JPS63103012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24667986A JPS63103012A (en) 1986-10-17 1986-10-17 Production of molten iron containing chromium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24667986A JPS63103012A (en) 1986-10-17 1986-10-17 Production of molten iron containing chromium

Publications (1)

Publication Number Publication Date
JPS63103012A true JPS63103012A (en) 1988-05-07

Family

ID=17152004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24667986A Pending JPS63103012A (en) 1986-10-17 1986-10-17 Production of molten iron containing chromium

Country Status (1)

Country Link
JP (1) JPS63103012A (en)

Similar Documents

Publication Publication Date Title
KR100325652B1 (en) Production method of metallic iron
CA1160056A (en) Method of, and arrangement for, producing molten pig iron or steel pre-material
US3814404A (en) Blast furnace and method of operating the same
JP2732522B2 (en) Equipment for producing iron or non-ferrous metals from self-soluble or non-self-soluble, self-reducing ores ores
US5946340A (en) Process for melting of metal materials in a shaft furnace
JPH04107206A (en) Production process of chromium-incorporated molten steel
US3960547A (en) Steelmaking process
JPS63103012A (en) Production of molten iron containing chromium
US3454395A (en) Process for the reduction of iron ore in a cupola-type furnace
US3234011A (en) Process for the production of steel
JPS62167808A (en) Production of molten chromium iron
JPS62167809A (en) Production of molten chromium iron
JPH0362767B2 (en)
JPS6254007A (en) Production of molten chromium iron
SU729251A1 (en) Method of steel casting in hearth steel-melting set
JPS63103013A (en) Production of molten iron containing chromium
JPH10306303A (en) Operation of vertical type melting furnace
JPH04128307A (en) Production of chromium-containing molten iron
JP2837282B2 (en) Production method of chromium-containing hot metal
JPS62227014A (en) Production of molten metal from powdery ore
CN112011721A (en) Pig iron for directly producing low-silicon low-titanium low-trace-element nodular cast iron and preparation method thereof
JPH032306A (en) Production of molten pig iron combined with recovery of rare metal
JPH0313291B2 (en)
JPH01195211A (en) Method for melting and reducing iron oxide
KR20010003726A (en) method for controlling heat level in melter gasifier