JPS63101775A - Ac high voltage generator - Google Patents

Ac high voltage generator

Info

Publication number
JPS63101775A
JPS63101775A JP24743086A JP24743086A JPS63101775A JP S63101775 A JPS63101775 A JP S63101775A JP 24743086 A JP24743086 A JP 24743086A JP 24743086 A JP24743086 A JP 24743086A JP S63101775 A JPS63101775 A JP S63101775A
Authority
JP
Japan
Prior art keywords
voltage
terminal
capacitor
unit
variable reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24743086A
Other languages
Japanese (ja)
Inventor
Kaoru Endo
馨 遠藤
Tokio Yamagiwa
山極 時生
Sadao Furukawa
古川 貞夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24743086A priority Critical patent/JPS63101775A/en
Publication of JPS63101775A publication Critical patent/JPS63101775A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

PURPOSE:To make a high voltage generator compact, by a method wherein a capacity voltage divider for measuring voltage and a variable reactor are received in one container but not arranged in the insulating space of a laboratory. CONSTITUTION:A variable reactor L1 and a capacitor C1 are received in a container and drawn out to respective terminals 11,12, 31, 32 to constitute one unit 1. Hereinafter, the same units are constituted in the same way to stack a first unit 1 - a sixth unit 6 and terminals 12-13, 14-15... are electrically connected and, further, a terminal 22 is connected to an article 74 to be tested having electrostatic capacity. The terminal 11 of the unit 1 is connected to an exciting transformer 71 and voltage is supplied to said transformer 71 from a power source 73 through a voltage controller 72. Further, the terminal 31 of the unit 1 is connected to a current transformer 7 and the secondary side of the current transformer 7 is connected to an ammeter. The output voltage of the exciting transformer 71 generated by the voltage controller 72 is applied to the inductances L of variable reactors L1-L6 connected in series and the capacitance C of the article 74 tested, and high voltage is obtained between the terminal 22 and earth 75 by the series resonance of said reactors and the capacitance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は交流高電圧の絶縁試験に用いられる直列共振形
の交流電圧発生器に係り、特に、発生器の出力電圧を測
定するのに好適な分圧器内蔵形の高電圧発生器に関する
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a series resonant AC voltage generator used for AC high voltage insulation testing, and is particularly suitable for measuring the output voltage of the generator. This article relates to a high voltage generator with a built-in voltage divider.

[従来の技術〕 従来、交流絶縁試験装置は第6図に示すような回路構成
にするのが一般的である。電源51.を圧調整器52.
試験変圧器53.容量分圧器54を接続し、端子55に
高電圧を発生させている。
[Prior Art] Conventionally, an AC insulation testing device generally has a circuit configuration as shown in FIG. Power supply 51. Pressure regulator 52.
Test transformer53. A capacitive voltage divider 54 is connected to generate a high voltage at a terminal 55.

発生電圧は分圧器54の分圧端子56の電圧を測定し1
分圧比に応じて求められている。なお、この種の装置は
、例えば、電気学会雑誌、vol。
The generated voltage is determined by measuring the voltage at the voltage dividing terminal 56 of the voltage divider 54.
It is determined according to the partial pressure ratio. Note that this type of device is described in, for example, the Journal of the Institute of Electrical Engineers of Japan, vol.

93 、 & 5 、 M a y 、 1973 、
26頁から33頁に記載されている。
93, & 5, May, 1973,
It is described on pages 26 to 33.

直列共振形の試験変圧器は第7図のように回路構成され
、発生電圧は従来の例と同様容量分圧器を接続して測定
される。電g61.電圧調整器62、励磁変圧器67、
可変リアクトル63.供試品となるコンデンサ65.容
量分圧器64を第11図のように接続して回路構成し、
可変リアクトル63のインダクタンスとコンデンサ65
のキャパシタンスおよび容量分圧器64のキャパシタン
スによって直列共振させ、コンデンサ65に高電圧を発
生させる。
The series resonant test transformer has a circuit configuration as shown in FIG. 7, and the generated voltage is measured by connecting a capacitive voltage divider as in the conventional example. electric g61. voltage regulator 62, excitation transformer 67,
Variable reactor 63. Capacitor 65 as a sample. The capacitive voltage divider 64 is connected as shown in FIG. 11 to configure the circuit,
Inductance of variable reactor 63 and capacitor 65
The capacitance of the capacitor 65 and the capacitance of the capacitive voltage divider 64 cause series resonance, and a high voltage is generated in the capacitor 65.

【発明が解決しようとする問題点〕[Problem that the invention attempts to solve]

上記従来技術は高電圧を発生させる本体とは別に電圧測
定用の容量分圧器が配置されるため、試験場となる実験
室がその分だけ大きくしなければならないという欠点が
ある。すなわち、部分放電の明室を必要とする場合、外
部から侵入するノイズを抑制するため、シールド構造の
建屋にしなければならないことや、雨に対して発生器そ
のものの絶縁性能を維持するために建屋が必要であるな
ど屋内形の試験装置でなければならない、そこで、UH
V送電に対応した機器の開発を行う場合、交流電圧の必
要発生電圧は1500〜2200KV程度であり、絶縁
空間として15〜20m必要となる。従って、電圧測定
用の容量分圧器が試験装置に付加されれば、その分だけ
大きな建屋が必要となり、建設費は膨大なものとなる。
The conventional technology described above has a drawback in that a capacitive voltage divider for voltage measurement is arranged separately from the main body that generates the high voltage, so the laboratory serving as the testing site must be made correspondingly larger. In other words, if a bright room for partial discharge is required, the building must have a shield structure to suppress noise entering from the outside, and the building must have a shield structure to maintain the insulation performance of the generator itself against rain. The test equipment must be indoors, such as the need for
When developing equipment compatible with V power transmission, the required AC voltage to be generated is about 1500 to 2200 KV, and an insulating space of 15 to 20 m is required. Therefore, if a capacitive voltage divider for voltage measurement is added to the test equipment, a correspondingly larger building will be required, and the construction cost will be enormous.

本発明の目的は高電圧発生装置のコンパクト化を回り、
建屋寸法を小さくして、実験室の建設費を少なくするこ
とにある。
The purpose of the present invention is to make a high voltage generator compact;
The aim is to reduce the construction cost of the laboratory by reducing the size of the building.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、電圧測定用の容量分圧器と可変リアクトル
を一つの容器に収納し、実験室の絶縁空間に配置しない
ようにすることにより達成される。
The above object is achieved by housing a capacitive voltage divider for voltage measurement and a variable reactor in one container so that they are not placed in an insulated space of a laboratory.

〔作用〕[Effect]

超高電圧1例えば、交流1500KV以上の電圧を発生
する直列共振形の高電圧発生器は、可変リアクトルを多
段カスケード接続で構成される。容量分圧器として作用
させるためのコンデンサを可変リアクトルと同一の容器
内に収納して各々の端子を導出し、これを一つのユニッ
トとして多段に積重ね、コンデンサの直列接続およびイ
ンダクタンスの直列接続を構成する。最高電圧となる上
部のコンデンサ端子はインダクタンスの最上部と接続し
、可変リアクトルの下端子は励磁変圧器と接続し、コン
デンサの下端子は変流器を介して励磁変圧器と接続し、
変流路の二次側の電流を測定することによって最上部の
発生電圧を算出することができる。すなわち、コンデン
サの下端子は可変リアクトルと変流路を介して接続され
ているだれであるので、その間の電位差は小さい、つま
り、供試品の共振倍率Qが変ってもコンデンサの下端子
と可変リアクトルの下端子間の電位差は小さいので、各
ユニットの端子間発生電圧は小さくなり、小さなブッシ
ング端子とするだけで容量分圧用のコンデンサを内蔵で
きるようにしたものである。
Ultra-high voltage 1 For example, a series resonant type high voltage generator that generates a voltage of 1500 KV or higher is configured by cascading variable reactors in multiple stages. A capacitor to act as a capacitance voltage divider is housed in the same container as the variable reactor, each terminal is led out, and these are stacked in multiple stages as one unit to form a series connection of capacitors and a series connection of inductance. . The upper capacitor terminal with the highest voltage is connected to the top of the inductance, the lower terminal of the variable reactor is connected to the excitation transformer, the lower terminal of the capacitor is connected to the excitation transformer via a current transformer,
By measuring the current on the secondary side of the variable current path, the voltage generated at the top can be calculated. In other words, since the lower terminal of the capacitor is connected to the variable reactor through the variable current path, the potential difference between them is small.In other words, even if the resonance magnification Q of the sample changes, the lower terminal of the capacitor Since the potential difference between the lower terminals of the reactor is small, the voltage generated between the terminals of each unit is small, and a capacitor for capacitance voltage division can be built in by simply using a small bushing terminal.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図ないし第5図により説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 5.

第1図は本発明の分圧器内蔵直列共振層高電圧発生器の
回路構成を示す。可変リアクトルL1とコンデンサC1
を容器に収納し、各々に端子11゜12.31.32を
引き出し、これを一つのユニット1として構成する。同
様に可変リアクトルL2とコンデンサC2を容器に収納
し、端子13,14.33.34を導出し、これを第二
のユニット2として構成し、以下同様に第6のユニット
6までを積み重ね、端子間12−13.14−15゜1
6−17.18−19.20−21およびコンデンサ端
子間32−33.34−35.36−3738−39.
40−41を電気的に接続し、最上部となる端子22と
端子42を接続し、さらに、)子22は静電容量をもつ
供試品74に接続されている。ユニット1の端子11は
励磁変圧器71に接続され電源73より電圧調整器72
を介して電圧が供給される。また、ユニット1の端子3
1は変流器7に接続され、変流器7の二次側は電流計8
に接続されている。
FIG. 1 shows the circuit configuration of a series resonant layer high voltage generator with a built-in voltage divider according to the present invention. Variable reactor L1 and capacitor C1
are housed in a container, and the terminals 11, 12, 31, and 32 are pulled out from each, and this is configured as one unit 1. Similarly, variable reactor L2 and capacitor C2 are housed in a container, terminals 13, 14, 33, 34 are drawn out, and this is configured as the second unit 2. Thereafter, stack up to the sixth unit 6 in the same manner, and terminal Between 12-13.14-15゜1
6-17.18-19.20-21 and between capacitor terminals 32-33.34-35.36-3738-39.
40-41 are electrically connected, the terminal 22 at the top is connected to the terminal 42, and the terminal 22 is connected to a sample 74 having capacitance. Terminal 11 of unit 1 is connected to excitation transformer 71 and voltage regulator 72 is connected to power supply 73.
Voltage is supplied via. Also, terminal 3 of unit 1
1 is connected to a current transformer 7, and the secondary side of the current transformer 7 is connected to an ammeter 8.
It is connected to the.

電圧調整器72によって発生した励磁変圧器71の出力
電圧は直列に接続された可変リアクトルL1〜L6のイ
ンダクタンスLと供試品74のキヤパシタンスCとの直
列共振によって端弊22と接地75の間に高電圧を得る
よう可変リアクトルL1〜L6のインダクタンスが調整
される。すなわち、共振周波数foは Lを調整することによって直列共振を得ることができる
。ここで、LとCとの閉口線内の直流抵抗をRとすれば
、共振によって得られる電圧倍数Qは。
The output voltage of the excitation transformer 71 generated by the voltage regulator 72 is caused by series resonance between the inductance L of the variable reactors L1 to L6 connected in series and the capacitance C of the sample 74, and the voltage is increased between the voltage regulator 72 and the ground 75. The inductance of variable reactors L1 to L6 is adjusted to obtain a high voltage. That is, by adjusting the resonance frequency fo, series resonance can be obtained. Here, if the DC resistance in the closed line between L and C is R, then the voltage multiple Q obtained by resonance is.

変圧器71の出力電圧Veは端子22においてQ・Ve
なる電圧になり、高電圧を発生させることができる。
The output voltage Ve of the transformer 71 is QVe at the terminal 22.
Therefore, high voltage can be generated.

発生電圧を測定する手段として本実施例では第1図のよ
うに、コンデンサC1〜C6を直列に接続し、コンデン
サC6の端子42を端子22に接続し、コンデンサC1
の端子31は変流器7を介して励磁変圧器71の出力端
子76に接続する。
In this embodiment, as a means for measuring the generated voltage, capacitors C1 to C6 are connected in series, the terminal 42 of the capacitor C6 is connected to the terminal 22, and the capacitor C1
The terminal 31 of is connected to the output terminal 76 of the excitation transformer 71 via the current transformer 7.

すなわち、Q−veなる発生電圧はキャパシタンスC1
〜C6なる直列キャパシタンスを通して流れる電流を変
流器7の二次側の電流計によって読みとるようにいてい
る。すなわち、キャパシタンスC1〜C6を通して流れ
る電流によって、変流器7の端子間(31〜76間)電
位を小さくでき、端子11と端子31の間の電位差を小
さくできるように構成したものである。この電位差を小
さくすることによる利点と、大きい場合の欠点について
第2図と第3図を用いて説明する。
That is, the generated voltage Q-ve is caused by the capacitance C1
The current flowing through the series capacitance C6 is read by an ammeter on the secondary side of the current transformer 7. That is, the current flowing through the capacitances C1 to C6 can reduce the potential between the terminals of the current transformer 7 (between 31 and 76), and the potential difference between the terminals 11 and 31 can be reduced. The advantages of making this potential difference small and the disadvantages of making it large will be explained with reference to FIGS. 2 and 3.

一般に、ユニット1〜6の可変リアクトルは内部の復縁
強化を図るため、絶縁油あるいは、ガスが封入され、例
えば、ユニット1の場合の箱体の側面部は絶縁物で、ま
た、底部と上部は機械強度が要求されるため、金属が用
いられ、端子11゜12.31,32.はブッシングに
よって導出される。ユニットを積重ねた場合の全体高さ
をできるだけ小さくする必要があり、従って、前述のよ
うに、端子11−31間の発生電圧は小さくしなければ
ならない。
In general, the variable reactors of Units 1 to 6 are filled with insulating oil or gas to strengthen internal recovery.For example, in the case of Unit 1, the sides of the box are insulating, and the bottom and top are Since mechanical strength is required, metal is used, and the terminals 11°12.31,32. is derived by Bushing. It is necessary to make the overall height of stacked units as small as possible, and therefore, as described above, the voltage generated between terminals 11-31 must be made small.

第2図は発生電圧の測定に分圧コンデンサを用いた場合
の直列共振形高電圧発生器の回路を示すもので、可変リ
アクトルと分圧コンデンサを内蔵したユニット、および
、電源73、電圧調整器72、励磁変圧器71は第1図
と同じ結線である。ユニット1のコンデンサ端子31は
電圧測定用コンデンサ80を介して接地75に接続され
、コンデンサ80に発生する電圧を測定することによっ
て端子22の発生電圧を測定するようにしたものであり
、分圧比を正確に求めておけば、誤差のない方法である
Figure 2 shows the circuit of a series resonant high voltage generator when a voltage dividing capacitor is used to measure the generated voltage. 72, the excitation transformer 71 has the same wiring as in FIG. The capacitor terminal 31 of the unit 1 is connected to the ground 75 via a voltage measuring capacitor 80, and by measuring the voltage generated at the capacitor 80, the voltage generated at the terminal 22 is measured. If it is calculated accurately, it is a method with no errors.

しかし、ユニットを多段に積ねた直列共振形変圧器では
、次のような面倒な問題がある。すなわち、供試品とな
るコンデンサの種類によって、例えば、沿面の抵抗が低
い場合と高い場合とでは共振時のQが異なり、励磁変圧
器の出力電圧が高くなったり、低くなったりする。これ
を第3図によって説明する。第3図は各ユニットの端子
位置における発生電圧を示したもので、Qが大きく場合
は特性A、Qが小さい場合は特性已になり、コンデンサ
側はC特性のようになる。Qが大きい場合の励磁電圧は
Vfとなり、可変リアクトルの端子13ではv3となり
、順次、各ユニットの端子15.17,19,21では
第3図のような対地電圧となり、端子22ではVmとな
る。一方、コンデンサ端子では端子31でVcとなり、
端子33ではv2なる電圧が発生し最上段の端子22で
はVmとなる。第3図の例ではVfとVcが同等になる
よう電圧測定用コンデンサ80の静電容量を送んでいる
。しかし共振時のQが小さい場合子13ではvlの電圧
となり、特性Bのような各端子の発生電圧となる。従っ
て、端子13の発生電圧■1とコンデンサ端子33の発
生電圧v2とでは大きな電位差が生じる。この差電圧は
上段になるに従って小さくなるが下段のユニットの端子
では大きな差電圧となりユニット底抜および上部板に取
り付けるブッシング端子は高い絶縁耐力をもつものでな
ければならず、その分だけ発生装置が大形化してしまう
However, a series resonant transformer in which units are stacked in multiple stages has the following troublesome problems. That is, depending on the type of capacitor used as a sample, for example, the Q at resonance differs depending on whether the creeping resistance is low or high, and the output voltage of the excitation transformer becomes high or low. This will be explained with reference to FIG. FIG. 3 shows the generated voltage at the terminal position of each unit. When Q is large, the characteristic is A, and when Q is small, the characteristic is the same, and on the capacitor side, the characteristic is C. When Q is large, the excitation voltage becomes Vf, becomes v3 at terminal 13 of the variable reactor, and in turn becomes the ground voltage at terminals 15, 17, 19, and 21 of each unit as shown in Figure 3, and becomes Vm at terminal 22. . On the other hand, at the capacitor terminal, terminal 31 becomes Vc,
A voltage v2 is generated at the terminal 33, and a voltage Vm is generated at the terminal 22 at the top. In the example shown in FIG. 3, the capacitance of the voltage measuring capacitor 80 is sent so that Vf and Vc are equal. However, when the Q at resonance is small, the voltage of the element 13 is vl, and the voltage generated at each terminal is as shown in characteristic B. Therefore, a large potential difference occurs between the voltage 1 generated at the terminal 13 and the voltage v2 generated at the capacitor terminal 33. This voltage difference decreases as you move up to the top, but it becomes a large voltage difference at the terminals of the lower units, and the bushing terminals attached to the bottom of the unit and the top plate must have high dielectric strength. It becomes large.

この問題を解決するようにしたのが、第1図の方法であ
りその発生電圧を特性として表わしたのが第4図である
。すなわち、Qが小さい場合の可変リアクトル端子電圧
は特性Fとなり、コンデンサ端子電圧は変流路を介した
だけなので、特性Gとなり、各ユニットにおける端子間
電位差を非常に小さくできる。また、Qが小さい場合の
励磁電圧は高くなりVgなる電圧となるが、可変リアク
トルの端子電圧は特性D、コンデンサ端子電圧は特性E
となり、最下段の端子間に変流器が入っているだけなの
で、両者間ではほぼ同等の発生電圧特性となる。
The method shown in FIG. 1 was designed to solve this problem, and FIG. 4 shows the generated voltage as a characteristic. That is, when Q is small, the variable reactor terminal voltage has characteristic F, and since the capacitor terminal voltage only passes through the current transformer path, it has characteristic G, and the potential difference between the terminals in each unit can be made very small. Also, when Q is small, the excitation voltage becomes high and becomes a voltage Vg, but the terminal voltage of the variable reactor is characteristic D, and the capacitor terminal voltage is characteristic E.
Since there is only a current transformer between the terminals at the bottom, the generated voltage characteristics are almost the same between the two.

第5図は電圧校正特性の一例を示しているが、発生器に
標準となる分圧器を別に接続し、その分圧器によって測
定した発生電圧と変流器の二次電流の関係を求めたもの
である。すなわち、電圧vhで電流がOアンペアとなり
、電流と電圧の関係は直線関係となる。このvhが励磁
電圧であり、変流器の二次電流から求めた可変リアクト
ル全段の電圧(第1図の端子11と端子22の間の電圧
)と励磁変圧器の出力電圧を測定すれば発生器の発生電
圧を測定することができる。
Figure 5 shows an example of voltage calibration characteristics, where a standard voltage divider is separately connected to the generator, and the relationship between the generated voltage measured by the voltage divider and the secondary current of the current transformer is determined. It is. That is, the current becomes O ampere at voltage vh, and the relationship between current and voltage is a linear relationship. This vh is the excitation voltage, and if we measure the voltage across all stages of the variable reactor (voltage between terminal 11 and terminal 22 in Figure 1) obtained from the secondary current of the current transformer and the output voltage of the excitation transformer, The voltage generated by the generator can be measured.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、分圧コンデンサと可変リアクトルを内
蔵したユニットを多段に積ねた場合に生じる可変リアク
トルの端子とコンデンサ端子間の電位差を小さくでき、
ブッシングを小さくできるので、積み上げたユニット高
さ全体を低くすることができる。
According to the present invention, it is possible to reduce the potential difference between the terminal of the variable reactor and the terminal of the capacitor that occurs when units containing a voltage dividing capacitor and a variable reactor are stacked in multiple stages.
Since the bushing can be made smaller, the overall height of the stacked units can be reduced.

【図面の簡単な説明】 第1図は本発明の一実施例の回路図、第2図は本発明の
他の実施例を示す回路図、第3図、第4図は本発明の詳
細な説明するための特性図、第5図は本発明の電圧校正
の一例を示す図、第6図は従来の装置の回路図、第7図
は従来の高電圧発生器の回路図である。 1〜6・・・ユニット、7・・・変流路、8・・・電流
計。 兆理士 小川勝馬 V3)固 舅 2 凹 葛J ロ ユ =−ノ) 4各イ立i  → 冨5目 電シ克−
[Brief Description of the Drawings] Fig. 1 is a circuit diagram of one embodiment of the present invention, Fig. 2 is a circuit diagram showing another embodiment of the present invention, and Figs. 3 and 4 are detailed diagrams of the present invention. FIG. 5 is a diagram showing an example of voltage calibration according to the present invention, FIG. 6 is a circuit diagram of a conventional device, and FIG. 7 is a circuit diagram of a conventional high voltage generator. 1 to 6...unit, 7...variable flow path, 8...ammeter. Chorishi Ogawa Katsuma V3) Kofu 2 Kokatsu J Royu =-ノ) 4 each i-tachi i → 5th medenshikatsu-

Claims (1)

【特許請求の範囲】 1、コイルを巻回して形成するリアクトルと、コンデン
サとを接続し、直列共振によつて高電圧を発生する装置
において、 絶縁媒体を封入した容器内に可変リアクトルと、電圧測
定用コンデンサとを収納し、前記可変リアクトルの第一
と第二の端子、前記電圧測定用コンデンサの第一と第二
の端子を導出し、前記可変リアクトルの第一の端子に外
部の対地コンデンサを接続し、前記可変リアクトルの第
二の端子を励磁変圧器の高電圧端子に接続し、前記電圧
測定用コンデンサの前記第一の端子は前記可変リアクト
ルの前記第一の端子に接続し、前記電圧測定用コンデン
サの前記第二の端子は変流器を介して前記可変リアクト
ルの前記第二の端子に接続するように構成したことを特
徴とする交流高電圧発生器。 2、特許請求の範囲第1項において、 可変リアクトルと前記電圧測定用コンデンサの単位ユニ
ットを複数個カスケード接続したことを特徴とする交流
高電圧発生器。
[Claims] 1. In a device that connects a reactor formed by winding a coil and a capacitor and generates a high voltage through series resonance, the variable reactor and the voltage are placed in a container sealed with an insulating medium. a measuring capacitor, the first and second terminals of the variable reactor and the first and second terminals of the voltage measuring capacitor are led out, and an external ground capacitor is connected to the first terminal of the variable reactor. the second terminal of the variable reactor is connected to the high voltage terminal of the excitation transformer, the first terminal of the voltage measuring capacitor is connected to the first terminal of the variable reactor, and the second terminal of the variable reactor is connected to the high voltage terminal of the excitation transformer; An AC high voltage generator characterized in that the second terminal of the voltage measuring capacitor is connected to the second terminal of the variable reactor via a current transformer. 2. The AC high voltage generator according to claim 1, characterized in that a plurality of units of a variable reactor and the voltage measuring capacitor are connected in cascade.
JP24743086A 1986-10-20 1986-10-20 Ac high voltage generator Pending JPS63101775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24743086A JPS63101775A (en) 1986-10-20 1986-10-20 Ac high voltage generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24743086A JPS63101775A (en) 1986-10-20 1986-10-20 Ac high voltage generator

Publications (1)

Publication Number Publication Date
JPS63101775A true JPS63101775A (en) 1988-05-06

Family

ID=17163322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24743086A Pending JPS63101775A (en) 1986-10-20 1986-10-20 Ac high voltage generator

Country Status (1)

Country Link
JP (1) JPS63101775A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103267933A (en) * 2013-05-02 2013-08-28 国家电网公司 Method for measuring partial discharge in transformer induced voltage testing device
CN103278753A (en) * 2013-05-02 2013-09-04 国家电网公司 Device for induced voltage tests on transformers
CN104198900A (en) * 2014-08-04 2014-12-10 中国南方电网有限责任公司超高压输电公司检修试验中心 Testing device for long term voltage induction and partial discharge measurement test

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103267933A (en) * 2013-05-02 2013-08-28 国家电网公司 Method for measuring partial discharge in transformer induced voltage testing device
CN103278753A (en) * 2013-05-02 2013-09-04 国家电网公司 Device for induced voltage tests on transformers
CN104198900A (en) * 2014-08-04 2014-12-10 中国南方电网有限责任公司超高压输电公司检修试验中心 Testing device for long term voltage induction and partial discharge measurement test

Similar Documents

Publication Publication Date Title
US9714957B2 (en) High voltage divider
US20060012382A1 (en) Modular voltage sensor
WO1997010515A1 (en) A device for sensing of electric discharges in a test object
KR20030036792A (en) Highly efficient capacitor structures with enhanced matching properties
Vázquez Carazo Novel piezoelectric transducers for high voltage measurements
Phukan et al. A compact integrated DM-CM filter with PCB embedded DC current sensor for high altitude high current applications
JPS63101775A (en) Ac high voltage generator
Richert A simple current‐to‐voltage interface for dielectric relaxation measurements in the range 10− 3 to 107 Hz
RU2535231C2 (en) Bench for studying electric power transmission resonant system
CN213181730U (en) Electronic voltage sensor with three-way output
Anderson et al. An international comparison of high voltage capacitor calibration
Latzel et al. A voltage-doubling method for measuring the voltage dependence of compressed gas capacitors
Xiaohua et al. Improved performance Rogowski coils for power system
Luan et al. Design Guidelines to Reduce Parasitic Capacitance in Planar Inductors
Zinkernagel A double frequency method for the determination of the voltage dependent capacitance variation of compressed gas capacitors
Hauschild et al. Tests with High Alternating Voltages
US3418571A (en) Automatic self-balancing remote measuring system of an impedance responsive process variable
CN110470962A (en) The appraisal procedure of hall ion source magnet exciting coil insulation ag(e)ing degree
JPS62263623A (en) Capacitor type potential transformer
Saraf et al. Noise and thermal performance of a sub-attofarad capacitance sensor for precision measurements, with applications in gravitational wave detectors
RU2066868C1 (en) Device to test reactive objects with increased voltage
CN217278639U (en) Capacitance measuring circuit and electronic equipment
CN111983281A (en) Electronic voltage sensor with three-way output and manufacturing method thereof
SU1651234A1 (en) Device for measuring impedance active and reactive components
Andreenkov et al. Sensor design for the diagnostic system of hanging isolated power grids