JPS63101038A - Production of resin coated sand grain for shell mold - Google Patents

Production of resin coated sand grain for shell mold

Info

Publication number
JPS63101038A
JPS63101038A JP24795686A JP24795686A JPS63101038A JP S63101038 A JPS63101038 A JP S63101038A JP 24795686 A JP24795686 A JP 24795686A JP 24795686 A JP24795686 A JP 24795686A JP S63101038 A JPS63101038 A JP S63101038A
Authority
JP
Japan
Prior art keywords
resin
kneading
sand grains
liquid
coated sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24795686A
Other languages
Japanese (ja)
Other versions
JPH0347942B2 (en
Inventor
Masaharu Kato
正治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Chemical Co Ltd
Original Assignee
Aisin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Chemical Co Ltd filed Critical Aisin Chemical Co Ltd
Priority to JP24795686A priority Critical patent/JPS63101038A/en
Publication of JPS63101038A publication Critical patent/JPS63101038A/en
Publication of JPH0347942B2 publication Critical patent/JPH0347942B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To relieve the influence of heat history to be exerted on a liquid resol type phenolic resin and to improve productivity by adding and kneading said phenolic resin to and with heated said grains, then adding a lubricant emulsion thereto and kneading further the mixture. CONSTITUTION:This method consists in relieving the influence of the heat history to be exerted on the resin by using the liquid resin and decreasing the sand temp. at the time of kneading. The liquid resol type phenolic resin formed by reaction in the presence of ammonia and alkali metal catalyst is added to the sand grains heated to 70-110 deg.C and is kneaded. Thereafter the lubricant emulsion is added to and kneaded with said mixture. The liquid resin does not require the consideration for the consolidation of the resin itself and the difficult control for solidification and permits the easy taking-out of the juvenile resin of about the reaction of a multifunctional group; in addition, the consumption of the functional group by the heat history at the time of the kneading is reduced and, therefore, the curing rate is high and the strength is high.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、シェルモールド用樹脂被覆砂粒の製造方法に
係り、詳しくは液状樹脂による主型又は中子の製造に適
した実質的に窒素含有量のきわめて少ない樹脂被覆砂粒
の製造方法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a method for producing resin-coated sand grains for shell molds, and more particularly, the present invention relates to a method for producing resin-coated sand grains for shell molds, and more specifically, a method for producing resin-coated sand grains for shell molds, and more specifically, a method for producing resin-coated sand grains for shell molds. This invention relates to a method for producing resin-coated sand grains in extremely small quantities.

[従来の技術] 古くからシェルモールド用樹脂被覆砂粒の製造は、ノボ
ラック型フェノール樹脂(以下ノボラックという)と硬
化剤としてヘキサメチレンテトラミン(以下へキサジン
という)を使用するドライホットコート法が主流であっ
たが、ヘキサミンの熱分解によって生じる窒素化合物の
ガス奥書や鋳物製品に及ぼすガス欠陥などの改善策とし
て、窒素を全く含まないか若しくは窒素含有量のきわめ
て少ないレゾール型フェノール樹脂(以下レゾールとい
う)による樹脂被覆砂粒の製造方法も少なからず提案さ
れている。
[Prior art] For many years, the mainstream method for manufacturing resin-coated sand grains for shell molds has been the dry hot coating method, which uses a novolac type phenolic resin (hereinafter referred to as novolac) and hexamethylenetetramine (hereinafter referred to as hexazine) as a hardening agent. However, as a measure to improve gas defects caused by nitrogen compounds caused by thermal decomposition of hexamine and gas defects in cast products, resol-type phenolic resins (hereinafter referred to as resols) that do not contain any nitrogen or have extremely low nitrogen content have been developed. A number of methods for producing resin-coated sand grains have also been proposed.

たとえばノボラックの硬化剤としてアンモニア触媒の存
在下で反応させた固形レゾールを使用する方法(特公昭
48−14289号)や、同固形レゾールを単独で使用
する方法(特開昭49−117591号)がそれである
が、これらの方法はいずれも硬化速度が遅いという欠点
を有している。また、同固形レゾールの官能基を増加さ
せ硬化速度を向上させるために、アンモニア触媒ととも
に適量のアルカリ金属触媒を併用して得た固形レゾール
を使用する方法、及び同固形レゾールの内部にワックス
類を均一に含有させて更に固結性の減少を試みた方法(
特開昭5′3−78924号)も知られている。このよ
うにヘキサミンに代替する低奥書樹脂の開発の流れは、
アンモニア触媒を主体とした固形レゾールを中心に推移
してきているが、飽くなき生産性の向上からより速い硬
化とより高い鋳型強度を追求する願いは今も失われては
いない。
For example, there is a method of using a solid resol reacted in the presence of an ammonia catalyst as a curing agent for novolac (Japanese Patent Publication No. 14289/1989), and a method of using the same solid resol alone (Japanese Patent Publication No. 117591/1989). However, all of these methods have the disadvantage of slow curing speed. In addition, in order to increase the functional groups of the solid resol and improve the curing speed, we have also proposed a method of using a solid resol obtained by using an appropriate amount of an alkali metal catalyst together with an ammonia catalyst, and a method of using a solid resol obtained by using an appropriate amount of an alkali metal catalyst together with an ammonia catalyst, and a method of adding waxes to the inside of the solid resol. A method that attempted to further reduce the caking property by uniformly containing the
JP-A-5'3-78924) is also known. In this way, the process of developing low-lattice resin to replace hexamine is as follows:
Although the focus has been on solid resols based on ammonia catalysts, the desire to pursue faster curing and higher mold strength due to continuous improvements in productivity has not been lost.

[発明が解決しようとする問題点] ところが上述の樹脂被覆砂粒の製造方法はすべてドライ
ホットコート法であり、固形樹脂の使用と混線時の高い
砂粒温度(120〜160℃)とを必要条件とするため
、混線中に樹脂の反応が進んで硬化速度と密接な関係に
ある官能基が熱履歴によって消費されるところに問題の
一端がある。
[Problems to be Solved by the Invention] However, all of the above-mentioned methods for producing resin-coated sand grains are dry hot coating methods, which require the use of a solid resin and a high sand grain temperature (120 to 160°C) during cross-wire. Therefore, part of the problem lies in the fact that the reaction of the resin progresses during crosstalk, and the functional groups that are closely related to the curing rate are consumed by thermal history.

すなわち使用樹脂が上記アンモニア触媒とアルカリ金属
触媒とを併用して官能基を多くするように配慮されたレ
ゾール(以下アンモニア・アルカリレゾールという)で
あっても、これが固形の樹脂であるために製造の困難性
ばかりでなく、樹脂自身の固結性の面から反応程度の°
若い樹脂として取出すにも当然に限界があり、しかも樹
脂中の官能基は上述のように混練中の熱履歴によって相
当度消失される。4反面、硬化速度を速めるために樹脂
の分子量を大きくすることも、やはり固形樹脂なるが故
に混線時における樹脂の流れ不良を伴って被覆性を劣化
させる結果、同様に制約を生じる本発明はこのようなド
ライホットコート法の問題点に着目し、液状樹脂の使用
と混線時の入砂温の低下により、樹脂に及ぼす熱履歴の
影響を緩和させることを主体として、上記生産性向上の
欲求に応える樹脂被覆砂粒の製造方法を創出することを
解決すべき技術課題とするものである。
In other words, even if the resin used is a resol designed to increase the number of functional groups by using a combination of the above-mentioned ammonia catalyst and alkali metal catalyst (hereinafter referred to as ammonia-alkali resol), it is difficult to manufacture because it is a solid resin. Not only the difficulty but also the degree of reaction is difficult due to the caking property of the resin itself.
Naturally, there is a limit to how much young resin can be extracted, and moreover, the functional groups in the resin are considerably lost due to the thermal history during kneading, as described above. 4 On the other hand, increasing the molecular weight of the resin in order to speed up the curing speed also results in poor flow of the resin during crosstalk, which deteriorates the coverage due to the solid resin. Focusing on the problems of the dry hot coating method, we focused on mitigating the influence of thermal history on the resin by using liquid resin and lowering the sand temperature during cross-contact, and in response to the above desire for productivity improvement. The technical problem to be solved is to create a method for manufacturing resin-coated sand grains that meets the requirements of the present invention.

[問題点を解決するための手段] 本発明において使用する液状アンモニア・アルカリレゾ
ールは、フェノール1モルに対してホルムアルデヒド1
モル以上を使用し、アンモニア又はアミン化合物などの
アミン系触媒とアルカリ金属触媒との存在下で反応させ
た縮合物を有機溶剤で溶解した樹脂である。
[Means for solving the problem] The liquid ammonia alkaline resol used in the present invention contains 1 mol of formaldehyde per 1 mol of phenol.
It is a resin obtained by dissolving a condensate obtained by reacting an amine catalyst such as ammonia or an amine compound and an alkali metal catalyst in an organic solvent using a molar or more amount.

ここにフェノールとは、フェノール又は、メタクレゾー
ル、パラクレゾール、キシレノールのようなアルキルフ
ェノールやその混合物をいい、ホルムアルデヒドとして
はホルマリン以外にパラホルムアルデヒド、トリオキサ
ンなどのホルムアルデヒド重合体及びその混合物が使用
できる。
Here, phenol refers to phenol, alkylphenols such as metacresol, para-cresol, and xylenol, and mixtures thereof, and as formaldehyde, formaldehyde polymers such as paraformaldehyde and trioxane and mixtures thereof can be used in addition to formalin.

アミン系触媒の中でのアミン化合物としては、モノメチ
ルアミン、ジメチルアミン、モノエタノールアミン、モ
ノエチルアミンなどである。
Examples of amine compounds among amine catalysts include monomethylamine, dimethylamine, monoethanolamine, and monoethylamine.

アルカリ金属触媒は、ナトリウム、カリウム、リチウム
などのアルカリ金属の水酸化物又は酸化物、バリウム、
カルシウム、マグネシウムなどのアルカリ土類金属の水
酸化物又は酸化物である。
Alkali metal catalysts include hydroxides or oxides of alkali metals such as sodium, potassium, and lithium, barium,
It is a hydroxide or oxide of alkaline earth metals such as calcium and magnesium.

これらアルカリ金属触媒はアンモニア触媒と異なって、
樹脂中に取り込まれることなく官能基の生成に寄与する
が、これを多量に使用すると樹脂被覆砂粒の固結を生じ
るので、フェノール1モルに対して0.1モル以下の使
用が望ましい。
These alkali metal catalysts differ from ammonia catalysts in that
It contributes to the generation of functional groups without being incorporated into the resin, but if it is used in large amounts, it will cause caking of the resin-coated sand grains, so it is desirable to use 0.1 mole or less per mole of phenol.

上記アンモニア・アルカリレゾールは、これを液状ハイ
オルソ配向ノボラックとの混合溶液として使用すること
もできる。ハイオルソ配向ノボラックは、酢酸鉛、酢酸
マンガン、酢酸亜鉛などを触媒として使用し、フェノー
ルのオルソ位にホルムアルデヒドを付加させたもので反
応性に富み、上記アンモニア・アルカリレゾールとの混
用によって十分その効能を発揮するが、望ましい混合量
は全樹脂量に対して10〜30重量%程度である滑剤乳
濁液に使用する滑剤としては、ステアリン酸カルシウム
、ステアリン酸亜鉛などの金属石鹸類、ステアリン酸ア
ミド、メチレンビスステアロアミド、エチレンビスステ
アロアミド、エチレンビスアミドなどの脂肪酸アミド系
、カルナバパラフィン、マイクロワックス、ポリエチレ
ンワックスなどの炭化水素系のものが使用できる。
The above ammonia-alkaline resol can also be used as a mixed solution with a liquid high ortho-oriented novolak. High ortho-oriented novolac is a product in which formaldehyde is added to the ortho position of phenol using lead acetate, manganese acetate, zinc acetate, etc. as a catalyst, and is highly reactive, and its effectiveness can be fully demonstrated by mixing it with the ammonia-alkaline resol mentioned above. The lubricants used in the lubricant emulsion include metal soaps such as calcium stearate and zinc stearate, stearamide, and methylene. Fatty acid amides such as bisstearamide, ethylenebisstearamide, and ethylenebisamide, and hydrocarbons such as carnauba paraffin, microwax, and polyethylene wax can be used.

滑剤乳濁液の望ましい滑剤有効成分濃度は、20〜60
重量%程度である。
The desirable lubricant active ingredient concentration of the lubricant emulsion is 20 to 60
It is about % by weight.

次に本発明に使用する液状アンモニア・アルカリレゾー
ルの製造方法の概要を説明する。
Next, an outline of the method for producing the liquid ammonia-alkaline resol used in the present invention will be explained.

反応釜にフェノール1モルとホルムアルデヒド1モル以
上を仕込み、アミン系触媒とアルカリ金属触媒とを添加
する。そして50〜100℃に加熱して約0.5〜2時
間縮合反応を行う。次に100℃以下の温度で減圧濃縮
したのち、有機溶剤を加えて溶解すると液状アンモニア
・アルカリレゾールが得られる。
A reaction vessel is charged with 1 mole of phenol and 1 mole or more of formaldehyde, and an amine catalyst and an alkali metal catalyst are added. Then, the mixture is heated to 50 to 100°C to carry out a condensation reaction for about 0.5 to 2 hours. Next, after concentrating under reduced pressure at a temperature of 100° C. or lower, an organic solvent is added and dissolved to obtain a liquid ammonia alkaline resol.

本発明において、シェルモールド用樹脂被覆砂粒は次の
ようにして製造される。
In the present invention, resin-coated sand grains for shell molding are manufactured as follows.

砂粒を70〜110℃に加熱して混練機に投入後、液状
アンモニア・アルカリレゾールを砂粒に対して1〜3重
量%(樹脂固形分換算)添加して約30秒間混練を行っ
たのち、砂粒に対して0605〜0.15重量%の滑剤
乳濁液及び同0.4〜0.5重量%の冷却水を添加して
砂が崩壊するまで混練を続ける。次いで必要に応じ少里
の粉末状のステアリン酸カルシウムを添加することによ
り本発明方法になる樹脂被覆砂粒が得られる。
After heating the sand grains to 70 to 110°C and putting them into a kneader, 1 to 3% by weight (in terms of resin solid content) of liquid ammonia/alkaline resol was added to the sand grains and kneaded for about 30 seconds. A lubricant emulsion of 0.605 to 0.15% by weight and a cooling water of 0.4 to 0.5% by weight are added to the sand, and kneading is continued until the sand collapses. Then, if necessary, powdered calcium stearate is added to obtain resin-coated sand grains according to the method of the present invention.

[発明の効果] 本発明になる樹脂被覆砂粒はガス欠陥や奥書がないこと
は勿論、 (1)液状樹脂であるため、樹脂自身の固結に対する配
慮や固形化のための困難な制御は必要とせず、多官能基
の反応程度の若い樹脂を容易に取出すことができ、しか
も官能基が混線時の熱履歴によって消費されることが少
ないので、硬化速度が速く、かつ高強度である。
[Effects of the Invention] The resin-coated sand grains of the present invention have no gas defects or colophons. It is possible to easily take out a resin that is young enough to react with polyfunctional groups, and the functional groups are less likely to be consumed due to thermal history during cross-contact, resulting in a fast curing speed and high strength.

(2)樹脂に熱履歴を与えることが少ないので、あらか
じめ分子量の大きい樹脂の使用も可能となり、この面か
ら温時強度の向上を図ることができる。
(2) Since little thermal history is imparted to the resin, it is possible to use a resin with a large molecular weight in advance, and from this point of view, it is possible to improve the strength when heated.

(3)滑剤乳濁液の使用により、滑剤が均一な樹脂被覆
砂粒の外被覆を形成するので、固結防止作用に加えて砂
粒の充填性向上により強度が向上する。
(3) By using a lubricant emulsion, the lubricant forms a uniform outer coating of the resin-coated sand grains, which not only prevents caking but also improves the filling properties of the sand grains, thereby improving strength.

[実施例] 以下、本発明を実施により詳細に説明する。[Example] Hereinafter, the present invention will be explained in detail by implementation.

1、樹脂の製造方法 (1)攪拌機、還流、コンデンサ、温度計を備えた三ツ
ロフラスコに、フェノール1000g、85%バラホル
ムアルデヒド620g、ナフテン酸亜鉛4g、20%水
酸化ナトリウム水溶液6gを秤量し、攪拌しながらウォ
ータバスで加熱し、90℃で45分反応させた後50℃
まで冷却し、25%アンモニア水180gを攪拌しなが
ら加える。70℃で白濁するまで反応を行ったのち95
℃まで減圧濃縮し、その後メタノール650gを加えて
溶解しアンモニア・アルカリレゾールの液状樹脂(A)
2150gを得た。
1. Resin manufacturing method (1) Weigh out 1000 g of phenol, 620 g of 85% paroxysmaldehyde, 4 g of zinc naphthenate, and 6 g of 20% aqueous sodium hydroxide solution into a Mitsuro flask equipped with a stirrer, reflux, condenser, and thermometer, and stir. While heating in a water bath, react at 90℃ for 45 minutes, then reduce to 50℃.
180 g of 25% aqueous ammonia is added with stirring. After carrying out the reaction at 70°C until it becomes cloudy,
Concentrate under reduced pressure to ℃, then add 650 g of methanol and dissolve to obtain ammonia alkaline resol liquid resin (A)
2150g was obtained.

(2)攪拌機、還流コンデンサ、温度計を備えた三ツロ
フラスコに、フェノール1000g、バラホルムアルデ
ヒド115g、37%ホルマリン250gを秤量し、攪
拌しながら70℃まで昇温してパラホルムアルデヒドを
溶解し、50%酢酸亜鉛水溶液10gを添加したのち徐
々に昇温して4時間還流反応を行った。その後170℃
まで減圧濃縮を行い徐々にメタノール430gを添加し
てハイオルソ配向ノボラックの液状樹脂1430・gを
得た。この液状樹脂を上記液状樹脂(A)80重量部に
対して20重量部加えて攪拌を行い液状混合樹脂(B)
を得た。
(2) Weigh out 1,000 g of phenol, 115 g of paraformaldehyde, and 250 g of 37% formalin into a Mitsuro flask equipped with a stirrer, reflux condenser, and thermometer, and raise the temperature to 70°C while stirring to dissolve paraformaldehyde, and dissolve the paraformaldehyde to 50% After adding 10 g of an aqueous zinc acetate solution, the temperature was gradually raised to perform a reflux reaction for 4 hours. Then 170℃
The mixture was concentrated under reduced pressure until 430 g of methanol was gradually added to obtain 1430 g of a high-ortho-oriented novolak liquid resin. 20 parts by weight of this liquid resin is added to 80 parts by weight of the liquid resin (A) and stirred to form a liquid mixed resin (B).
I got it.

(3) (1)の製法により70℃で白濁するまで反応
を行ったのち、エチレンビスステアロアミド60gを添
加し、−65〜−70crnHgの減圧下で濃縮を行い
内温が95℃になった時点でフラスコから排出し、冷却
固化したのち破砕して6〜20メツシユの滑剤内含固形
アンモニア・アルカリレゾール(C)1540gを得た
(3) After carrying out the reaction at 70°C until it becomes cloudy using the manufacturing method in (1), 60g of ethylene bisstearamide was added and concentrated under reduced pressure of -65 to -70crnHg until the internal temperature reached 95°C. At that point, it was discharged from the flask, cooled and solidified, and then crushed to obtain 1540 g of solid ammonia-alkaline resol (C) containing 6 to 20 meshes of lubricant.

(4)(1)の製法により70℃で白濁するまで反応を
行ったのち、ステアリン酸カルシウム75gと上記ハイ
オルソ配向ノボラックの液状樹脂530gを加え、以下
(3)と同様の方法で滑剤内含ノボラック混有固形アン
モニア・アルカリレゾール(D)1920gを得た。
(4) After carrying out the reaction at 70°C until it becomes cloudy using the manufacturing method in (1), 75 g of calcium stearate and 530 g of the liquid resin of the above-mentioned high-ortho-oriented novolak were added, and the lubricant-containing novolak mixture was added in the same manner as in (3). 1920 g of solid ammonia alkaline resol (D) was obtained.

2、樹脂被覆砂粒の製造 (1)スピードミキサーに90℃に加熱されたフーカ砂
10Kgと樹脂(A)又は(B)214g(珪砂に対し
て固形樹脂分換算1.5%)を投入閉蓋状態で30秒間
混練したのち開蓋し、冷却水44g及び滑剤乳濁液12
gを添加して被覆砂粒が崩壊するまで混練後、10gの
ステアリン酸カルシウムを添加して20秒間混合し、排
砂してエアレニションを行い樹脂被覆砂粒を得た。
2. Production of resin-coated sand grains (1) Pour 10 kg of Fuca sand heated to 90°C and 214 g of resin (A) or (B) (1.5% solid resin content based on silica sand) into a speed mixer and close the lid. After kneading for 30 seconds, open the lid and add 44 g of cooling water and 12 g of lubricant emulsion.
After kneading until the coated sand grains disintegrate, 10 g of calcium stearate was added and mixed for 20 seconds, and the sand was discharged and aerated to obtain resin-coated sand grains.

なお、滑剤乳濁液の滑剤には、ステアリン酸カルシウム
(a)、エチレンビスアミド(b)、ステアリン酸亜鉛
(C)、エチレンビスステアロアミド(d)、ステアリ
ン酸アミド(e)をそれぞれ使用した。
In addition, calcium stearate (a), ethylene bisamide (b), zinc stearate (C), ethylene bis stearamide (d), and stearic acid amide (e) were used as the lubricants of the lubricant emulsion, respectively.

(II)滑剤乳濁液を添加せず、冷却水の添加量を50
gとした以外は(1)と同様の方法で樹脂被覆砂粒を得
た。
(II) No lubricant emulsion is added, and the amount of cooling water added is 50%.
Resin-coated sand grains were obtained in the same manner as in (1) except that the amount of sand was changed to g.

(m)スピードミキサに150℃に加熱されたフーカ砂
10にgと樹脂(C)又は(D)150g(珪砂に対し
て1.5%)を投入して30秒間混練したのち、冷却水
150gを添加して被覆砂粒が崩壊するまで混練後、1
0gのステアリン酸カルシウムを添加して20秒間混合
し、排砂してエアレーションを行い樹脂被覆砂粒を得た
(m) Add 10 g of Fuca sand heated to 150°C and 150 g of resin (C) or (D) (1.5% to silica sand) to a speed mixer, mix for 30 seconds, and then mix with 150 g of cooling water. After adding and kneading until the coated sand grains disintegrate, 1
0 g of calcium stearate was added and mixed for 20 seconds, and the sand was removed and aerated to obtain resin-coated sand grains.

以上(A)〜(D)の使用樹脂及び(I)〜(■)の樹
脂被覆砂粒の製造方法のうち、(A)・(B)と(1)
の組合せを実施例1.2、(A)・(B)と(II)の
組合せを比較例1.2、(C)・(D)と(m)との組
合せを比較例3.4として、製造された樹脂被覆砂粒の
特性の比較を表1に示した。
Among the resins used in (A) to (D) and the methods for producing resin-coated sand grains in (I) to (■) above, (A), (B) and (1)
The combination is Example 1.2, the combination of (A), (B) and (II) is Comparative Example 1.2, and the combination of (C), (D) and (m) is Comparative Example 3.4. Table 1 shows a comparison of the properties of the resin-coated sand grains produced.

表  1 表1より明らかに、各実施例の樹脂被覆砂粒の常温曲げ
強さ、および温間曲げ強さは、比較例のそれに比べ、高
くなっている。
Table 1 It is clear from Table 1 that the room temperature bending strength and warm bending strength of the resin-coated sand grains of each example are higher than those of the comparative example.

これは本発明の効果によるものであることが明らかであ
る。
It is clear that this is due to the effect of the present invention.

なお、曲げ強さく Kg/cm2)はJACT試験法5
M−1、粘着点(’C)はJACT試験法C−1による
ものである。
The bending strength (Kg/cm2) is determined by JACT test method 5.
M-1, sticking point ('C) is based on JACT test method C-1.

特許出願人  アイシン化工株式会社 代表者  栗本清二Patent applicant: Aisin Kako Co., Ltd. Representative Seiji Kurimoto

Claims (3)

【特許請求の範囲】[Claims] (1)70℃〜110℃に加熱された砂粒に、アンモニ
ア及びアルカリ金属触媒の存在下で反応させた液状レゾ
ール型フェノール樹脂を添加混練後、滑剤乳濁液を添加
して更に混練することを特徴とするシェルモールド用樹
脂被覆砂粒の製造方法。
(1) After adding and kneading a liquid resol type phenol resin reacted in the presence of ammonia and an alkali metal catalyst to sand grains heated to 70°C to 110°C, a lubricant emulsion is added and further kneaded. A method for producing resin-coated sand grains for shell molds.
(2)添加樹脂が上記液状レゾール型フェノール樹脂と
液状ハイオルソ配向ノボラック樹脂との混合溶液である
特許請求の範囲第1項記載の方法。
(2) The method according to claim 1, wherein the additive resin is a mixed solution of the liquid resol type phenolic resin and the liquid high ortho-oriented novolac resin.
(3)上記滑剤乳濁液の滑剤が、金属石鹸類、脂肪酸ア
ミド系、炭化水素系に属するものの少なくとも一種であ
る特許請求の範囲第1項又は第2項記載の方法。
(3) The method according to claim 1 or 2, wherein the lubricant in the lubricant emulsion is at least one of metal soaps, fatty acid amide types, and hydrocarbon types.
JP24795686A 1986-10-17 1986-10-17 Production of resin coated sand grain for shell mold Granted JPS63101038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24795686A JPS63101038A (en) 1986-10-17 1986-10-17 Production of resin coated sand grain for shell mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24795686A JPS63101038A (en) 1986-10-17 1986-10-17 Production of resin coated sand grain for shell mold

Publications (2)

Publication Number Publication Date
JPS63101038A true JPS63101038A (en) 1988-05-06
JPH0347942B2 JPH0347942B2 (en) 1991-07-22

Family

ID=17171053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24795686A Granted JPS63101038A (en) 1986-10-17 1986-10-17 Production of resin coated sand grain for shell mold

Country Status (1)

Country Link
JP (1) JPS63101038A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113304A (en) * 1990-03-28 1992-05-12 Kabushiki Kaisha Toshiba Digital protective circuit breaker
JP2002346691A (en) * 2001-05-22 2002-12-03 Lignyte Co Ltd Method of manufacturing resin coated sand for shell mold and resin coated sand for shell mold
JP2008055468A (en) * 2006-08-31 2008-03-13 Asahi Organic Chem Ind Co Ltd Method for manufacturing dried casting sand composition and dried casting sand composition obtained by using this manufacturing method, and method for manufacturing mold using the composition
EP1864728A4 (en) * 2005-02-16 2008-10-15 Asahi Organic Chem Ind Resin-coated sand for multilayered casting mold
WO2013118572A1 (en) * 2012-02-06 2013-08-15 旭有機材工業株式会社 Organic adhesive agent for mold and casting sand composition and mold obtained using same
WO2013118573A1 (en) * 2012-02-06 2013-08-15 旭有機材工業株式会社 Organic adhesive agent for mold and casting sand composition and mold obtained using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376125A (en) * 1976-12-20 1978-07-06 Dainippon Ink & Chemicals Preparation of resin coated sand for molding mold

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376125A (en) * 1976-12-20 1978-07-06 Dainippon Ink & Chemicals Preparation of resin coated sand for molding mold

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113304A (en) * 1990-03-28 1992-05-12 Kabushiki Kaisha Toshiba Digital protective circuit breaker
JP2002346691A (en) * 2001-05-22 2002-12-03 Lignyte Co Ltd Method of manufacturing resin coated sand for shell mold and resin coated sand for shell mold
EP1864728A4 (en) * 2005-02-16 2008-10-15 Asahi Organic Chem Ind Resin-coated sand for multilayered casting mold
JP2008055468A (en) * 2006-08-31 2008-03-13 Asahi Organic Chem Ind Co Ltd Method for manufacturing dried casting sand composition and dried casting sand composition obtained by using this manufacturing method, and method for manufacturing mold using the composition
WO2013118572A1 (en) * 2012-02-06 2013-08-15 旭有機材工業株式会社 Organic adhesive agent for mold and casting sand composition and mold obtained using same
WO2013118573A1 (en) * 2012-02-06 2013-08-15 旭有機材工業株式会社 Organic adhesive agent for mold and casting sand composition and mold obtained using same
CN104093508A (en) * 2012-02-06 2014-10-08 旭有机材工业株式会社 Organic adhesive agent for mold, and casting sand composition and mold obtained using same
CN104093507A (en) * 2012-02-06 2014-10-08 旭有机材工业株式会社 Organic adhesive agent for mold and casting sand composition and mold obtained using same

Also Published As

Publication number Publication date
JPH0347942B2 (en) 1991-07-22

Similar Documents

Publication Publication Date Title
US4051301A (en) Furan-phenolic resin coated sand for collapsible foundry molds
JPS63101038A (en) Production of resin coated sand grain for shell mold
US4290928A (en) Binder for dry hot coat foundry process
US4196114A (en) Process for producing resin-coated foundry sand
US4197385A (en) Furan-phenolic resins for collapsible foundry molds
JPS58119433A (en) Resin coated sand for shell mold
US3838095A (en) Foundry sand coated with a binder containing novolac resin and urea compound
JPS5855146A (en) Phenolic resin binder for shell mold and resin coated sand produced by using said binder
JPS62127140A (en) Resin coated sand for shell mold
JPS5881539A (en) Resin coated sand and its production
JPS58173051A (en) Resin coated sand for shell mold
JPS58184034A (en) Resin coated sand
JPS58224038A (en) Composition of coated sand and its production
JPS6393442A (en) Resin binder for shell mold
JPS5835039A (en) Binder for shell mold
JPH0337817B2 (en)
JPS6240949A (en) Resin composition for coated sand
JPS63188442A (en) Resin coating sand grain for shell mold
JPS6327103B2 (en)
JPH0144423B2 (en)
JP3881208B2 (en) Resin composition for mold and resin-coated sand for mold using the same
JPH0468059B2 (en)
JPS598465B2 (en) Manufacturing method of resin-coated sand for foundries
JPS6064744A (en) Coated sand composition for shell mold
JPS58196137A (en) Resin coated sand for shell mold method