JPS6296327A - Method of preparing sol - Google Patents

Method of preparing sol

Info

Publication number
JPS6296327A
JPS6296327A JP23556385A JP23556385A JPS6296327A JP S6296327 A JPS6296327 A JP S6296327A JP 23556385 A JP23556385 A JP 23556385A JP 23556385 A JP23556385 A JP 23556385A JP S6296327 A JPS6296327 A JP S6296327A
Authority
JP
Japan
Prior art keywords
sol
water
silica
stirring
alkyl silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23556385A
Other languages
Japanese (ja)
Inventor
Mikio Aoki
三喜男 青木
Sadao Kanbe
貞男 神戸
Teiichirou Mori
森 禎一郎
Masahisa Ikejiri
昌久 池尻
Shoichi Uchiyama
正一 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP23556385A priority Critical patent/JPS6296327A/en
Publication of JPS6296327A publication Critical patent/JPS6296327A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:In sol preparation in quartz glass production process by sol-gel method, to obtain uniform sol having the aimed particle diameter in a short time, by predispersing fine powder silica into water and hydrolyzing it with an alkyl silicate. CONSTITUTION:An alkyl silicate is simultaneously blended with fine powder silica and water, hydrolyzed by stirring and ultrasonic irradiation and gelatinized to produce quartz glass by sol-gel method. In the operation, when the fine powder silica is predispersed into a necessary amount of water in a sol preparation process, the silica which is aggregated once and grows larger particle is blended with the alkyl silicate and water, the aggregated silica is extremely readily dispersed by the stirring and ultrasonic irradiation and hydrolyzed in the presence of a catalyst such as hydrochloric acid, etc., to give sol having the desired particle diameter in a short time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ゾル−ゲル法におけるゾルの調整方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for preparing a sol in a sol-gel method.

〔発明の概要〕[Summary of the invention]

本発明は、ゾル−ゲル法におけるゾル調整において、微
粉末シリカを前もって水に分散させた後アルキルシリケ
ートを加え加水分解することにより、ゾルの粒度を落と
すに要する超音波照射の時間を短くシ、ゾル調整に要す
る時間を短縮したものである。
In the sol preparation in the sol-gel method, the present invention shortens the ultrasonic irradiation time required to reduce the particle size of the sol by first dispersing finely powdered silica in water and then adding alkyl silicate for hydrolysis. This shortens the time required for sol adjustment.

〔従来の技術〕[Conventional technology]

アルキルシリケートおよび微粉末シリカを主原料として
用いるゾル−ゲル法による石英ガラス製造方法は、高品
質なガラスを安価に製造できるため、非常に注目されて
いる。
A method for producing silica glass using a sol-gel method using alkyl silicate and finely powdered silica as main raw materials has attracted much attention because it can produce high-quality glass at low cost.

従来のゾル−ゲル法によるゾルの調整方法は、アルキル
シリケート、微粉末シリカ及び水を同時に混合し、攪拌
、超音波照射を行いながら加水分解を行い、加水分解終
了後もゾルの粒度がある一定の値に下がるまで攪拌及び
超音波照射’taけた。
The conventional method for preparing a sol using the sol-gel method is to simultaneously mix alkyl silicate, finely powdered silica, and water, and hydrolyze the mixture while stirring and irradiating it with ultrasonic waves. Stirring and ultrasound irradiation were continued until the value decreased to .

〔発明が解決しようとする問題点及び目的〕しかし、従
来のフルキルシリケート、微粉末シリカ及び水を同時に
混合して加水分解を行うという方法においては、次のよ
うな理由により、ゾルの粒度1!−落とすための攪拌、
超音波照射に要する時間が長くかかる。アルキルシリケ
ート及び水の溶液中に微粉末として混合された5107
粒子は、溶液に浸されると、溶液に8102粒子がなじ
む前に凝集してしまう。また、溶液にアルキルシリケー
トが含まれているために、アルキルシリケートの粘性に
より、slo、粒子が溶液中に分散されに<<1810
1粒子のかたまりも大きなものとなりやすい。また、8
10.粒子が充分に分散される以前にアルキルシリケー
トの加水分解が行われ、加水分解によって生じた8l−
OH分子は縮合全行い5101分子になる。この810
.分子線、最初から微粉末として加えられた8101粒
子を核にして成長していく。この時点で、超音波照射に
よる分散の効果は、Sin、粒子の成長によシうち消さ
れた状態になり、超音波照射のききめはあまシ見られ−
ない。その結果攪拌、超音波照射に要する時間が長くな
る。
[Problems and objects to be solved by the invention] However, in the conventional method of simultaneously mixing furkyl silicate, finely powdered silica, and water for hydrolysis, the particle size of the sol ! - stirring to remove;
Ultrasonic irradiation takes a long time. 5107 mixed as a fine powder in a solution of alkyl silicate and water
When the particles are immersed in the solution, they aggregate before the 8102 particles are absorbed into the solution. In addition, since the solution contains alkyl silicate, the viscosity of the alkyl silicate prevents particles from being dispersed in the solution.
Even a single particle tends to become large. Also, 8
10. Hydrolysis of the alkyl silicate takes place before the particles are sufficiently dispersed, and the 8l-
The total condensation of OH molecules results in 5101 molecules. This 810
.. Molecular beams grow using 8101 particles, which were added as fine powder from the beginning, as cores. At this point, the dispersion effect caused by ultrasonic irradiation is canceled out by the growth of Sin and particles, and the fineness of ultrasonic irradiation is not observed.
do not have. As a result, the time required for stirring and ultrasonic irradiation becomes longer.

また、Sin、粒子が分散されにくい点から、最終的に
810.が分散されず°粘径が完全に浩ちない場合が生
じてくる。その結果、アルキルシリケート、微粉末シリ
カ等の原料の無駄が生じる。
In addition, since the particles of Sin are difficult to disperse, the final value is 810. There may be cases where the viscosity is not completely increased because the viscosity is not dispersed. As a result, raw materials such as alkyl silicate and finely powdered silica are wasted.

本発明は、このよりな問題点を解決するもので、その目
的とするところは、常に同じ状態のゾルを量産性良く得
るところにある。
The present invention is intended to solve this further problem, and its purpose is to obtain a sol that is always in the same state with good mass production.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のゾル調整方法は、微粉末シリカを前もって必要
量の水に分散させた後、アルキルシリケートを加え加水
分解をすることを特徴とする。
The sol preparation method of the present invention is characterized in that finely powdered silica is previously dispersed in a required amount of water, and then an alkyl silicate is added and hydrolyzed.

〔作用〕[Effect]

ゾルの調整において、アルキルシリケート、微粉末シリ
カ及び水を同時に混合し、攪拌、超音波照射を行いなが
ら加水分解をして、その後も攪拌超音波照射を続けてゾ
ルを得る方法においては、微粒子である5103粒子は
s I@yに浸されると凝集しやすく、ましてアルキル
シリケートにより粘度が高まって分散されにくくなる。
When preparing a sol, alkyl silicate, finely powdered silica, and water are mixed simultaneously, hydrolyzed while stirring and irradiated with ultrasonic waves, and then stirring and irradiation with ultrasonic waves are continued to obtain a sol. Certain 5103 particles tend to aggregate when immersed in s I@y, and moreover, the alkyl silicate increases the viscosity and makes it difficult to disperse.

その結果。the result.

5108粒子の分散に要する時間は長く要求され、時に
は分散されずに終わってしまう場合も生じ兼ねない。
It takes a long time to disperse the 5108 particles, and sometimes the particles may not be dispersed.

本発明では、このような問題を避けるために、あらかじ
めSin、粒子を必要量の水に分散させておく。日10
1粒子は、水に浸されると最初は従来の方法と同様凝集
し、粒径は大きくなる。しかし810、粒子は水になじ
みやすく、また水の粘性がそれほど嵩くないために、攪
拌、超音波照射により分散が容易に行なわれる。こうし
て得られた分散液とアルキルシリケートヲ混合し、塩#
1を触媒に加水分解を行いゾルを得る。加水分解が行な
われる前、Sin、粒子の粒径は分散液におけるSin
In the present invention, in order to avoid such problems, Sin and particles are dispersed in a necessary amount of water in advance. day 10
When one particle is immersed in water, it initially aggregates as in the conventional method, and the particle size increases. However, since the particles 810 are easily compatible with water and the viscosity of water is not so bulky, dispersion is easily performed by stirring and ultrasonic irradiation. The thus obtained dispersion and alkyl silicate were mixed, and salt #
1 is hydrolyzed using a catalyst to obtain a sol. Before hydrolysis, the particle size of the particles is the same as the Sin in the dispersion.
.

粒子の粒径であり、加水分解が行われ、 Sin、分子
の縮合が起こっても、本来の810.粒子の粒径が小さ
いために、全体の粒径もそれほど大きくならず1短時間
の攪拌、超音波照射によシ、望みの粒径のゾルが得られ
る。また、分散液の時点での粒径にゾルの粒径が必ず落
ちる保証があるため、分散液の段階で望みの粒径にまで
分散させれば容易にゾルが得られる。゛また、万が一1
分散液の段階で粒径が落ちず、望みの分散液が得られな
かったとしても、その損失は最小限に押さえることが可
能となる。
Even if hydrolysis occurs and condensation of Sin and molecules occurs, the original 810. Since the particle size of the particles is small, the overall particle size does not become too large, and a sol with a desired particle size can be obtained by stirring for a short time and irradiating with ultrasonic waves. Furthermore, since there is a guarantee that the particle size of the sol will always fall to the particle size at the time of dispersion, a sol can be easily obtained by dispersing to the desired particle size at the stage of dispersion.゛Also, just in case
Even if the desired dispersion cannot be obtained because the particle size does not decrease at the dispersion stage, the loss can be kept to a minimum.

〔実施例〕〔Example〕

微粉末シリカ251fと水569 t、さらに布板のエ
チルシリケー) (5i(00,H,)、 800+d
、15Nの塩Hsaccを用い、次の二連シの方法で平
均粒径(L15μmのゾルを得た。
251f of finely powdered silica, 569t of water, and ethyl silica on a cloth plate) (5i(00,H,), 800+d
, 15N salt Hsacc was used to obtain a sol with an average particle size (L of 15 μm) using the following two-part method.

(1)微粉末シリカ2312を水569fに流し込み、
攪拌、超音波照射′t−続けて平均粒径Q、15μmの
分散[−得た。これにエチルシリケート(sl(00,
)I、 )、 ) 800−と(LO5N壇ffi、5
0ccf加え、加水分M’t−行い、加水分解後、攪拌
、超音波照射を繰り返し行い平均粒径α15μmのゾル
を得た。
(1) Pour fine powder silica 2312 into water 569f,
Stirring and ultrasonic irradiation were followed to obtain a dispersion with an average particle size Q of 15 μm. To this, ethyl silicate (sl(00,
)I, ), ) 800- and (LO5Ndanffi, 5
0 ccf was added, hydrolysis M't- was carried out, and after hydrolysis, stirring and ultrasonic irradiation were repeated to obtain a sol with an average particle size α of 15 μm.

(21微粉末シリカ251?と水5692、さらにエチ
ルシリケート(sl(oc、 H,)4 ) 800d
t”同時に混合し、これに005N塩酸3occ″f!
:加え、攪拌、超音波照射を行いながら加水分解を行い
、加水分解後も攪拌、超音波照射を行い、平均粒径α1
5μmのゾルを得た。
(21 fine powder silica 251? and water 5692, further ethyl silicate (sl(oc, H,)4) 800d
t" Mix at the same time, add 3 occ of 005N hydrochloric acid"f!
: Addition, hydrolysis while stirring and ultrasonic irradiation, stirring and ultrasonic irradiation after hydrolysis, average particle size α1
A 5 μm sol was obtained.

(1)の方法においては、微粉末シリカと水の混合5分
、分散液の超音波照射50分、エチルシリケート添加3
分、加水分解40分、加水分解後の攪拌、超音波照射6
0分を要した。この手順の間の810!粒子の粒径は、
第1図に示すような変化を示し、全工程158分で望み
の粒径115μmのゾルを得た。
In method (1), fine powder silica and water were mixed for 5 minutes, the dispersion was irradiated with ultrasonic waves for 50 minutes, and ethyl silicate was added for 3 minutes.
minutes, hydrolysis 40 minutes, stirring after hydrolysis, ultrasonic irradiation 6
It took 0 minutes. 810 during this procedure! The particle size of the particles is
The changes were as shown in FIG. 1, and a sol with the desired particle size of 115 μm was obtained in a total process of 158 minutes.

(210方法においては、微粉末シリカと水、エチルシ
リケートの混合8分、加水分解40分、加水分解後の攪
拌、超音波照射210分を要した。またこの間の810
1粒子の粒径は、第2図に示すような変化を示し、全工
程258分で望みの粒径Q、15μmのゾルを得た。
(The 210 method required 8 minutes of mixing fine powder silica, water, and ethyl silicate, 40 minutes of hydrolysis, stirring after hydrolysis, and 210 minutes of ultrasonic irradiation.
The particle size of each particle showed a change as shown in FIG. 2, and a sol with a desired particle size Q of 15 μm was obtained in the entire process of 258 minutes.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によるゾル調整の手順にてゾ
ルの調整を行うことによp、S1a、粒子が水に分散さ
れやすく、目的の粒径の分散gt容易に得ることができ
、また、そのため加水分解後の粒径も大きくならず短時
間の攪拌、超音波照射により容易に目的のゾルが得られ
る。したがって、この方法によシ均質のゾルがik産性
良く得ることが可能となる。またこのような均質なゾル
により得られるガラスも均質なガラスとなり、ゾル−ゲ
ル法によるガラス型造の均質化、1を産性を改善したも
のと言える。こうしてできたガラスは、一般的に広く匣
われているガラス器具はもちろんのこと、高純度、高精
度を必要とする光フアイバー用ジャケット管としても応
用できる。
As described above, by adjusting the sol using the sol preparation procedure according to the present invention, particles p, S1a, and particles can be easily dispersed in water, and a dispersion gt of the desired particle size can be easily obtained. Therefore, the particle size after hydrolysis does not increase, and the desired sol can be easily obtained by short-time stirring and ultrasonic irradiation. Therefore, this method makes it possible to obtain a homogeneous sol with good yield. Moreover, the glass obtained by such a homogeneous sol also becomes a homogeneous glass, and it can be said that the glass mold formation by the sol-gel method is homogenized and the productivity is improved. The glass made in this way can be used not only in commonly used glass appliances, but also as jacket tubes for optical fibers, which require high purity and precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図に実施例に述べた(11の方法(本発明の方法)
にてゾル調整を行った時の粒度の経時変化図を示す、第
2図に実施例のは)の方法(従来の方法)にてゾル調整
を行った時の粒度の経時変化図を示す。 以上
FIG. 1 shows 11 methods (methods of the present invention) described in the Examples.
FIG. 2 shows a graph of the change in particle size over time when the sol was adjusted using the method of Example 1 (conventional method). that's all

Claims (1)

【特許請求の範囲】[Claims] アルキルシリケート及び微粉末シリカを主原料として用
いるゾル−ゲル法におけるゾル調整において、微粉末シ
リカを前もつて水に分散させた後アルキルシリケートを
加え加水分解することを特徴とするゾルの調整方法。
A method for preparing a sol in a sol-gel method using an alkyl silicate and finely powdered silica as main raw materials, which comprises dispersing finely powdered silica in water in advance, then adding an alkylsilicate and hydrolyzing it.
JP23556385A 1985-10-22 1985-10-22 Method of preparing sol Pending JPS6296327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23556385A JPS6296327A (en) 1985-10-22 1985-10-22 Method of preparing sol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23556385A JPS6296327A (en) 1985-10-22 1985-10-22 Method of preparing sol

Publications (1)

Publication Number Publication Date
JPS6296327A true JPS6296327A (en) 1987-05-02

Family

ID=16987841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23556385A Pending JPS6296327A (en) 1985-10-22 1985-10-22 Method of preparing sol

Country Status (1)

Country Link
JP (1) JPS6296327A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990007390A1 (en) * 1988-12-27 1990-07-12 Symetrix Corporation Methods and apparatus for material deposition
US5138520A (en) * 1988-12-27 1992-08-11 Symetrix Corporation Methods and apparatus for material deposition
US5614252A (en) * 1988-12-27 1997-03-25 Symetrix Corporation Method of fabricating barium strontium titanate
US5962085A (en) * 1991-02-25 1999-10-05 Symetrix Corporation Misted precursor deposition apparatus and method with improved mist and mist flow
US7059153B2 (en) 2000-06-05 2006-06-13 Murata Manufacturing Co., Ltd. Method for producing glass powders
JP2011527278A (en) * 2008-07-09 2011-10-27 エボニック デグサ ゲーエムベーハー Unsintered compact based on silicon

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990007390A1 (en) * 1988-12-27 1990-07-12 Symetrix Corporation Methods and apparatus for material deposition
US5138520A (en) * 1988-12-27 1992-08-11 Symetrix Corporation Methods and apparatus for material deposition
US5614252A (en) * 1988-12-27 1997-03-25 Symetrix Corporation Method of fabricating barium strontium titanate
US5962085A (en) * 1991-02-25 1999-10-05 Symetrix Corporation Misted precursor deposition apparatus and method with improved mist and mist flow
US7059153B2 (en) 2000-06-05 2006-06-13 Murata Manufacturing Co., Ltd. Method for producing glass powders
JP2011527278A (en) * 2008-07-09 2011-10-27 エボニック デグサ ゲーエムベーハー Unsintered compact based on silicon

Similar Documents

Publication Publication Date Title
JP2013049620A (en) Method of preparing fumed metal oxide dispersion
JPS60127216A (en) Production of aqueous silica sol with low alkali and low alumina content
JPS6296327A (en) Method of preparing sol
CN103626203A (en) Preparation method of nanometer ZSM-5 molecular sieve
EP0238744A1 (en) Improvements in or relating to glass-forming compositions for immobilizing nuclear waste
JPS59116135A (en) Manufacture of quartz glass
CN105523567B (en) A kind of preparation method of the NaY molecular sieve of controlled dimensions
JPH0351643B2 (en)
JP2004026649A (en) Colloidal silica composition, method for manufacturing the same, method for manufacturing silica glass using this colloidal silica
KR100450223B1 (en) Preparation method of monosized bariumtitanate particles
JP3582093B2 (en) Method for producing silica glass
KR100417694B1 (en) Preparation method of spherical monodispersed bariumtitanate particles
JPS62119124A (en) Production of glass
JPS63112411A (en) Production of silica particle
JPH0662284B2 (en) Method for producing inorganic oxide particles
KR100467795B1 (en) Preparation method of monosized alumina particles
JPH06287013A (en) Production of synthetic silica
JPS6065733A (en) Production of quartz glass
JPH07196325A (en) Production of synthetic silica glass
JPS6126525A (en) Production of quartz glass
JPS60171228A (en) Manufacture of quartz glass
CN116621498A (en) Preparation method of graphene powder capable of being redispersed in 3D printing material
KR960007339B1 (en) Process for preparing polyamide
JPH07126009A (en) Production of silica having large particle diameter
JPS61186234A (en) Production of parent material for optical fiber of quartz glass