JPS6296309A - Production of siliceous spherule - Google Patents

Production of siliceous spherule

Info

Publication number
JPS6296309A
JPS6296309A JP23636285A JP23636285A JPS6296309A JP S6296309 A JPS6296309 A JP S6296309A JP 23636285 A JP23636285 A JP 23636285A JP 23636285 A JP23636285 A JP 23636285A JP S6296309 A JPS6296309 A JP S6296309A
Authority
JP
Japan
Prior art keywords
slurry
particles
spray
siliceous
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23636285A
Other languages
Japanese (ja)
Inventor
Yoshio Kimura
好男 木村
Kazuo Takahashi
和男 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP23636285A priority Critical patent/JPS6296309A/en
Publication of JPS6296309A publication Critical patent/JPS6296309A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To produce siliceous spherules of high purity and high roundness having a sharp grain size distribution with good productivity, by slurrying fine synthetic siliceous powder, adjusting the slurry to a proper viscosity, spray granulating the adjusted slurry and heat-treating the granulated grains. CONSTITUTION:Fine synthetic siliceous powder, obtained by hydrolyzing a silicon halide compound, etc., and having about <=10ppb content of impurities, e.g. U, Th, etc., and about 0.005-0.5mum particle size is mixed with a binder prepared by adding ethyl silicate, etc., to water, etc., and the concentration, etc., are adjusted to prepare a slurry having a viscosity thereof adjusted to 100-1,000cP. The resultant slurry is then spray granulated in a spray dryer, etc., to give granulated grains having preferably about <=300mum grain size, which are heat-treated in an atmosphere, preferably at about >=1,700 deg.C while instantaneously firing or melting. Thereby, the aimed siliceous spherules are obtained without causing choking of spray dryers, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、珪酸質球状体の投法、避らに詳しくは、半導
体素子封止用樹脂組成物のフィラーとして適する高純度
かつ真球度の高い珪酸質球状体の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of casting silicate spheroids, and more specifically, to casting silicate spheroids having high purity and sphericity suitable as fillers for resin compositions for encapsulating semiconductor devices. This invention relates to a method for producing silicic acid spherical bodies with high .

〔従来の技術〕[Conventional technology]

半導体素子の封止には、釡属やセラミックを用いる気密
封止法と樹脂を用いる樹脂封止法があり、後者は、イ4
済注、板唾性にすぐれるため約80%を占めている。
There are two methods for encapsulating semiconductor devices: an airtight encapsulation method that uses pot metal or ceramics, and a resin encapsulation method that uses resin.
It accounts for about 80% of the cases due to its superior dexterity.

樹脂封止法におけるフィラーとして・よ、主として、天
然珪石の浴融・粉砕品が用いられているが、このものは
多くの尖端をもった不定形物であるので流動性が悪いの
みならず素子表面に応力を与え菓子の特性を狂わしたり
、さらには成型の際に素子を損傷させる危険があった。
As a filler in the resin encapsulation method, bath-melted and crushed natural silica stone is mainly used, but since this is an amorphous material with many points, it not only has poor fluidity but also has poor fluidity. There was a risk that stress would be applied to the surface, which would disrupt the properties of the confectionery, or even damage the element during molding.

また、σやThなどの放射性不純物がわずかに含まれて
おり、そこから発生するα線が半導体製品にソフトエラ
ーを与えるので高集積化には不向へである。
Furthermore, it contains a small amount of radioactive impurities such as σ and Th, and the α rays generated therefrom give soft errors to semiconductor products, making it unsuitable for high integration.

以上の問題点を解消するため、合成シリカ微粒子を原料
とする球状シリカ粒子の製法〃二種々提案されているが
一長一短がある。
In order to solve the above problems, two methods have been proposed for producing spherical silica particles using synthetic silica fine particles as a raw material, but these methods have advantages and disadvantages.

例えば、特開昭58−140313号公報には、ハロゲ
ン化7ラン化合物を火炎と共に耐火性の標的上に吹きつ
けて、その醸化加水分解で生成するシリカ微粒子を標的
上に付着させ、これをその平均粒子が1μm以上になる
まで浴融生長させる方法が紹介されているが、この方法
では、シリカ微粒子のまま飛散したり標的上でプラス膜
化するものの割合が大きく成長粒子が得られにくいとい
う欠点がある。
For example, in JP-A-58-140313, a halogenated 7-ranan compound is sprayed onto a fire-resistant target along with a flame, and silica fine particles produced by the fermentation hydrolysis are deposited on the target. A method has been introduced in which the silica is grown in a bath until the average particle size is 1 μm or more, but with this method, it is difficult to obtain grown particles because a large proportion of silica particles are scattered as fine particles or form a positive film on the target. There are drawbacks.

また、特開昭58−88130号公報には、合成シリカ
微粒子を再度合成雰囲気中にさらして粒子成長させる方
法、特開昭59−152215号公報には、合成シリカ
微粒子を気体もしくは液体燃料または酸素、空気等の支
燃性がスに分散させてバーナーに供給し粒子成長させる
方法がそれぞれ記載されている。しかし、これらの方法
では、気相中で合成シリカ微粒子を合着又は成長させる
ため、球状成長せずに不定形粒子となったり、あるいは
合着・成長にあずからなかったものは微粒子のまま残存
することになる。不定形粒子は、前述のように、成形性
と流動性に悪影響を与え、また、微粒子の残存は、フィ
ラーの比表面積を増大させることになるので、これまた
流動性に害を与えろ。
In addition, JP-A-58-88130 discloses a method of exposing synthetic silica fine particles to a synthesis atmosphere again to grow the particles, and JP-A-59-152215 discloses a method in which synthetic silica fine particles are exposed to gas or liquid fuel or oxygen. , a method is described in which a combustion-supporting substance such as air is dispersed in a gas and supplied to a burner to cause particle growth. However, in these methods, synthetic silica fine particles are coalesced or grown in the gas phase, so they may not grow into spherical shapes and become irregularly shaped particles, or particles that have not coalesced or grown may remain as fine particles. I will do it. As mentioned above, irregularly shaped particles have an adverse effect on moldability and fluidity, and remaining fine particles increase the specific surface area of the filler, which also has a detrimental effect on fluidity.

壕だ、以上の方法VCよって得られたいずれもの合成シ
リカ粒子は、粒度分布幅が広いので、適切な粒度構成と
するには分級工程が不可欠となる欠点がある。
Unfortunately, all of the synthetic silica particles obtained by the VC method described above have a wide particle size distribution, and therefore have the disadvantage that a classification step is essential to obtain an appropriate particle size structure.

一方、特開昭60−131868号公報には、U言有廿
が少なく流動性と成形性にすぐれ、しかも比較的シャー
プな粒度分布をもった球状シリカを製造する方法として
、まず、合成7リ力微粒子をスラリー比し、次いでそれ
を噴霧乾燥した後焼成又は耐融する技術が開示されてい
る。この方法によれば、種々の利点をもたらすが、条件
によっては、真球に近い粒子が得られないところが未解
決でおった。
On the other hand, Japanese Patent Application Laid-open No. 60-131868 describes a method for producing spherical silica that has few U words, excellent fluidity and moldability, and has a relatively sharp particle size distribution. Techniques have been disclosed in which fine particles are slurried, then spray-dried, and then fired or melted. Although this method brings about various advantages, it remains unresolved that particles close to perfect spheres cannot be obtained depending on the conditions.

における以上の未解決問題を解決するため種々検討を重
ねた結果、スラリーの粘度を100〜1.000 cp
sに調整すればよいことを見い出し、本発明を完成する
に至った。
As a result of various studies to solve the above-mentioned unresolved problems in
They found that it is sufficient to adjust the temperature to s, and have completed the present invention.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明は、スラリー化した合成珪素質微粉末
を噴繕乾燥し、それを熱処理して珪は賞球状体を製造す
る方法において、スラリー粘度を100〜1.000 
apeに調整することを特徴とする珪酸質球状体の製法
である。
That is, the present invention provides a method for manufacturing a silicon spherical body by blow drying slurry-formed synthetic silicon-based fine powder and heat-treating it, in which the slurry viscosity is adjusted to 100 to 1.000.
This is a method for producing silicate spheres characterized by adjusting the ape.

以下、さらに詳しく本発明について説明する。The present invention will be explained in more detail below.

本発明において、原料とする合成珪素質微粉末は、例え
ば、ハロゲン化シリコン化合物等の揮発しやすい珪素化
合物及びシラン等ケ加水分解、酸化分解あるいはアルコ
ール存在下でアルコキシドとし加水分解することにより
生成したもので、σ、Thのせ有量は10 ppb以下
で、その粒度は0.005〜0.5μm程度の微細なも
のが好適である。
In the present invention, the synthetic silicon-based fine powder used as a raw material is produced by, for example, hydrolyzing easily volatile silicon compounds such as halogenated silicon compounds, silanes, etc., or by hydrolyzing them into alkoxides in the presence of alcohol. Preferably, the amount of σ and Th is 10 ppb or less, and the particle size is fine, about 0.005 to 0.5 μm.

この合成珪素質微粉末と結合剤を混合してスラリーを調
製し、それをスプレードライヤー等の噴躊式造泣磯を用
いて造粒する。結合剤としては、U −? Th等の放
射性不純物を実質的に官有しない水ヤアルコール等に、
エチルシリケート、コロイダルシリカ、ポリビニルアル
コール、カルボキシメチルセルロースなどを必安に応じ
て添加したものを用いる。本発明において、特に重要な
ことは、このスラリールーJ製の際にその粘度を100
〜1.0OOcp日と調節することであり、その理由に
ついて説明すれば次の通りである。
This synthetic silicon fine powder and a binder are mixed to prepare a slurry, and the slurry is granulated using a jet-type weeping stone such as a spray dryer. As a binder, U-? Water alcohol, etc. that does not substantially contain radioactive impurities such as Th,
Ethyl silicate, colloidal silica, polyvinyl alcohol, carboxymethyl cellulose, etc. are added as needed. In the present invention, what is particularly important is that when making this slurry roux J, its viscosity is 100%.
The reason for this is as follows.

スラリー粘度が100 cps未満のものを用いて造粒
すると、造粒品の一部又は全部が変形の大きいくぼみを
もったものになる。このような変形粒子は、その後に熱
処理を行っても真球又はそれに近いものとはならず、そ
のまま残存することになり、琢状品の持っているすぐれ
た流動性が得られなくなる。
If a slurry with a viscosity of less than 100 cps is used for granulation, part or all of the granulated product will have depressions that are highly deformed. Such deformed particles do not become true spheres or nearly perfect spheres even if they are subsequently heat treated, and remain as they are, making it impossible to obtain the excellent fluidity of a powdered product.

このような変形粒子の生成原因についてさらに追究した
ところ、それは、高速で噴霧されだ液滴が乾燥場れるま
での間にまわりの気流から応力を受けることによって生
じることを知った。そこで、スラリーの粘岐をあげて変
形に抗する性質を増やしてやると変形が小さく真球に近
い造粒品を得ることができた。すなわち、スラリー原液
の粘度が100 cpsよりも小さい場合にはllX霧
された液滴の応力に対する変形の速度が大きいため乾燥
が完了するまでの変形量は大きくなるが、粘度が100
ape以上好ましくは200 cps以上の場合には故
副の変形は1つたく起こらないか、起きてもわずかとな
りλ球団の病い造粒品を製造することができたのである
。一方、スラリー粘度があまり大きいときにはスプンー
ドライヤーへのスラリー供給時に配管や噴g機内にてス
ラリーのビル化及び閉塞がおこり好適な造粒がおこなえ
ないので、その上限は1.000 cpsとするのが望
ましい。なお、粘度は、B型粘度計を用い、常温下口−
ター回転数60 rpmで測定される。
When we further investigated the cause of the formation of such deformed particles, we learned that they are caused by the stress exerted by the surrounding airflow on the droplets that are sprayed at high speed before drying. Therefore, by increasing the viscosity of the slurry to increase its resistance to deformation, it was possible to obtain granulated products with little deformation and close to perfect spheres. That is, when the viscosity of the slurry stock solution is lower than 100 cps, the rate of deformation of the atomized droplets against stress is high, so the amount of deformation until drying is completed becomes large;
When the ape is more than 200 cps, preferably more than 200 cps, no or only a few deformations occur, and it is possible to produce a granulated product with a λ sphere. On the other hand, if the slurry viscosity is too high, slurry buildup and clogging will occur in the piping and spray machine when slurry is supplied to the spoon dryer, making it impossible to perform suitable granulation, so the upper limit is set at 1.000 cps. is desirable. The viscosity was measured using a B-type viscometer at room temperature.
measured at a rotational speed of 60 rpm.

実際に、以上の範囲にスラリー粘度を調節するには、ス
ラリーの粉末濃度・−・結合剤添加量・液温等の要因の
うちひとつ若しくは複数を適宜組合わせて行う。例えば
、スラリーの粘度を下げるには粉末濃度乞下げ液温を少
しおけるなどの方法があり、一方、粘度を上げるには粉
末濃度を上げて結合剤を添加しp)(:2中性域とする
などの方法がある。
In fact, in order to adjust the slurry viscosity within the above range, one or more of factors such as the powder concentration of the slurry, the amount of binder added, and the liquid temperature are appropriately combined. For example, to lower the viscosity of a slurry, there are methods such as lowering the powder concentration and lowering the liquid temperature, while increasing the viscosity can be achieved by increasing the powder concentration and adding a binder. There are ways to do this.

造粒粒子の大きさとしては、粒径600μm以下、特に
200μm以下とするのがよい。600μmよりも大き
くなると溶射浴融する際にバーナーに珀まりが発生する
おそれがあり、また、シャープな粒度構成をもった球状
粒子は得られにくくなる。
The size of the granulated particles is preferably 600 μm or less, particularly 200 μm or less. If it is larger than 600 μm, there is a risk that clumps will occur in the burner during melting of the thermal spray bath, and it will be difficult to obtain spherical particles with a sharp particle size structure.

以上の方法によって偽られた造粒品を熱処理して珪酸質
球状体とする。熱処理条件としては、温度1.700°
C以上の雰囲気下で瞬時に焼成又は溶融することが望ま
しい。
The granulated product faked by the above method is heat-treated to form silicate spheres. The heat treatment conditions are a temperature of 1.700°.
It is desirable to instantaneously fire or melt the material in an atmosphere of C or higher.

〔実施例〕〔Example〕

以下、本発明の実施例及び比較例をあげてさらに具体的
に説明する。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

実施例1 原料として、粒径0.01〜0.03 prn (TN
M観察)の合成シリカ微粒子4 Kgと純水46Kgを
混合してスラリーを調製した。このスラリーの粘度をB
型粒度計を用いて常温で測定したところ、ローター回転
数60 rpmにおいて290 cpsであった。
Example 1 As a raw material, particle size 0.01 to 0.03 prn (TN
A slurry was prepared by mixing 4 kg of synthetic silica fine particles (M observation) and 46 kg of pure water. The viscosity of this slurry is B
When measured at room temperature using a type granulometer, it was found to be 290 cps at a rotor rotation speed of 60 rpm.

このスラリーを、回転ディスク方式のスプレーPライヤ
ーに151 / Hrの速度で供給し、ディスク回転数
15.00 Orpm、乾燥温度260°Cの条件で噴
霧造粒したところ、粒径4〜50μmの造粒球状品を得
た。この造粒品を、温度1150’Cで2時間焼成した
後、水素ガス53 Nm3/ Hr(43,9mlB 
> 、d素ガス15 Nm” / Hr (8%Sm/
s)のがス組成で形成した温度1850℃のフレーム中
に溶射溶融して製品とした。得られた製品をsi+:N
m祭したところ、第1図に示すように真球度の高いシリ
カ粒子であり大きく変形した粒子は見られなかった。
This slurry was supplied to a rotating disk type spray P dryer at a speed of 151/Hr, and sprayed and granulated under the conditions of a disk rotation speed of 15.00 Orpm and a drying temperature of 260°C, resulting in particles with a particle size of 4 to 50 μm. A spherical product was obtained. After firing this granulated product at a temperature of 1150'C for 2 hours, hydrogen gas 53 Nm3/Hr (43.9mlB
>, d elemental gas 15 Nm”/Hr (8%Sm/
s) was thermally sprayed and melted into a flame formed with a sulfur composition at a temperature of 1850°C to produce a product. The obtained product is si+:N
As shown in FIG. 1, the particles were found to be silica particles with high sphericity, and no particles were found to be significantly deformed.

実施例2 実施例1と同一の合成シリカ微粒子2.5に9、純水4
1.5に9及びポリオキエチレン35.9を混合してス
ラリーを調製した。このスラリーの粘度を、B型粘度計
により室温で測定したところローター回転数6 Orp
mにおいて220 apeであった。
Example 2 The same synthetic silica fine particles as in Example 1: 2.5 to 9, pure water: 4
A slurry was prepared by mixing 1.5 with 9 and 35.9 with polyoxyethylene. The viscosity of this slurry was measured at room temperature using a B-type viscometer, and the rotor rotation speed was 6 Orp.
It was 220 ape in m.

このスラリーを実施例1と同一の条件で噴霧造粒して粒
径6〜60μmの球状品を得、それを実施例1と同一条
件で溶射溶融した。得られた製品のS報写真を第2図に
示した。実施例1と同様に、真球度の高いシリカ粒子で
あった。
This slurry was sprayed and granulated under the same conditions as in Example 1 to obtain spherical products with a particle size of 6 to 60 μm, which were then thermally sprayed and melted under the same conditions as in Example 1. A S-report photograph of the obtained product is shown in Figure 2. Similar to Example 1, the silica particles had high sphericity.

比較例1 実施例1と同一の合成シリカ倣粒子3 kgと、罰水4
7kgを混合したところ、粘度76 apeのスラリー
となった。これを実施例1と同一の条件で噴4造粒して
粒径1〜30μmの球状品を得、それを実施例1と同一
条件で溶射浴融した。得られた製品のSEM写真は第6
図に示す通りであり、1個又は複数個の大きな陥没孔を
もった変形粒子であり、真球状に近い粒子はほとんどみ
られなかった。
Comparative Example 1 3 kg of synthetic silica imitation particles same as in Example 1 and 4 kg of water
When 7 kg were mixed, a slurry with a viscosity of 76 ape was obtained. This was granulated by four injections under the same conditions as in Example 1 to obtain spherical products with a particle size of 1 to 30 μm, which were melted in a thermal spray bath under the same conditions as in Example 1. The SEM photo of the obtained product is the 6th one.
As shown in the figure, the particles were deformed with one or more large sinkholes, and almost no particles that were close to perfectly spherical were observed.

比較例2 実施例1と同一の合成シリカ微粒子5kgと純水40に
9を混合したところ、粘度1.200 apeのスラリ
ーとなった。これを実施例1と同一の条件で噴霧造粒し
たところ、スラリーを供給しはじめてから25分で噴霧
機内部にスラリーによる閉塞が発生し造粒の継続が不可
能となった。得られた造粒品は粒径2〜40μmの球状
品で真球度の高いものであった。
Comparative Example 2 When 5 kg of the same synthetic silica fine particles as in Example 1 and 9 were mixed in 40 g of pure water, a slurry with a viscosity of 1.200 ape was obtained. When this was sprayed and granulated under the same conditions as in Example 1, clogging with the slurry occurred inside the sprayer 25 minutes after the start of supplying the slurry, making it impossible to continue granulation. The obtained granulated product was spherical with a particle size of 2 to 40 μm and had high sphericity.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、以下の効果を奏するものである。 According to the present invention, the following effects are achieved.

(1)  変形粒子の混入かはとんどなく真球度、7)
商い球状粒子を享゛2造することができる。
(1) Contamination of deformed particles is most likely due to sphericity, 7)
Spherical particles can be produced using this method.

(2)得られた球状粒子の粒度分4はシャープである。(2) Particle size 4 of the obtained spherical particles is sharp.

(3)高純度であり、Uや’rh等の放射鰍不純物のき
有量が低い。
(3) High purity and low content of radioactive impurities such as U and 'rh.

(4)  スラリーによるスプレードライヤー等の閉塞
は起こらない。
(4) Spray dryers etc. will not be clogged with slurry.

なお、本発明によって得られた珪酸質球状体は、1M1
)it、4 Mt+it用ICの樹脂封止用フィラーと
して便用することができる。
Incidentally, the silicate spheres obtained by the present invention are 1M1
)it, 4 It can be conveniently used as a filler for resin sealing of IC for Mt+it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で得らnた製品の1M写真、第2睨1
は実施例2で得られた製品の81nM写真、及び第6図
は比較例1で得られた製品のSEM写真であり、いずれ
も倍率は2000倍である。 特徴出願人 電気化学工業株式会社 第7図 第Z(12! 手続補正書(方式) %式% 事件の表示 昭和60年特徴、頴第236362号 発明の名称 珪酸質球状体の製法 補正をする者 事件との関係  特徴出願人 〒100 東京都千代田区有楽町1丁目4番1号 昭和61年1月28日 (発送日) 補正の対象 明細書の図面の簡単な説明の欄 補正の内容 別紙のとおり 明細書第11頁第10〜13行を次のとおり訂正する。 「 第1図は実施例1で得られたシリカ粒子の粒子[F
]粒子構造を示すSEM写真、第2図は実施例2で得ら
れたシリカ粒子の粒子構造を示すSEM写真、及び第6
図は比較例1で得られたシリカ粒子の粒子構造を示すS
EM写真であり、いずれも倍率は2000倍である。」
Figure 1 is a 1M photograph of the product obtained in Example 1.
is an 81 nM photograph of the product obtained in Example 2, and FIG. 6 is an SEM photograph of the product obtained in Comparative Example 1, both at a magnification of 2000 times. Characteristics Applicant Denki Kagaku Kogyo Co., Ltd. Figure 7 Z (12! Procedural amendment (method) % formula % Display of the case 1985 Characteristics, No. 236362 Name of the invention Person who amends the manufacturing method of silicate spherules Relationship to the case Characteristics Applicant Address: 1-4-1 Yurakucho, Chiyoda-ku, Tokyo 100 January 28, 1986 (Shipping date) Brief description of drawings in the specification subject to amendment Contents of the amendment As shown in the attached sheet Lines 10 to 13 of page 11 of the specification are corrected as follows: “Figure 1 shows the particles of silica particles [F] obtained in Example 1.
] Figure 2 is a SEM photograph showing the particle structure of the silica particles obtained in Example 2, and Figure 6 is a SEM photograph showing the particle structure of the silica particles obtained in Example 2.
The figure shows the particle structure of silica particles obtained in Comparative Example 1.
These are EM photographs, and the magnification is 2000x. ”

Claims (1)

【特許請求の範囲】[Claims] (1)スラリー化した合成珪素質微粉末を噴霧造粒し、
それを熱処理して珪酸質球状体を製造する方法において
、スラリーの粘度を100〜1,000cpsに調整す
ることを特徴とする珪酸質球状体の製法。
(1) Spray granulation of slurry-formed synthetic silicon fine powder,
A method for producing silicic spherical bodies by heat-treating the same, the method comprising adjusting the viscosity of the slurry to 100 to 1,000 cps.
JP23636285A 1985-10-24 1985-10-24 Production of siliceous spherule Pending JPS6296309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23636285A JPS6296309A (en) 1985-10-24 1985-10-24 Production of siliceous spherule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23636285A JPS6296309A (en) 1985-10-24 1985-10-24 Production of siliceous spherule

Publications (1)

Publication Number Publication Date
JPS6296309A true JPS6296309A (en) 1987-05-02

Family

ID=16999672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23636285A Pending JPS6296309A (en) 1985-10-24 1985-10-24 Production of siliceous spherule

Country Status (1)

Country Link
JP (1) JPS6296309A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028360A (en) * 1989-04-17 1991-07-02 Nitto Chemical Industries Co., Ltd. Method of manufacturing spherical silica particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028360A (en) * 1989-04-17 1991-07-02 Nitto Chemical Industries Co., Ltd. Method of manufacturing spherical silica particles

Similar Documents

Publication Publication Date Title
JP3633091B2 (en) Method for producing minute inorganic spherical solid body
JPH02275713A (en) Production of spherical silica grain
CN103347814A (en) Polycrystalline silicon ingot casting mold and method for producing same, and silicon nitride powder for mold release material for polycrystalline silicon ingot casting mold and slurry containing same
TW201741239A (en) Crystalline silica particle material and method for manufacturing same, slurry composition containing crystalline silica particle material, and resin composition containing crystalline silica particle material
JP2001089125A (en) Porous silica granule, its production and production of synthetic quartz glass powder using the porous silica granule
JPS62176928A (en) Production of quartz glass powder
JPS6296309A (en) Production of siliceous spherule
JP2533563B2 (en) Method for producing gel-like silica particles
JP2012116708A (en) Method for manufacturing granulated silica, and method for manufacturing silica glass crucible
JPS6296313A (en) Production of high-purity spherical silica filler
JP2839725B2 (en) Method for producing high-purity crystalline silica
JP2001097712A (en) Method for producing minute and globular silica
JP2684396B2 (en) Fused spherical silica and sealing resin composition using the same
TW202225095A (en) Method for manufacturing spherical particle material
JP7474221B2 (en) Manufacturing method of spherical silica powder
JPH0343201B2 (en)
JPS6296312A (en) Production of high-purity spherical silica filler
JPH01234319A (en) Production of spherical silica
JP4030668B2 (en) Method for producing fused spherical silica
JPS6296308A (en) Production of siliceous spherule
JP2665539B2 (en) Silica filler and sealing resin composition using the same
JPS6296537A (en) Fine particle having irregular profile and production thereof
JPH0470257B2 (en)
JP2955672B2 (en) Silica filler for semiconductor resin encapsulation and method for producing the same
JPH1095607A (en) Siliceous filler and its production