JPS62176928A - Production of quartz glass powder - Google Patents

Production of quartz glass powder

Info

Publication number
JPS62176928A
JPS62176928A JP1559286A JP1559286A JPS62176928A JP S62176928 A JPS62176928 A JP S62176928A JP 1559286 A JP1559286 A JP 1559286A JP 1559286 A JP1559286 A JP 1559286A JP S62176928 A JPS62176928 A JP S62176928A
Authority
JP
Japan
Prior art keywords
powder
gel
water
acid
quartz glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1559286A
Other languages
Japanese (ja)
Inventor
Yasuo Kuroda
黒田 康雄
Koichi Yamakawa
山川 幸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP1559286A priority Critical patent/JPS62176928A/en
Publication of JPS62176928A publication Critical patent/JPS62176928A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To enhance the purity of the titled quartz glass powder and to facilitate the formation of a quartz crucible compact by preparing a gel from a mixed soln. consisting of a silicic ester, water, and an acid, drying the gel, disintegrating the agglomerate of the obtained silica gel powder, and baking the powder. CONSTITUTION:A mixed soln. consisting of a silicic ester, >=1.5 equivalents water, based on the alkyl group in the silicic ester, and an acid is prepared. The hydrogen ion concn. in the mixed soln. is controlled to >=4.5 with aq. ammonia to gelate the soln., and then the gel is dried. The obtained agglomerate of silica gel powder is disintegrated into powder, and the powder is baked. When the agglomerate of silica gel powder is disintegrated, the agglomerate still staying hot is preferably charged into water and disintegrated. Hydrochloric acid, oxalic acid, etc., can be utilized as the acid.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本願発明はエレクトロニクス、光通信等各種用途に需要
が高まっている高純度石英ガラス粉末、特に半導体単結
晶引上げ用ルツボの製造用原料粉末の製造法に関するも
のである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is directed to the production of high-purity quartz glass powder, which is in increasing demand for various uses such as electronics and optical communications, particularly raw material powder for producing crucibles for pulling semiconductor single crystals. It is about law.

〔従来の技術とその問題点〕[Conventional technology and its problems]

半導体単結晶の引上げ用ルツボは、従来、天然石英の溶
融粉砕品を原料とし、ルツボ状の型材の内面に押し固め
てルツボ状の素形体とし、このものをカーボンアーク等
の熱源によって焼き上げることにより製造されてきた。
Conventionally, crucibles for pulling semiconductor single crystals are produced by using melted and crushed natural quartz as raw material, compacting it onto the inner surface of a crucible-shaped material to form a crucible-shaped element, and baking this material using a heat source such as a carbon arc. has been manufactured.

しかしながら上記従来の技術には次のような難点がある
。即ち、原料の天然石英には各種不純物が含まれ、さら
にアルミナボールミル等による、その粉砕工程で、粉砕
機からの不純物の混入がまぬがれないため、この様な原
料粉末から製造したルツボには通常、10ppm程度の
Al、数ppa+のFe、 Ti、 Zr、及びアルカ
リ金属、io分の数ppmのB、 Cu、 Ni等各種
の不純物が含まれている。この様な石英ガラスルツボを
用いてシリコン等の単結晶を引き上げた場合には、前述
の石英ガラス粉末中の各種不純物が原料融体に移行し、
単結晶に混入して、その品質を低下する原因となること
が知られている。
However, the above conventional technology has the following drawbacks. In other words, the natural quartz raw material contains various impurities, and in addition, during the grinding process using an alumina ball mill, etc., impurities from the grinder cannot be avoided, so crucibles made from such raw material powder usually have It contains various impurities such as approximately 10 ppm of Al, several ppa+ of Fe, Ti, Zr, and alkali metals, and several ppm of io of B, Cu, and Ni. When a single crystal of silicon or the like is pulled using such a quartz glass crucible, various impurities in the quartz glass powder mentioned above are transferred to the raw material melt.
It is known that it mixes into single crystals and causes a decline in their quality.

近年、半導体素子の集積度が著増するに伴ない、単結晶
に対する品質要求が高まり、その製造用ルツボも高純度
品が要望されるようになった。
BACKGROUND ART In recent years, as the degree of integration of semiconductor devices has increased significantly, quality requirements for single crystals have increased, and crucibles for producing the same are also required to be of high purity.

このため、本願発明者等は既にエチルシリケート等、蒸
溜精製により高純度品の得られる珪酸エステルを原料と
して、酸の共存下で一定量の水と混合、攪拌して粉粒状
のシリカゲルを得、このものを焼成して石英ガラス粉と
する方法、並びに珪酸エステルと水の混合溶液を調合し
、このものを噴i乾燥によりシリカゲル粉末として後、
焼成して石英ガラス粉末とする方法を提案している。こ
れらの方法により高純度の石英ガラス粉末が得られるが
、いずれも粒子形が球状であって、流動性が良いため、
従来の破砕状粉末と異なり、ルツボ状の型材の内面に押
しつけてルツボ状の成型体を作ることが困難である。
For this reason, the inventors of the present application have already used silicic acid esters such as ethyl silicate, which can be obtained as highly pure products through distillation purification, as raw materials, mixed with a certain amount of water in the presence of an acid, and stirred to obtain powdery silica gel. A method of baking this material to make quartz glass powder, preparing a mixed solution of silicate ester and water, and making this material into silica gel powder by spray drying,
We are proposing a method of firing to produce quartz glass powder. High purity silica glass powder can be obtained by these methods, but all have spherical particle shapes and good fluidity, so
Unlike conventional crushed powder, it is difficult to press it against the inner surface of a crucible-shaped mold material to make a crucible-shaped molded body.

〔問題点の解決に係わる着眼点〕[Points of focus related to problem solving]

そこで、高純度の観点からは原料として珪酸エステルを
用い、ルツボ形成用としての観点からは破砕状の粒子形
の粉体を、不純物による汚染のまぬがれないボールミル
粉砕等、通常の機械粉砕工程を経由することなしに得る
ため種々検討を重ねた。
Therefore, from the viewpoint of high purity, silicate ester is used as a raw material, and from the viewpoint of forming a crucible, crushed particle-shaped powder is processed through normal mechanical pulverization processes such as ball mill pulverization, which is free from contamination with impurities. We have conducted various studies in order to obtain this without having to do anything.

その結果、エチルシリケート等の珪酸エステルと、水を
塩酸、蓚酸等の酸の共存下で混合、攪拌して得られる均
一な溶液に、アンモニア水を加えて水素イオン濃度(p
H)を4.5以上に調整し、ゲル化後、乾燥すると粉状
シリカゲルの凝集体となり、このものは機械的乃至熱的
N撃によって容易に破砕状粒子から成る粉末となること
を見出し、この粉末を焼成すれば、石英ガラス粉末とな
ることを確認して、本願発明に到達した。
As a result, ammonia water was added to a homogeneous solution obtained by mixing and stirring a silicate ester such as ethyl silicate and water in the coexistence of an acid such as hydrochloric acid or oxalic acid.
H) was adjusted to 4.5 or more, and after gelation and drying, it became an aggregate of powdered silica gel, which was found to be easily converted into a powder consisting of crushed particles by mechanical or thermal N bombardment, The present invention was achieved by confirming that silica glass powder can be obtained by firing this powder.

本発明によれば、珪酸エステルと、該珪酸エステル中の
アルコキシ基の1.5倍当量以上の水と、酸とからなる
混合溶液の水素イオン濃度をアンモニア水により、4.
5以上に調整してゲル化後、ゲルを乾燥し、得られるシ
リカゲル粉末の凝集体を粉末状に分散して後、焼成する
ことからなる石英ガラス粉末の製造方法が提供される。
According to the present invention, the hydrogen ion concentration of a mixed solution consisting of a silicate ester, water in an amount equivalent to or more than 1.5 times the alkoxy group in the silicate ester, and an acid is adjusted to 4.
Provided is a method for producing quartz glass powder, which comprises adjusting the gelatin content to 5 or higher to form a gel, drying the gel, dispersing the obtained aggregates of silica gel powder into powder, and then firing the resulting silica gel powder aggregates.

〔発明の具体的記載〕[Specific description of the invention]

本発明を第1図を参照して具体的に説明する。 The present invention will be specifically explained with reference to FIG.

本願発明による石英ガラス粉末の製造のフローチャート
を、珪酸エステルとしてエチルシリヶー1〜、酸として
塩酸を例として第1図に示した。第1図の攪拌工程にお
いては、加熱するが、珪酸エステル、塩酸、純水の他に
、アルコール等の様に、珪酸エステル、純水の双方に相
溶性のある溶媒を添加することにより、該溶液の生成を
促進することもできる。又、該ゲルの乾燥工程に通常の
電気オーブンを用いる様な場合には、ゲルを水で洗滌し
て、アルコキシド基山来のアルコール分を極力除去し、
乾燥工程における環境汚゛染と、火災の発生を回避する
ことが望ましい。本願発明の石英ガラス粉末製造法にお
ける処理条件は次の通り規定される。
A flowchart for producing quartz glass powder according to the present invention is shown in FIG. 1 using ethyl silica 1 to 1 as the silicate ester and hydrochloric acid as the acid. In the stirring step shown in Fig. 1, heating is performed, but in addition to the silicate ester, hydrochloric acid, and pure water, a solvent such as alcohol that is compatible with both the silicate ester and pure water is added. It is also possible to accelerate the formation of solutions. In addition, if a normal electric oven is used for the drying process of the gel, the gel is washed with water to remove as much alcohol as possible from the alkoxide base.
It is desirable to avoid environmental pollution and fire outbreaks during the drying process. The processing conditions in the quartz glass powder manufacturing method of the present invention are defined as follows.

珪酸エステルの種類: メチルシリケート、エチルシリケート、及びプロピルシ
リケート等圧エステルの他、離型剤用等として量産され
ている、エチルシリケートの部分加水分解縮合体(エチ
ルシリケート40の名称で商取引されている)等、酸の
共存下で水と溶液を形成し得るものは全て利用可能であ
る。
Types of silicate esters: In addition to methyl silicate, ethyl silicate, and propyl silicate isobaric esters, there is also a partially hydrolyzed condensate of ethyl silicate (traded under the name ethyl silicate 40), which is mass-produced as a mold release agent. ) etc., which can form a solution with water in the presence of an acid, can all be used.

水の添加量: 珪酸エステル中のアルコキシド基の1.5倍当量以上で
あればよく、これより少ない場合には球状粒子が生成し
たり、珪酸エステルの加水分解が不十分で、乾燥、焼成
過程で残留アルコキシドが蒸発して収率を下げる他、残
留アルコキシ基の熱分解の結果と考えられる遊離炭素粒
子が製品中に混在することになるので好ましくない。一
方、水の添加量が過大であると、石英ガラス粉末の生成
には問題ないが、該ゲルの乾燥に長時間を要することに
なるので不利であり、通常は該アルコキシ基の1.5倍
当量以上3倍当量以下が有利である。
Amount of water added: It should be at least 1.5 times the equivalent of the alkoxide group in the silicate ester; if it is less than this, spherical particles may be formed or the silicate ester may be insufficiently hydrolyzed, causing problems during the drying and baking process. This is not preferable because the residual alkoxide evaporates and the yield decreases, and free carbon particles, which are considered to be the result of thermal decomposition of the residual alkoxy groups, are mixed in the product. On the other hand, if the amount of water added is too large, there will be no problem in producing quartz glass powder, but it will be disadvantageous because it will take a long time to dry the gel, and the amount of water added is usually 1.5 times as large as the alkoxy group. It is advantageous to use an equivalent or more and a 3-fold equivalent or less.

酸の種類と量: 本願発明による製品の主用途が半導体に係わる所から、
例えばリン酸、ホウ酸等石英ガラス粉末中に残存しやす
く、かつ半導体シリコン中で電気的活性を呈する成分を
含むもの、並びに過塩素酸、硝酸等の様に有機物の共存
下で加熱すると爆発する恐れのあるものは不適当である
が、それ以外には特に限定されるものではなく、塩酸等
の鉱酸、蓚酸等の分子中に炭素数の比較的少ない有機酸
を利用することができる。添加量としては、酸並びに該
アルコキシドの種類にもよるが、少ない場合には該珪酸
エステルと水の混合体が均一な溶液となるのに長時間を
要するため不利であり、一方、多い場合には、生成する
該溶液が急速にゲル化してしまい、アンモニア水による
pH調整の十分な暇がなくなってしまうので好ましくな
いので、該原料混合溶液中0.005規定から0.5規
定程度がよく、実施例を参考に決めることができる。
Type and amount of acid: Since the main application of the product according to the present invention is related to semiconductors,
For example, phosphoric acid, boric acid, etc., which easily remain in quartz glass powder and contain components that are electrically active in semiconductor silicon, or materials such as perchloric acid, nitric acid, etc., which explode when heated in the coexistence of organic substances. Those that may be inappropriate are not particularly limited, but mineral acids such as hydrochloric acid, and organic acids with a relatively small number of carbon atoms in the molecule such as oxalic acid can be used. The amount added depends on the type of acid and the alkoxide, but if it is small, it will take a long time for the mixture of the silicate ester and water to become a homogeneous solution, which is disadvantageous; is not preferable because the resulting solution will rapidly gel and there will be no sufficient time for pH adjustment with aqueous ammonia. It can be determined with reference to the examples.

ρl!調整: p114未満では該溶液をゲル化後、乾燥すると粗大粒
の凝結体となって、機械的粉砕操作を加えない限り粉末
とはならないので不適当である。pH4以上では該ゲル
は乾燥後、粉状粒子の凝集体となり、機械的ないしは熱
的ショックによって、容易にほぐれて粉末状シリカゲル
に分散することができる。この様なρ114を境とした
該溶液のゲル化。
ρl! Adjustment: If the pH is less than 114, the solution becomes coarse aggregates when dried after gelling, and cannot be turned into powder unless mechanically pulverized. At pH 4 or higher, the gel becomes an aggregate of powder particles after drying, and can be easily loosened and dispersed into powdered silica gel by mechanical or thermal shock. Gelation of the solution with such a boundary of ρ114.

乾燥後の性状の違いは明らかではないが、溶液中に分散
している荷電シロキサンコロイドが1114以上では、
粉末粒子の先駆体となる凝集体を形成するのではないか
と推定される。尚、pifを高くした方が粒度が小さく
なる傾向がみられる。
Although the difference in properties after drying is not clear, if the charged siloxane colloid dispersed in the solution is 1114 or more,
It is presumed that agglomerates that become precursors of powder particles are formed. It should be noted that there is a tendency for the particle size to become smaller as pif becomes higher.

凝集体の分散法: 高所より石英ガラス面乃至ポリカーボネート等の硬質樹
脂面に落下させ、衝撃を利用するか、乾燥工程後、熱時
に冷水中に投じて熱的衝撃により粉末状に分散すること
ができる。この様な凝集体の粉末状への分散操作は必須
であって、凝熱体をそのまま焼成した場合には、塊状の
焼結体となり、目的とする石英ガラス粉末は得られない
Dispersion method of aggregates: Drop it from a high place onto a quartz glass surface or a hard resin surface such as polycarbonate and use impact, or after the drying process, drop it into cold water when it is hot and disperse it into powder by thermal shock. I can do it. Such an operation of dispersing the aggregate into powder is essential, and if the condensed body is fired as it is, it will become a lumpy sintered body, and the desired quartz glass powder cannot be obtained.

焼成温度・時間: いわゆるゾル−ゲル法による石英ガラスの生成温度と同
様1000℃以上であればよい。焼成時間は温度により
異なるが、30分乃至2時間でよい。
Firing temperature/time: The firing temperature may be 1000° C. or higher, similar to the temperature at which quartz glass is produced by the so-called sol-gel method. The firing time varies depending on the temperature, but may be from 30 minutes to 2 hours.

以上の処理条件の内、溶液のpH調I11 (A)と凝
集体の分散CB)以外は、いわゆる珪酸エステルを用い
るゾル−ゲル法より公知であるか、または類推されるも
のであるので、新規に加えた不可欠な操作である(A)
及び(B)を限定した。
Among the above processing conditions, the conditions other than pH adjustment of the solution I11 (A) and dispersion of aggregates CB) are known or analogous to the so-called sol-gel method using a silicate ester, and are therefore new. (A)
and (B) were limited.

尚1以上の方法により得られる石英ガラス粉末の粒子形
は、在来の溶融破砕粉と同様に、破砕状であって、石英
ガラスルツボの形成に好適であるが、高純度品でもある
ため、粒形よりも純度を重視する光伝送路用多成分ガラ
ス等の原料としても有用である。
Note that the particle shape of the quartz glass powder obtained by one or more methods is crushed, similar to conventional fused and crushed powder, and is suitable for forming a quartz glass crucible, but it is also a high-purity product. It is also useful as a raw material for multicomponent glasses for optical transmission lines, etc., where purity is more important than particle shape.

以下の実施例により本願発明による石英ガラス粉末の製
造方法をさらに詳く説明するが、本願発明は以下の実施
例によって限定されるものではない。
The method for producing quartz glass powder according to the present invention will be explained in more detail with reference to the following examples, but the present invention is not limited to the following examples.

去新1」Y 蒸溜精製したエチルシリケート(正珪酸エチル)3kg
をポリプロピレン製のビーカー(容量5Q)にとり、こ
のものに0.05N(規定)の塩酸水溶液2kgを加え
て、温度40℃でテフロン被覆攪拌羽根で約5時間攪拌
して透明な溶液を得た。この溶液に1.5Nのアンモニ
ア水を、溶液のpH(水素イオン濃度)が6となる迄滴
下後、約25分間攪拌を続けた所、次第に溶液の粘性が
上がり、終いにゲル化したので、攪拌を止め、生成した
軟質ゲルをポリエチレン製のハンドシャベルを用い、こ
ぶし大の塊として全量、10Q容量のポリプロピレン製
容器に移し取り、脱イオン水5Qを加えて16時間放置
後、液を除き、該塊状ゲルを石英ルツボ(Si単結晶引
上げ用)に入れて、電気オーブン中150℃で25時間
乾燥処理を行なった。乾燥ゲルは元の塊状を呈していた
ものの、各塊状体は粉体の脆い凝集体となっていたので
、磁製の乳鉢に入れ、磁製の乳棒で押しつぶして粉状と
し、再度石英ルツボに入れて、電気炉中、850℃で1
5時間、ttoo℃で1時間焼成を行なった。焼成物は
流動性の良い粉末となっており、嵩密度は約1.2g/
mQ、平均粒径は約230 p m、粒形は無定形(破
砕状)であった。真比重は2.19g/m(1,X線回
折パターンは合成石英同様にブロードで水晶等の結晶ピ
ークはなく、得られた粉体は石英ガラス粉末であること
が示された。純度を調べるため、発光分光分析、並びに
放射化分析を行なったが、該粉体の製造操作中に混入し
たと推定されるNa 2ppb、 Mg 1Oppb、
 Fe 50ppb以外には不純物は検出されず、極め
て高純度であることがわかった。又、収率はSiO□基
準として94%を得た。
Kyoshin 1”Y Distilled purified ethyl silicate (orthosilicate) 3kg
was placed in a polypropylene beaker (capacity 5Q), 2 kg of a 0.05N (normal) aqueous hydrochloric acid solution was added thereto, and the mixture was stirred for about 5 hours using a Teflon-coated stirring blade at a temperature of 40°C to obtain a transparent solution. After dropping 1.5N ammonia water into this solution until the pH (hydrogen ion concentration) of the solution reached 6, stirring was continued for about 25 minutes, and the viscosity of the solution gradually increased and eventually gelled. , Stop stirring, use a polyethylene hand shovel to transfer the entire amount of the generated soft gel as a fist-sized lump into a polypropylene container with a capacity of 10Q, add 5Q of deionized water, leave it for 16 hours, and then remove the liquid. The bulk gel was placed in a quartz crucible (for pulling Si single crystals) and dried at 150° C. for 25 hours in an electric oven. Although the dried gel retained its original mass, each mass was a brittle aggregate of powder, so it was placed in a porcelain mortar and crushed with a porcelain pestle to form a powder, and then placed in a quartz crucible again. in an electric furnace at 850°C.
Firing was carried out for 5 hours at ttoo° C. for 1 hour. The fired product is a powder with good fluidity, and the bulk density is approximately 1.2g/
mQ, the average particle size was about 230 pm, and the particle shape was amorphous (crushed). The true specific gravity was 2.19 g/m (1).The X-ray diffraction pattern was broad like synthetic quartz, and there were no crystal peaks such as quartz, indicating that the obtained powder was quartz glass powder. Check the purity. Therefore, we conducted emission spectroscopic analysis and activation analysis, but found that 2ppb of Na, 10ppb of Mg, and
No impurities were detected other than 50 ppb of Fe, indicating extremely high purity. Further, the yield was 94% based on SiO□.

尖五敗又 エチルシリケート40(正珪酸エチルの部分加水分解縮
合体) 500gを、IQのガラスビーカーに採り、こ
のものにエチルアルコール100mj2.及び1.5%
蓚酸水溶液300IIIMを加えて、温度45℃に保ち
つつ、マグネティックスターラーで約2時間攪拌した所
、均質な透明溶液が得られた。攪拌を続けつつ、この溶
液に0.5Nアンモニア水を滴下して行って所、pHが
6を越えた所で液の粘度が上昇し、さらにpHが6.5
を越えた所で液がゲル化し、攪拌が止ったので、アンモ
ニア水の滴下を止めた。次いで、この軟質ゲルをポリエ
チレン製のスプーンにより、径2〜3CI11大の塊と
して、磁製の蒸発皿に移し、窒素ガスを通気し、廃ガス
処理機能を設けた電気乾燥機中200℃で18時間乾燥
処理後、直ちに加熱ゲル塊を冷水fi00m12を入れ
たビーカー中に投じ、テフロンコーティングした攪拌羽
根で攪拌した所、ゲル塊は崩壊して粉状となったので、
水と分離し、石英ボートに移して、120℃で17時間
乾燥後、800℃で20時間、次いで1060℃で2時
間焼成して、真比重2.19.平均粒度180μmの粉
末を得た。粒子形は破砕状であった。X線回折を行った
所、実施例1の場合と同様のブロードなピークのみで、
水晶等の結晶ピークは示さなかった。シリコン含有量を
化学分析により求めた所、 46.5%でSun、の計
算値(46,7%)に相当しており、合成6芙ガラス粉
であることが確かめられた。収率は97%に達していた
Take 500 g of Ethyl Silicate 40 (partial hydrolysis condensate of ethyl orthosilicate) into an IQ glass beaker, and add 100 mj of ethyl alcohol to this beaker. and 1.5%
After adding 300 IIIM of oxalic acid aqueous solution and stirring with a magnetic stirrer for about 2 hours while maintaining the temperature at 45°C, a homogeneous transparent solution was obtained. When 0.5N ammonia water was added dropwise to this solution while stirring, the viscosity of the solution increased when the pH exceeded 6, and the pH further increased to 6.5.
The liquid turned into a gel at a point beyond this point, and stirring stopped, so the dripping of the ammonia water was stopped. Next, this soft gel was transferred to a porcelain evaporating dish as a lump with a diameter of 2 to 3 CI11 using a polyethylene spoon, and heated at 200°C for 18 minutes in an electric dryer equipped with a waste gas treatment function. Immediately after the time-drying treatment, the heated gel mass was poured into a beaker containing cold water fi00ml and stirred with a Teflon-coated stirring blade, and the gel mass collapsed and became powder.
Separated from water, transferred to a quartz boat, dried at 120°C for 17 hours, then fired at 800°C for 20 hours, then at 1060°C for 2 hours, resulting in a true specific gravity of 2.19. A powder with an average particle size of 180 μm was obtained. The particle shape was crushed. When X-ray diffraction was performed, only broad peaks similar to those in Example 1 were found.
No crystalline peaks such as quartz were shown. The silicon content was determined by chemical analysis to be 46.5%, which corresponds to the calculated value by Sun (46.7%), confirming that it is a synthetic 6-glass powder. The yield reached 97%.

′   3 4  び    1 2 3メチルシリケ
ート(正珪酸メチル)300gをガラスビーカーに採り
、このものに0.2%ギ酸水溶液200mQを加え温度
20℃にて、4時間攪拌して得られた透明な溶液30ツ
トを用意し、それぞれ0.1規定アンモニア水を加えて
、表1に示したpH値に調整し、それぞれ実施例1と同
様の軟質ゲルを得た。
' 3 4 and 1 2 3 300 g of methyl silicate (orthosilicate) was placed in a glass beaker, and 200 mQ of 0.2% formic acid aqueous solution was added to this and stirred for 4 hours at a temperature of 20°C to obtain a transparent solution. 30 gels were prepared, and 0.1N ammonia water was added to each to adjust the pH values shown in Table 1 to obtain soft gels similar to those in Example 1.

この軟質ゲルを実施例2と同様に蒸発皿に移して乾燥後
、比較例3のサンプル以外は直ちに熱ゲルを冷水中に投
じ、攪拌抜水と分離、乾燥し、焼成した。一方、比較例
3のサンプルについては乾燥後、放冷し、得られたシリ
カゲル粉の凝集体をそのまま他の4サンプルと同様に焼
成した。結果は表1に示す通りであり、実施例1,2の
結果と併せれば該原料液のpHを4.5以上とし、かつ
生成したゲルの乾燥により得られるゲル粉末の凝集体に
、分散の操作を加えて後、焼成した場合に粉末状のシリ
カが得られ、該原料混合液のpHが4.5未満の場合に
は粗粒状のシリカとなり、又、該原料混合液のpHが4
.5以上であっても焼成前に、乾燥ゲル粉末の凝集体に
分散操作を加えなかった場合には。
This soft gel was transferred to an evaporating dish and dried in the same manner as in Example 2, and then, except for the sample of Comparative Example 3, the hot gel was immediately poured into cold water, stirred and drained, separated from water, dried, and fired. On the other hand, the sample of Comparative Example 3 was dried and allowed to cool, and the resulting silica gel powder aggregates were fired as they were in the same manner as the other four samples. The results are as shown in Table 1, and when combined with the results of Examples 1 and 2, the pH of the raw material liquid was adjusted to 4.5 or higher, and the gel powder aggregates obtained by drying the generated gel were dispersed. If the pH of the raw material mixture is less than 4.5, coarse grained silica will be obtained when the raw material mixture has a pH of less than 4.5.
.. Even if it is 5 or more, if no dispersion operation is applied to the dried gel powder aggregate before firing.

焼成後焼結塊となってしまい、目的を達し得ないことが
わかる。
It turns out that after firing, it becomes a sintered lump and the purpose cannot be achieved.

表1 実施例5 プロピルシリケート500gをIQのテフロンビーカー
に採り、このものにアセトン80mQ、及び0.2Nの
酢酸水溶液240+++Qを加え、温度40℃に保ちつ
つ、マグネティックスターラーで約4.5時間攪拌し、
均質な透明溶液を得た。攪拌を続けつつ、この溶液に0
.5Nアンモニア水を滴下して、pHを5.5に調節し
、温度40℃で約3.5時間攪拌した所、溶液がゲル化
し、攪拌が止まったので、この軟質ゲルをポリエチレン
製のスプーンにより、径2〜3cm大の塊として、5Q
のポリエチレン製ビーカ一番こ移し取り、脱イオン水3
.5Uを入れて、14時間放置後、母液を除き、再び脱
イオン水3.5flを加え、24時間放置後、母液を除
いて、該塊状ゲルを磁製の蒸発皿に移し、電気乾燥機中
150℃で25時間乾燥処理を行なった。塊状の乾燥ゲ
ルを約2m下の45°傾斜した石英ガラス板上に落下さ
せて崩壊し、得られた粉末を石英ボートに移して、60
0℃で24時間、次いで1020℃で4時間焼成した。
Table 1 Example 5 500g of propyl silicate was placed in an IQ Teflon beaker, and 80mQ of acetone and 240++Q of 0.2N acetic acid aqueous solution were added thereto, and the mixture was stirred with a magnetic stirrer for about 4.5 hours while maintaining the temperature at 40°C. ,
A homogeneous clear solution was obtained. While continuing to stir, add 0 to this solution.
.. When 5N ammonia water was added dropwise to adjust the pH to 5.5 and the solution was stirred at a temperature of 40°C for about 3.5 hours, the solution turned into a gel and the stirring stopped, so the soft gel was mixed with a polyethylene spoon. , 5Q as a lump with a diameter of 2 to 3 cm.
Transfer to a polyethylene beaker, deionized water 3
.. Add 5 U of water, leave for 14 hours, remove the mother liquor, add 3.5 fl of deionized water again, leave for 24 hours, remove the mother liquor, transfer the lumpy gel to a porcelain evaporating dish, and place in an electric dryer. Drying treatment was performed at 150°C for 25 hours. The dried gel mass was dropped onto a 45° inclined quartz glass plate approximately 2 m below to disintegrate, and the resulting powder was transferred to a quartz boat for 60 minutes.
It was baked at 0°C for 24 hours and then at 1020°C for 4 hours.

この焼成物は粉末で、真比重2.19、平均粒度220
μ瞳、シリコン含有量46.4%(理論値46.7%)
であり、X線回折では実施例1の場合と同様ブロードな
ピークを示し、合成石英ガラス粉であることが確かめら
れた。
This fired product is a powder with a true specific gravity of 2.19 and an average particle size of 220.
μ pupil, silicon content 46.4% (theoretical value 46.7%)
As in Example 1, X-ray diffraction showed a broad peak, confirming that it was a synthetic quartz glass powder.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明は、近年需要の高まっている高
純度石英ガラス粉末と、半導体単結晶引上用のルツボ製
造原料粉末の要望に応えたと共に。
As described above, the present invention meets the needs of high-purity quartz glass powder, which has been in increasing demand in recent years, and raw material powder for producing crucibles for pulling semiconductor single crystals.

先ず高純度の原料として天然石英に代り珪酸エステルを
使用し、且つ破砕状の粒子形のものを得られることによ
り半導体引上用ルツボの内面に押し付けてルツボ成形体
の形成を容易にし、又本発明の製造方法は、従来のよう
に機械的粉砕工程を経由しないので、この工程中におけ
る不純物混入のおそれもなく高純度品が得られた。
First of all, by using silicate ester instead of natural quartz as a high-purity raw material, and by obtaining crushed particle form, it is easy to press it against the inner surface of a crucible for semiconductor pulling and form a crucible molded body. Since the production method of the invention does not involve a mechanical pulverization step unlike the conventional method, a highly pure product was obtained without the risk of contamination with impurities during this step.

特に高純度を重視する光伝送路用多成分ガラスの原料な
ど、実用価値の大きい多くの優れた効果を奏するもので
ある。
In particular, it can be used as a raw material for multi-component glass for optical transmission lines where high purity is important, and it has many excellent effects with great practical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、石英ガラス粉末の製造例のフローチャートで
ある。
FIG. 1 is a flowchart of an example of manufacturing quartz glass powder.

Claims (1)

【特許請求の範囲】 1、珪酸エステルと、該珪酸エステル中のアルコキシ基
の1.5倍当量以上の水と、酸とからなる混合溶液の水
素イオン濃度をアンモニア水により、4.5以上に調整
してゲル化後、ゲルを乾燥し、得られるシリカゲル粉末
の凝集体を粉末状に分散して後、焼成することからなる
石英ガラス粉末の製造方法。 2、特許請求の範囲第1項に記載の方法であって、シリ
カゲル粉末の凝集体を分散するために、該凝集体を熱時
に水中に投ずることを特徴とする石英ガラス粉末の製造
方法。 3、特許請求の範囲第1項または第2項に記載の方法で
あって、該ゲルを乾燥する前に水洗することを特徴とす
る石英ガラス粉末の製造方法。
[Scope of Claims] 1. The hydrogen ion concentration of a mixed solution consisting of a silicate ester, water in an amount equivalent to or more than 1.5 times the alkoxy group in the silicate ester, and an acid is increased to 4.5 or more using aqueous ammonia. A method for producing quartz glass powder, which comprises adjusting and gelling, drying the gel, dispersing the obtained silica gel powder aggregates into powder, and then firing. 2. A method for producing silica glass powder according to claim 1, characterized in that in order to disperse the aggregates of silica gel powder, the aggregates are thrown into water while hot. 3. A method for producing quartz glass powder according to claim 1 or 2, characterized in that the gel is washed with water before drying.
JP1559286A 1986-01-29 1986-01-29 Production of quartz glass powder Pending JPS62176928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1559286A JPS62176928A (en) 1986-01-29 1986-01-29 Production of quartz glass powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1559286A JPS62176928A (en) 1986-01-29 1986-01-29 Production of quartz glass powder

Publications (1)

Publication Number Publication Date
JPS62176928A true JPS62176928A (en) 1987-08-03

Family

ID=11892993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1559286A Pending JPS62176928A (en) 1986-01-29 1986-01-29 Production of quartz glass powder

Country Status (1)

Country Link
JP (1) JPS62176928A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482526A (en) * 1987-09-25 1989-03-28 Shinetsu Handotai Kk Jig for manufacturing semiconductor made of quartz glass
EP0385753A2 (en) * 1989-02-28 1990-09-05 Shin-Etsu Chemical Co., Ltd. Synthetic silica glass articles and a method for manufacturing them
JPH0354125A (en) * 1989-07-21 1991-03-08 Shinetsu Sekiei Kk Production of high-purity synthetic silica glass powder for producing crucible to pull silicon single crystal
JPH0394843A (en) * 1989-09-04 1991-04-19 Shin Etsu Chem Co Ltd Synthetic quartz glass crucible and its production
US5028247A (en) * 1989-05-18 1991-07-02 Chisso Corporation Process for the preparation of silica glass powders
JPH03183625A (en) * 1989-12-12 1991-08-09 Shin Etsu Chem Co Ltd Production of synthetic quartz glass ingot and synthetic quartz crucible
WO1993016963A1 (en) * 1990-03-09 1993-09-02 Toshiaki Mizuno Process for making flaky glass and apparatus therefor
EP0629580A1 (en) * 1993-05-27 1994-12-21 Mitsubishi Chemical Corporation Synthetic quartz glass powder and process for producing the same
US5516350A (en) * 1993-06-15 1996-05-14 Kimmon Manufacturing Co., Ltd. And Mitsubishi Chemical Corporation Process for producing synthetic quartz glass powder
WO1997012837A1 (en) 1995-10-05 1997-04-10 Mitsubishi Chemical Corporation Synthetic silica glass powder, process for the production thereof, and process for the production of moldings of silica glass
JP2004000922A (en) * 2003-03-26 2004-01-08 Toyobo Co Ltd Silica particle composition for extracting nucleic acid or protein
US7070748B2 (en) 2000-09-27 2006-07-04 Mitsubishi Rayon Co., Ltd. Non-porous spherical silica and method for production thereof
WO2015114956A1 (en) 2014-01-29 2015-08-06 三菱マテリアル株式会社 Synthetic amorphous silica powder and process for manufacturing same
US9446959B2 (en) 2011-03-23 2016-09-20 Mitsubishi Materials Corporation Synthetic amorphous silica powder and method for producing same
WO2018198774A1 (en) 2017-04-26 2018-11-01 東ソ-・エスジ-エム株式会社 Ultraviolet-resistant quartz glass and method for manufacturing same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563440B2 (en) * 1987-09-25 1993-09-10 Shinetsu Handotai Kk
JPS6482526A (en) * 1987-09-25 1989-03-28 Shinetsu Handotai Kk Jig for manufacturing semiconductor made of quartz glass
EP0385753A2 (en) * 1989-02-28 1990-09-05 Shin-Etsu Chemical Co., Ltd. Synthetic silica glass articles and a method for manufacturing them
US5028247A (en) * 1989-05-18 1991-07-02 Chisso Corporation Process for the preparation of silica glass powders
JPH0354125A (en) * 1989-07-21 1991-03-08 Shinetsu Sekiei Kk Production of high-purity synthetic silica glass powder for producing crucible to pull silicon single crystal
JPH0394843A (en) * 1989-09-04 1991-04-19 Shin Etsu Chem Co Ltd Synthetic quartz glass crucible and its production
JPH0745326B2 (en) * 1989-12-12 1995-05-17 信越化学工業株式会社 Method for producing synthetic quartz glass ingot and synthetic quartz crucible
JPH03183625A (en) * 1989-12-12 1991-08-09 Shin Etsu Chem Co Ltd Production of synthetic quartz glass ingot and synthetic quartz crucible
US5294237A (en) * 1990-03-09 1994-03-15 Nippon Sheet Glass Co., Ltd. Process for producing flakes of glass
WO1993016963A1 (en) * 1990-03-09 1993-09-02 Toshiaki Mizuno Process for making flaky glass and apparatus therefor
EP0629580A1 (en) * 1993-05-27 1994-12-21 Mitsubishi Chemical Corporation Synthetic quartz glass powder and process for producing the same
US5516350A (en) * 1993-06-15 1996-05-14 Kimmon Manufacturing Co., Ltd. And Mitsubishi Chemical Corporation Process for producing synthetic quartz glass powder
WO1997012837A1 (en) 1995-10-05 1997-04-10 Mitsubishi Chemical Corporation Synthetic silica glass powder, process for the production thereof, and process for the production of moldings of silica glass
JP4875281B2 (en) * 2000-09-27 2012-02-15 三菱レイヨン株式会社 Non-porous spherical silica and method for producing the same
US7070748B2 (en) 2000-09-27 2006-07-04 Mitsubishi Rayon Co., Ltd. Non-porous spherical silica and method for production thereof
JP2004000922A (en) * 2003-03-26 2004-01-08 Toyobo Co Ltd Silica particle composition for extracting nucleic acid or protein
US9446959B2 (en) 2011-03-23 2016-09-20 Mitsubishi Materials Corporation Synthetic amorphous silica powder and method for producing same
WO2015114956A1 (en) 2014-01-29 2015-08-06 三菱マテリアル株式会社 Synthetic amorphous silica powder and process for manufacturing same
KR20160113573A (en) 2014-01-29 2016-09-30 미쓰비시 마테리알 가부시키가이샤 Synthetic amorphous silica powder and process for manufacturing same
US9745201B2 (en) 2014-01-29 2017-08-29 Mitsubishi Materials Corporation Synthetic amorphous silica powder and process for manufacturing same
WO2018198774A1 (en) 2017-04-26 2018-11-01 東ソ-・エスジ-エム株式会社 Ultraviolet-resistant quartz glass and method for manufacturing same

Similar Documents

Publication Publication Date Title
JPS62176928A (en) Production of quartz glass powder
JPH02212314A (en) Production of magnesium oxide having high resistance to hydration and high fluidity
JP2944469B2 (en) Method for producing silica particles and use of the particles
JP2617822B2 (en) Method for producing non-sintered cristobalite particles
US3762936A (en) Manufacture of borosilicate glass powder essentially free of alkali and alkaline earth metals
US4126422A (en) Method of densifying metal oxides
JPS63159252A (en) Cordierite composition and manufacture
US5028247A (en) Process for the preparation of silica glass powders
JPH01317155A (en) Production of ceramic compact
JP3342536B2 (en) MgO.SiO2 porcelain powder and method for producing the same
HU188632B (en) Process for the production of lead additive
JP4822550B2 (en) Spherical multi-component glass particles
KR960010902B1 (en) Process for the preparation of high purity amorphous spherical silica powder
JPH0521855B2 (en)
JPH0463008B2 (en)
JPH10226511A (en) Production of super high purity spherical silica fine particle
JP3689926B2 (en) High-purity synthetic quartz glass powder, method for producing the same, and high-purity synthetic quartz glass molded body using the same
JPH05201718A (en) Production of silica glass powder and silica glass molten molding
JP2002316812A (en) Method for producing silicon carbide fine powder
JP2022052419A (en) Production method of transparent glass
JPH038708A (en) Production of silica feedstock
JPH0388711A (en) Production of spherical porous body
JPH01270530A (en) Production of formed glass body
JPS58176135A (en) Preparation of quartz glass powder
JPH02180723A (en) Production of synthetic quarts glass