JPS6294904A - Manufacture of multipolar magnet - Google Patents

Manufacture of multipolar magnet

Info

Publication number
JPS6294904A
JPS6294904A JP23444685A JP23444685A JPS6294904A JP S6294904 A JPS6294904 A JP S6294904A JP 23444685 A JP23444685 A JP 23444685A JP 23444685 A JP23444685 A JP 23444685A JP S6294904 A JPS6294904 A JP S6294904A
Authority
JP
Japan
Prior art keywords
portions
oriented
pole
magnet
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23444685A
Other languages
Japanese (ja)
Inventor
Yoji Arita
陽二 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Steel Mfg Co Ltd
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Steel Mfg Co Ltd
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Steel Mfg Co Ltd, Mitsubishi Kasei Corp filed Critical Mitsubishi Steel Mfg Co Ltd
Priority to JP23444685A priority Critical patent/JPS6294904A/en
Publication of JPS6294904A publication Critical patent/JPS6294904A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a multipolar magnet of strong magnetic poles by forming same poles of a predetermined width with non-oriented portions being interposed therebetween in a molded form made of a magnet material, applying orientation, and thereafter applying magnetization of a required polarity, thereby reducing loop magnetic fluxes in the inner portions between the respective magnetic poles. CONSTITUTION:When pole pieces 1, 1' are excited, the magnetic flux phi generated by this excitation crosses a molded form 20 from a projected portion 5A of the outer pole 3 and enters a projected portion 7A of the opposite inner pole 6, and returns to the pole pieces 1, 1'. Thus, the portions sandwiched between the projected portions of the molded form 20 are oriented in the radial direction. The portions 21 sandwiched between the recessed portions are formed in a substantially non-oriented condition. Then, when magnetization is applied to the molded form 20 using a multipolar magnet izer consisting of an outer pole 11, inner pole 12, projected portions 13 and coils 14, the non-oriented portions 21 are magnetized so as to have a component perpendicular to the oriented portions, though the magnetization strength is low, and the magnetiza tion pattern is the same as that when a magnet of so-called polar orientation is magnet ized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は磁石材料よりなる成形体の・面にN極、S極
を近接して形成させる多極磁石の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of manufacturing a multipolar magnet in which N and S poles are formed adjacent to each other on the surfaces of a molded body made of a magnetic material.

〔従来の技術〕[Conventional technology]

第4図(a)はラジアル配向磁石に着磁されたリング状
磁石の説明図で、磁化の方向がラジアル力向であり、フ
ェライト簿の磁石粉末を成形したものや、サマリウム−
コバルト合金など福上類元素を含む合金などの磁性材料
よりなる成形体2゜に外方から内方へ、内方から外方へ
と交互に磁界をかけてN極とS極とを交〃に形成するも
のである。この場合には成形体20の内面と外面にN極
とS極が形成される。
FIG. 4(a) is an explanatory diagram of a ring-shaped magnet magnetized by a radially oriented magnet, in which the direction of magnetization is the radial force direction.
A magnetic field is applied alternately from the outside to the inside and from the inside to the outside of the molded body 2° made of a magnetic material such as an alloy containing Fukami elements such as a cobalt alloy, so that the N and S poles are crossed. It is to be formed. In this case, N and S poles are formed on the inner and outer surfaces of the molded body 20.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、L2第4図(a)の多極磁石は、N極とS極
とが隣接して配置されていたために、第4図(b)に示
すように両極間で、内部に磁束のループが生じ、このた
め磁極が弱くなるという問題点があった。
However, in the multipolar magnet L2 shown in Figure 4(a), since the N and S poles are placed adjacent to each other, a loop of magnetic flux occurs between the two poles as shown in Figure 4(b). This caused the problem that the magnetic poles became weaker.

この発明は上記の問題点を解消するためになされたもの
で、より強力な多極磁石が得られる製造方法を提供する
ことを目的とする。
This invention was made to solve the above-mentioned problems, and it is an object of the present invention to provide a manufacturing method that allows a stronger multipolar magnet to be obtained.

〔問題点を解決するためのf段〕[F-stage to solve problems]

この発明の多極磁石の製造方法は、磁石材料よりなる成
形体に、所定幅の同極を無配向部分を介在させて形成し
て配向を施し、次いで、前記所定幅の同極部分に所要の
極性の着磁を施すものである。
The method for manufacturing a multipolar magnet of the present invention includes forming homopoles of a predetermined width with non-oriented portions interposed in a molded body made of a magnetic material, and then applying orientation to the homopolar portions of the predetermined width. It is used to perform magnetization with a polarity of .

〔作用〕[Effect]

この発明は所定幅の同極間に無配向部分を介在させるよ
うにして配向を施し、次いで、着磁を行うようにしたの
で、前記各無配向部分の磁束密度は、配向部分の約1/
2程度ではあるが、極配向的な磁化をもち、磁極間の磁
束のループが少なくなり強い磁極となる。
In this invention, orientation is performed by interposing a non-oriented portion between the same poles of a predetermined width, and then magnetization is performed, so that the magnetic flux density of each non-oriented portion is approximately 1/1/1 of that of the oriented portion.
Although it is about 2, it has pole-oriented magnetization, and the loops of magnetic flux between the magnetic poles are reduced, resulting in strong magnetic poles.

〔実施例〕〔Example〕

第1図はこの発明の一実施例に用いる配向装置を示すも
のである。
FIG. 1 shows an orientation device used in one embodiment of the present invention.

第1図において、1,1′はポールピース。In Figure 1, 1 and 1' are pole pieces.

2.2′はコイルで、ポールピース1,1′に装γiさ
れる。3は外極で、中心に円柱状空間4を有し、内面に
凹凸ヨーク5を有している。凹凸ヨーク5は凸部5Aと
凹部5Bが一定ピッチで交互に形成され、凹部5Bは無
配向部分を作成するためのもので、非磁性部材からなっ
ている。6は内極で、外形は円柱状をなし、その外径は
外極3の内径より成形体2oの厚み分だけ小さく形成さ
れている。そして、内極6の外周に凹凸ヨーク7が形成
されている。凹凸ヨーク7は凸部7Aと非磁性部材から
なる四部7Bが・定ピツチで、かつ外極3の凸部5Aと
四部5Bとにそれぞれ対向するように形成される。
2.2' is a coil, which is installed on the pole pieces 1 and 1'. Reference numeral 3 denotes an outer pole, which has a cylindrical space 4 at the center and a concave-convex yoke 5 on its inner surface. The concavo-convex yoke 5 has convex portions 5A and concave portions 5B alternately formed at a constant pitch, and the concave portions 5B are for creating non-oriented portions and are made of a non-magnetic material. Reference numeral 6 denotes an inner pole, which has a cylindrical outer shape, and its outer diameter is smaller than the inner diameter of the outer pole 3 by the thickness of the molded body 2o. A concave-convex yoke 7 is formed on the outer periphery of the inner pole 6. The concavo-convex yoke 7 is formed such that the convex portion 7A and the four portions 7B made of a non-magnetic material are at a constant pitch and are opposed to the convex portion 5A and the four portions 5B of the outer pole 3, respectively.

配向に際しては、コイル2.2′に直流またはパルス電
流を流し1両ポールピース1,1′が同じ極となるよう
に励磁する。今、ポールピース1.1′がN極になった
とすると、これにより発生した磁束φは外極3の凸部5
Aから成形体20を横切って対向する内極6の凸部7A
に入り、図示しない磁路を通ってポールピース1,1′
に還る。これによって成形体20の凸部回トで挟まれた
部分は、1−分な強さでこの場合ラジアル方向に配向さ
れる。四部同上で挟まれた部分は弱く、実質的に無配向
の状態で成形される。この場合、成形体20は配向と同
時に着磁もされているから、通常、成形体20は着磁前
に脱磁を施す。
For orientation, a direct current or pulse current is applied to the coil 2.2' to excite the pole pieces 1, 1' so that they have the same polarity. Now, if the pole piece 1.1' becomes the N pole, the magnetic flux φ generated by this will be transferred to the convex part 5 of the outer pole 3.
Convex portion 7A of inner pole 6 facing across molded body 20 from A
into the pole pieces 1, 1' through a magnetic path (not shown).
Return to As a result, the portion of the molded body 20 sandwiched between the convex portions is oriented in the radial direction with a strength of 1-minute. The portion sandwiched between the four parts is weak and is molded in a substantially non-oriented state. In this case, since the molded body 20 is magnetized at the same time as it is oriented, the molded body 20 is usually demagnetized before being magnetized.

第2図(a)は前記成形体20に用いる着磁器で、11
は外極、12は内極、13は凸部、14はコイルであり
、通常の多極2?磁器と回・のちのであるが、この発明
による成形体20に着磁を施す場合には、無配向部分2
]は、第2図(b)に示すように、磁化強度は低いもの
の配向部分とは直角方向の成分をもつ形で着磁され、い
わゆる極配向の磁石を着磁したときと同じような着磁パ
ターンとなる。
FIG. 2(a) shows a magnetizer used for the molded body 20, with 11
is the outer pole, 12 is the inner pole, 13 is the convex portion, and 14 is the coil, which is a normal multi-pole 2? When magnetizing the molded body 20 according to the present invention, the non-oriented portion 2
] is magnetized with a component perpendicular to the oriented portion, although the magnetization strength is low, as shown in Figure 2 (b), and the magnetization is similar to that when magnets with so-called polar orientation are magnetized. It becomes a magnetic pattern.

したがって、この発明により磁石を着磁した場合、極間
に無配向部分を持たない従来の磁石に発生する第4図(
b)に示した磁石内で発生する磁束ループが減少し、外
部に取出せる有効磁束を増加ごせることかできる。
Therefore, when a magnet is magnetized according to the present invention, the problem shown in FIG. 4 (
The magnetic flux loop generated within the magnet shown in b) is reduced, and the effective magnetic flux that can be taken out to the outside can be increased.

第3図に従来のラジアル方向に配向させた多極磁石と、
この発明による多極磁石の各極単位面積当りの有効磁束
と、見/d(L;L:磁極の幅、d:磁極の厚さ)との
関係を示す。
Figure 3 shows a conventional multipolar magnet oriented in the radial direction,
The relationship between the effective magnetic flux per unit area of each pole of the multipolar magnet according to the present invention and d/d (L; L: width of magnetic pole, d: thickness of magnetic pole) is shown.

この図から、従来のものにくらべこの発明によるものが
1極のピッチが小さい多極の磁石を作るとき、極めて磁
力が優れていることがわかる。
From this figure, it can be seen that compared to the conventional magnet, the magnet according to the present invention has extremely superior magnetic force when producing a multi-pole magnet with a small pitch between poles.

なお、L記実施例の無配向部分21は弱い配向部分の場
合を含むものであることはいうまでもない。
It goes without saying that the non-oriented portion 21 in Example L includes a weakly oriented portion.

〔発明の効果〕〔Effect of the invention〕

この発明は以に説明したように、磁石材料よりなる成形
体に、所定幅の同極を無配向部分を介在させて形成して
配向を施し1次いで、前記所定幅の同極部分に所要の極
性の青磁を施すようにしたので、各磁極間内部でループ
磁束が少なくなり。
As explained below, this invention involves forming homopoles of a predetermined width on a molded body made of a magnetic material with a non-oriented portion interposed therebetween, and then applying orientation to the same polarity portion of the predetermined width. Since polar celadon is applied, the loop magnetic flux inside each magnetic pole is reduced.

強い磁極の多極磁石が得られる利点がある。There is an advantage that a multipolar magnet with strong magnetic poles can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の多極磁石の製造方法に用いる装置の
概略図、第2図は従来から用いられており、この発明に
おいても使用する着磁器の概略図、第3図は従来のラジ
アル方向の多極磁石とこの発明による多極磁石との特性
を比較して示す図、第4図(a)、(b)は従来のラジ
アル配向磁石の着磁と磁石内に発生するループ磁束を説
明するための図である。 図中、1.1′はポールピース、2.2′はコイル、3
は外極、4は円柱状空間、5は凹凸ヨーク、5Aは凸部
、5Bは非磁性部材からなる凹部、6は内極、7は凹凸
ヨーク、7Aは凸部、7Bはノ1磁性部材からなる四部
、11は外様、12は内極、13は凸部、14はコイル
、2oは成形体、21は無配向部分である。 第1図 tU′凧郡俸 第2図 第3図 −!/d
Fig. 1 is a schematic diagram of a device used in the method of manufacturing a multipolar magnet of the present invention, Fig. 2 is a schematic diagram of a magnetizer that has been used conventionally and is also used in this invention, and Fig. 3 is a schematic diagram of a conventional radial magnetizer. Figures 4(a) and 4(b) compare the characteristics of a multipolar magnet according to the present invention and a multipolar magnet according to the present invention. It is a figure for explaining. In the figure, 1.1' is a pole piece, 2.2' is a coil, and 3
is an outer pole, 4 is a cylindrical space, 5 is an uneven yoke, 5A is a convex portion, 5B is a concave portion made of a non-magnetic material, 6 is an inner pole, 7 is an uneven yoke, 7A is a convex portion, and 7B is a No. 1 magnetic member. 11 is an outer surface, 12 is an inner pole, 13 is a convex portion, 14 is a coil, 2o is a molded body, and 21 is a non-oriented portion. Figure 1 tU' Kite County Salary Figure 2 Figure 3 -! /d

Claims (1)

【特許請求の範囲】[Claims]  磁石材料よりなる成形体に、所定幅の同極を無配向部
分を介在させて形成して配向を施し、次いで前記所定幅
の同極部分に所要の極性の着磁を施すことを特徴とする
多極磁石の製造方法。
The method is characterized in that a molded body made of a magnetic material is formed with the same polarity of a predetermined width with a non-oriented portion interposed therebetween, and then oriented, and then the same polarity portion of the predetermined width is magnetized with a desired polarity. Method for manufacturing multipolar magnets.
JP23444685A 1985-10-22 1985-10-22 Manufacture of multipolar magnet Pending JPS6294904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23444685A JPS6294904A (en) 1985-10-22 1985-10-22 Manufacture of multipolar magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23444685A JPS6294904A (en) 1985-10-22 1985-10-22 Manufacture of multipolar magnet

Publications (1)

Publication Number Publication Date
JPS6294904A true JPS6294904A (en) 1987-05-01

Family

ID=16971129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23444685A Pending JPS6294904A (en) 1985-10-22 1985-10-22 Manufacture of multipolar magnet

Country Status (1)

Country Link
JP (1) JPS6294904A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106057398A (en) * 2016-07-20 2016-10-26 长兴荣兴电子有限公司 Multi-polar magnetic ring
CN106057397A (en) * 2016-07-20 2016-10-26 长兴荣兴电子有限公司 Multi-polar magnetic ring

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106057398A (en) * 2016-07-20 2016-10-26 长兴荣兴电子有限公司 Multi-polar magnetic ring
CN106057397A (en) * 2016-07-20 2016-10-26 长兴荣兴电子有限公司 Multi-polar magnetic ring
CN106057397B (en) * 2016-07-20 2019-02-01 浙江品创知识产权服务有限公司 Multi-pole magnet-ring

Similar Documents

Publication Publication Date Title
JP2000182829A (en) Apparatus and method for magnetization
WO2021200361A1 (en) Power generation element, magnetic sensor using same, encoder, and motor
JPH0378592B2 (en)
JPS6294904A (en) Manufacture of multipolar magnet
US5666097A (en) Periodic magnetizer
CN111341520B (en) Method for simultaneously magnetizing main magnet and auxiliary magnet of loudspeaker at one time
JPS5927508A (en) Magnetization method
JPH03195343A (en) Magnetizer for step motor
JPH0624174B2 (en) Manufacturing method of cylindrical magnet
JPH0287505A (en) Magnetic field generating equipment for mri use
JPS6329811B2 (en)
JPS6153843B2 (en)
JPS6239003A (en) Manufacture of multipolar magnet
JP2508093Y2 (en) Magnetizing device
JPH0244482Y2 (en)
JPH02140907A (en) Magnetization in radial direction
JPS6239004A (en) Manufacture of multipolar magnet
JPS6294903A (en) Manufacture of multipolar magnet
JPS6211212A (en) Injection molding die for manufacturing plastic magnet
JPH01248077A (en) Method and apparatus for measuring magnetic characteristic of magnetic body
JPH0464207A (en) Ignition coil for internal combustion engine
JPH0410655Y2 (en)
JPH06251930A (en) Magnetic field generator for mri
JPS6050442A (en) Magnetic-field generator for nuclear-magnetic- resonance imaging apparatus
JPH0235703A (en) Magnetizing apparatus and method