JPS6294423A - Rear-wheel driving apparatus for vehicle - Google Patents

Rear-wheel driving apparatus for vehicle

Info

Publication number
JPS6294423A
JPS6294423A JP11228686A JP11228686A JPS6294423A JP S6294423 A JPS6294423 A JP S6294423A JP 11228686 A JP11228686 A JP 11228686A JP 11228686 A JP11228686 A JP 11228686A JP S6294423 A JPS6294423 A JP S6294423A
Authority
JP
Japan
Prior art keywords
torque
vehicle
hydraulic
clutch
wheels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11228686A
Other languages
Japanese (ja)
Other versions
JPH078614B2 (en
Inventor
Satomi Oyama
総美 尾山
明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP11228686A priority Critical patent/JPH078614B2/en
Publication of JPS6294423A publication Critical patent/JPS6294423A/en
Publication of JPH078614B2 publication Critical patent/JPH078614B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Motor Power Transmission Devices (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Retarders (AREA)

Abstract

PURPOSE:To improve the turning performance with the simple constitution when a vehicle turns at a high speed, by torque-controlling the right and left hydraulic clutches so that the torque distribution ratio on the inner wheel side is increased in the high speed region when the vehicle turns. CONSTITUTION:Driving shafts 4R and 5R are connected, permitting transmission, through hydraulic clutches 4L and 4R onto the right and left edge parts projecting from the gear case 2 of the rear-wheel driving shaft 3 of an FR car. A hydraulic circuit 7 controlled by a control system 6 is installed onto the hydraulic clutches 4L and 4R. In the control system 6, a control unit 63 which generates a prescribed duty signal on the basis of the outputs of a car speed sensor 61, steering angle sensor 62, and an input sensor 60 is installed, and the duty signal is outputted into the duty solenoid valves 74L and 74R in each hydraulic circuit 7. Therefore, the torque distribution ratio on the inner wheel side is increased in the high speed region when the vehicle turns.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、車両において左右後輪の駆動トルクを変化し
て旋同走行覆る方式の後輪駆動装置に関Iノ、詳しく(
よ、高速旋回時の安定性を図るものに関する。
The present invention relates to a rear wheel drive device of a type that changes the drive torque of the left and right rear wheels of a vehicle to cover turning movement.
This article concerns something that improves stability during high-speed turns.

【留来の技術] 従来一般に、フ【]ン[−Iンジン・す17ドライブ(
FR)車や4輪駆動(/IWn)車など後輪を駆動する
車両にあっτ1,1、変速機出力側から差動装置を介し
て左右の後輪駆動軸へ伝動構成される。 従って車両は、常にノ「右の駆動トルクが等1ツク、ま
た旋回時の内外輪の回転差が吸収されてスムーズに旋回
走行できる。また前記差動装置に差動制限装置を加える
ことにより、左右輪回転速度差に基づき左右輪駆動力が
不等になり、その車両の運動性能が該差動制限装置のな
い車両と異なるようにしたものもある。 【発明が解決1ノようとづる問題点】 ところで上記従来技術で番、東、車両旋回時に内外輪の
回転差は吸収されるが、内外輪の駆動トルクは常に等し
くなるから、旋回時の走行安定性を向上することはでき
ない。また差φ、ガ制制限装管加えたものでは、旋回走
行等左右輪回転速度差が生じた後、初めて左右輪駆動力
差が生じて運動性能に差をもたらすことになるが、これ
は上記のように受動的に発生づるものぐあるために、こ
の運動性能(、未必ず1)も好ましいものとは限らない
。 イこて本発明は、一般走行時は、滑りをFIt油圧クラ
ッチの本来の特長により内外輪の回転差を吸収したスム
ーズなh足回走行ができることは勿論のこと、高速時の
旋回走行の安定性の向−トを可能とした車両の後輪駆動
装置を提供することを目的とlノでいる。
[Rui's technology] In the past, it was generally known that
In vehicles that drive the rear wheels, such as FR (FR) cars and 4-wheel drive (/IWn) cars, transmission is configured from the transmission output side to the left and right rear wheel drive shafts via a differential device. Therefore, the vehicle can always maintain the same driving torque on the right side, and the difference in rotation between the inner and outer wheels when turning is absorbed, allowing the vehicle to turn smoothly.Additionally, by adding a differential limiting device to the differential device, There is also a vehicle in which the driving force between the left and right wheels becomes unequal based on the difference in rotational speed between the left and right wheels, and the dynamic performance of the vehicle differs from that of a vehicle without the differential limiting device. By the way, in the above conventional technology, the difference in rotation between the inner and outer wheels is absorbed when the vehicle turns, but since the drive torque of the inner and outer wheels is always equal, it is not possible to improve running stability when turning. When the difference φ and the gas control/restriction pipe are added, a difference in driving force between the left and right wheels occurs only after a difference in rotational speed between the left and right wheels occurs, such as during cornering, and this causes a difference in driving performance, but this is explained above. This dynamic performance (1) is not always desirable because there are passively generated events such as Our objective is to provide a rear wheel drive system for a vehicle that not only allows for smooth h-wheel running by absorbing the difference in rotation between the inner and outer wheels, but also improves the stability of cornering at high speeds. Stay with your purpose.

【問題点を解決するための手段】[Means to solve the problem]

この目的のt:め、本発明は、終減速機から伝達[・ル
ク容郁可変の左右の油圧クラッチを介して、左右の後輪
駆動軸へそれぞれ伝動構成し、車速。 旋回量および方向、パノノトルクの要素により、)を右
の油圧クラッチの伝達トルク容量を各別に設定号るよう
(、:油圧回路構成し、車両すた同時の高速域では、外
輪より内輪の駆動トルクが大きくなるトルク配分にリベ
く、左右の油圧クラッチをトルク制御1−るJうに構成
されている。 【作   用] 上記構成に基づき、車両旋回時の高速域では、ノ1右後
輪の外側に対し内輪の駆動トルクが大きいことで、車両
重心廻りに前輪が受1−Jる=:+ −)−リングフォ
ースにJ、るヨーイング玉−メン[・と逆方向のヨーイ
ング」−ヌントを11じ【、子の=1−ツーリングフォ
ースにJ、る」−イングセ−メン[・を打消す方向に働
く。 こう1)で本発明では、高速域で・の旋回時に左右後輪
にJ、って旋回量φ11を抑制し、安定性を向上するこ
とが可能となる。 (実 施 例] 以下、本発明の一実施例を図面に基づいて具体的に説明
する。 第1図においτ、?”f131は、l−R市においτ図
示省略したプロペラシt7フトを介してミツシュ1ン装
置からの動力が伝達されるビニオン軸であり、ギヤケー
ス2に回転自在に支持され、端部のビニオン11をギ1
7ケース2内にllムま1」でいる。このギヤケース2
に(よ車両左右方向に向く後輪駆動軸3が回転自在に支
持され、これと一体に相付けたクラウンギヤ31が前記
ビニオン11に噛合うことで終減速機30が構成さねで
いる。 そして後輪駆動軸3のギヤケース2から突出した左右両
端部には、左側油圧クラッチ4Lを介して)1側駆動軸
5Lが、また右側油圧クラッチ4Rを介1ノで右側駆動
軸5Rがそれぞれ伝動可能に連結さねで、後輪8L、8
R(第3図、第4図参照)を各別に駆動するようになっ
ている。 ここで油圧クラッチ4L 、4Rは、油圧に応じて伝達
[・ルク容量が可変のものであり、後述の制御系6の信
号で制御される油圧回路7を備える。そこでこの油圧回
路7の構成を一方の油圧クラッチ4L側を代表して説明
すると、これはオイルポンプ71.調圧弁72.クラッ
チ油圧制御弁73.デユーティソレノイド弁74を右1
)、油圧クラッチ4Lは、油路75にJ、リフラッチ油
圧制御弁73を介してオイルポンプ71に接続する。 上記クラッチ油圧制御弁73は、弁本体にオイルポンプ
71側に通ずるボート73aと、油圧クラッチ4L側へ
通ずるボート73bと、ドレンポート73cとを備えl
、=スプール弁である。そしてスプール73(1が、ス
プリング73eの付勢りに抗してボート73右側の油圧
と信号油圧室73f内の信号油圧との加樟圧力で平衡す
ることで、ボー1−73aおよびドレンボート73cを
両方閉塞してクラッチ油圧を一定に保つと共に、信号油
圧の上昇でドレンボート73Gを開いてクラッチ油圧を
低下させ、信号油圧の下降でボート73aを開いてクラ
ッチ油圧を上昇させるようになっている。 また調圧弁72は、前記クラッチ油圧制御弁73の信号
油圧室73fに油路16を介して連通する油圧室72a
を有する弁本体に、油路75を介してオイルポンプ71
に連通するボート72I)と、油路16に連通Jるボー
ト72cと、ドレンボート72dとを備えたスプール弁
であり、スプール720が、スプリング72fの付勢力
に抗して油圧室72a内の油圧力により平衡することで
ボート72b 、 72dが閉じ、油圧室72a内の圧
力上背でドレンボート 力低下でボート72hをU■き、ボート72cすむわら
油路76に常に一定の油圧を取出すようになっている。 このような一定油圧が油路76を介」ノて供給される前
記クラッヂ油圧i11制御弁73の信号油圧室73f内
に信号油圧を生成するのが、デユーティソレノイド弁7
4L T−あり、後述J゛るデユーティ信号に応じて信
号油圧室73f内の油圧を排圧する。 油fEクラッチ4R側でも全く同様に油圧回路構成さi
1デユーティソレノイド弁74Rでクラッチ油圧を制御
するようになっている。 ここで制御信号と1ノでデユーティ信号を発生する制御
系61.T、ついて説明すると、車速を検出する中速セ
ン+161 、旋回走行およびその方向を検出する舵角
センサ62.変速機出力側から後輪への入力トルクを検
出する入力トルクセンサ60.これらの1!ンリ−出力
を入力信号として所定のデユーティ信号を発生する制御
(1−:]ニット63を猫えてなる。この制御コニット
−63は、車速センサ61の出力に応じ、車速を判別す
る車速判別部64と、舵角センIY62の出力に応じて
車両の直進、右旋回、左旋回の聞を判別する旋回量およ
び方向判別部65と、両判別部611、65の出力に応
じて左右の油圧クラッチ4L、4Rへのトルク配分比を
決定するトルク配分比算出部66と、このトルク配分比
算出部66の出力および入力トルクセン1f60の入力
トルクに基づいて左右の油圧クラッチ4L 、4R/\
のクラッチ油圧を篩用するクラッチ油n−咋出部67と
、このクラッチ油圧算出部67の出ノJ l=−、応じ
てデユーティ比を設定する2つのデユーティ比設定部6
8L 、 68Rとを備える。 そしてトルク配分比算出部66が、車両の直進状態では
左右の油圧クラッチ4L、IIRを介する後輪8L、8
Rへのトルク配分比が同一であり、中低速域における車
両の旋回時には、旋回の内側とイrる内輪より外輪側の
トルク配分が大きく、逆に高速域における旋回時には、
外輪側より内輪側のトルク配分が大きくなる」、う設定
しである。 またクラッチ油圧篩用部67での左もの油圧クラッチ4
L 、412の油圧輝出について説明すると、入力トル
クToは、第5図(へ)のJ、うにシフ]−位置どエン
ジン吸入管負圧の関係で変化1ノ、油圧クラッチの伝達
トルク容量と油圧は、第5図中)のように増加関数であ
る。ぞこでt−ルク配分比輝出部66での左右のトルク
配分比TL、TRが、TL=T’Rの直進の場合let
、ノ1イ1のクラッチ油圧PL、PRを共に最大に定め
、伝達トルク容量OL、CRも駁人に1ノで、いかなる
入力トルクでも滑りを生じる[ど<’c < 2分割し
て左右後輪に伝達する。一方、TL>Tpの配分状態の
場合は、TL側ではイのクラッチ油fK P l−と杖
に伝達トルク容量CLを最大に定め、入力トルクToの
TL / (TR+TL )分を滑りをノI−しること
なく伝達する。これに対しTR側では、このときの入力
トルクTo トTL 。 1−RにJ、す、伝達トルク容量ORを次式により算出
する。 CR=To X (TR/ (TL +TR) )そし
て、この伝達トルク容IORに応じたクラップ油圧PR
を定める。そして、入力トルクTOのTR/ (TL 
+−TR)分だけ伝達するように駆動トルクを減じ、か
つ滑りを許すようになっている。 以上の構成では、I制御系6により車速と旋回の走行状
態に応じて左右の後輪8L 、8Rの駆動トルクが各別
に制御される。 車両の直進状態では、トルク配分比算出部66による左
右の油圧クラッチ4L 、4Rへのトルク配分比は同一
であり、左右の油(l−クラッチ4L 、4Rは同一油
圧に制御さ11/T左右の後輪8L 、IIRは同一ト
ルクで駆動される。 車両の中低速域における旋回走行では、トルク配分比咋
田部66におけるトルク配分比は内輪J、り外輪側が大
きく決定される。これに基づいて例えば中低速域の左旋
回では、左側油圧クラッチ4Lに対応したデユーティ信
号はデユーティ比が小さく、デユーティソレノイド弁7
4Lによる信号油圧は大きく定めら11てクラッチ油圧
は小さくイする。 同時に右側油圧クラッチ4Rに対応したデユーティ信号
はデユーティ比が大きくなって、デ」−ティソレノイド
弁74117による信号油圧は小さく定められてクラッ
チ油圧は大きくなる。寸なわち)1仁の油圧クラッチ4
L 、4Rは、トルク配分比に応じて左側のものが小さ
く、右側のものが大きいクラッチ油圧に制御される。そ
こで、負側の後輪8Rは充分な伝達トルクで駆動される
と共に、左側の後輪8Lは右側より小さい伝達トルクで
駆動される。そ1ノでこのことは、左側油圧クラッチ4
Lが所定の滑りを許容することを意味1ノ、左側後輪8
Lは、右側後輪8Rより若干低速回転して内外輪の回転
差を吸収し、円滑な旋回走行を可能とする。 また特に、旋回内側の左後輪8Lの駆動トルクが小さく
、旋回外側の右後輪8Rの駆動トルクが大きいことから
、内外輪の駆動トルクの差に基づいて車両は車両重心G
廻りに左向きのヨーイングモーメントを生じる〈第3図
参照)。これは前輪91−.9Rが受けるコーナリング
フォースに基づく車両重心Glりのヨーイングモーメン
トと同方向であるから、旋回性能が向上する。なお右1
1&回の場合も、左右対称的に全く同様に作用する。 つぎに車両の高速域における旋回走行では、トルク配分
比算出部66におけるトルク配分比が、前述の中低速域
の場合と正反的に外輪より内輪側が大きく決定される。 従ってこの場合は、前述と逆に84I輪8Lが充分な伝
達トルクで駆動され、右後輪8Rは左側より小さい伝達
トルクで駆動される。 そしてこの高速域における旋回走行では、旋回内側の左
後輪8Lの駆動トルクが人きく、旋回外側の右後輪8R
の駆#Jl トルクが小さいことから、内外輪の駆動ト
ルクの差に基づいて車両は、重心G[りに右向きのヨー
インクモーメントを生じるく第4図参照)。これは前輪
9L 、9Rが受4Jる1−ナリングフォースに基づく
車両重心G[りのヨーイングモーメン[−と逆方向であ
り、これを多少打消す方向に作用するから、旋回走行の
安定性が向上する。なお右りを同の場合も、全く同様に
作用する。 以上FR車を例番S*発明を32明したが、本発明は4
WD車、リヤエンジン・す1/ドライブ車など、後輪を
駆動するものであれば適用できる。 【発明の効宋] 以上述べてぎたように、本発明によれば、一般走行時は
、滑りをrrす゛油圧クラッチの本来の性質により、後
輪の内外輪の回転差を吸収してスムーズな旋回を可能と
し、高速走行時は、左右後輪のトルク配分で、車両重心
的りに前輪のコーナリングフォースによるヨーイングモ
ーメントと逆方向のヨーインクモーメントを生じて車両
のバランスを促すので、高速旋回時の安定性が向上する
To achieve this objective, the present invention is configured to transmit power from the final reduction gear to the left and right rear wheel drive shafts via left and right hydraulic clutches with variable displacement, respectively, to adjust the vehicle speed. Depending on the turning amount, direction, and pano torque factors, the transmission torque capacity of the right hydraulic clutch is set separately (:: The hydraulic circuit is configured so that when the vehicle is in the same high-speed range, the drive torque of the inner wheels is higher than that of the outer wheels. The left and right hydraulic clutches are configured to provide torque control for torque distribution, which increases. However, because the drive torque of the inner wheels is large, the front wheels receive 1-J around the center of gravity of the vehicle. It works in the direction of canceling the same [, child's = 1 - touring force J, ru] - Ingsemen [・. According to 1), the present invention makes it possible to suppress the turning amount φ11 by applying J to the left and right rear wheels when turning in a high-speed range, thereby improving stability. (Embodiment) An embodiment of the present invention will be described in detail below based on the drawings. In FIG. It is a pinion shaft to which the power from the Mitshu 1 unit is transmitted, and is rotatably supported by the gear case 2, and the pinion 11 at the end is connected to the gear 1.
7 I'm in case 2. This gear case 2
A rear wheel drive shaft 3 facing in the left-right direction of the vehicle is rotatably supported, and a crown gear 31 mated integrally with this shaft meshes with the binion 11 to constitute a final reduction gear 30. Then, to both left and right ends of the rear wheel drive shaft 3 protruding from the gear case 2, transmission is transmitted to the first side drive shaft 5L via the left hydraulic clutch 4L, and to the right drive shaft 5R via the right hydraulic clutch 4R. Possible connection tongue, rear wheel 8L, 8
R (see FIGS. 3 and 4) are driven separately. Here, the hydraulic clutches 4L and 4R have variable transmission torque capacity depending on the oil pressure, and are equipped with a hydraulic circuit 7 that is controlled by a signal from a control system 6, which will be described later. Therefore, the configuration of this hydraulic circuit 7 will be explained using one side of the hydraulic clutch 4L as a representative. This is the oil pump 71. Pressure regulating valve 72. Clutch hydraulic control valve 73. Turn the duty solenoid valve 74 to the right 1
), the hydraulic clutch 4L is connected to the oil passage 75 and to the oil pump 71 via a reflatch hydraulic control valve 73. The clutch hydraulic control valve 73 has a boat 73a communicating with the oil pump 71 side, a boat 73b communicating with the hydraulic clutch 4L side, and a drain port 73c in the valve body.
, = spool valve. Then, the spool 73 (1) resists the bias of the spring 73e and is balanced by the added pressure of the oil pressure on the right side of the boat 73 and the signal oil pressure in the signal oil pressure chamber 73f, so that the boat 1-73a and the drain boat 73c are balanced. Both are closed to keep the clutch oil pressure constant, and when the signal oil pressure rises, the drain boat 73G is opened to lower the clutch oil pressure, and when the signal oil pressure falls, the boat 73a is opened and the clutch oil pressure is increased. The pressure regulating valve 72 also has a hydraulic chamber 72a communicating with the signal hydraulic chamber 73f of the clutch hydraulic control valve 73 via the oil passage 16.
An oil pump 71 is connected via an oil passage 75 to a valve body having a
This is a spool valve equipped with a boat 72I) communicating with the oil passage 16, a boat 72c communicating with the oil passage 16, and a drain boat 72d. The boats 72b and 72d close due to equilibrium due to the pressure, and the drain boat force decreases due to the pressure in the hydraulic chamber 72a, causing the boat 72h to move, so that a constant oil pressure is always delivered to the straw oil passage 76 where the boat 72c resides. It has become. The duty solenoid valve 7 generates a signal oil pressure in the signal oil pressure chamber 73f of the clutch oil pressure i11 control valve 73 to which such constant oil pressure is supplied via the oil path 76.
4L T- is present, and the hydraulic pressure in the signal hydraulic chamber 73f is discharged in response to a duty signal described later. The hydraulic circuit configuration is exactly the same on the oil fE clutch 4R side.
Clutch oil pressure is controlled by a 1-duty solenoid valve 74R. Here, the control system 61 generates a duty signal with the control signal and 1 node. To explain T, a medium speed sensor 161 detects the vehicle speed, a steering angle sensor 62 detects turning and its direction. An input torque sensor 60 that detects input torque from the transmission output side to the rear wheels. One of these! The control unit 63 generates a predetermined duty signal by using the output as an input signal. and a turning amount and direction determining section 65 that determines whether the vehicle is traveling straight, turning right, or turning left according to the output of the steering angle sensor IY62, and a left and right hydraulic clutch according to the outputs of both determining sections 611 and 65. A torque distribution ratio calculating section 66 determines the torque distribution ratio to 4L and 4R, and the left and right hydraulic clutches 4L, 4R/\ are based on the output of this torque distribution ratio calculating section 66 and the input torque of the input torque sensor 1f60.
A clutch oil n-output section 67 that screens the clutch oil pressure, and two duty ratio setting sections 6 that set the duty ratio according to the output of this clutch oil pressure calculation section 67.
8L and 68R. Then, the torque distribution ratio calculation unit 66 calculates that when the vehicle is running straight, the torque is distributed to the rear wheels 8L and 8 via the left and right hydraulic clutches 4L and IIR.
The torque distribution ratio to R is the same, and when the vehicle is turning in a medium to low speed range, the torque distribution is greater to the outer wheels than to the inner wheels, which are on the inside of the turn, and conversely, when turning in a high speed range,
The torque distribution is larger on the inner wheel than on the outer wheel. Also, the left hydraulic clutch 4 in the clutch hydraulic sieve part 67
To explain the oil pressure output of L and 412, the input torque To changes by 1 due to the relationship between the negative pressure of the engine intake pipe and the transmission torque capacity of the hydraulic clutch. The oil pressure is an increasing function as shown in Fig. 5). If the left and right torque distribution ratios TL and TR at the torque distribution ratio brightening section 66 are straight ahead where TL=T'R, let
, the clutch oil pressures PL and PR are both set to the maximum, and the transmission torque capacities OL and CR are also 1 to 1, so any input torque will cause slippage. Transmit to the ring. On the other hand, in the case of the distribution state of TL>Tp, on the TL side, the transmission torque capacity CL to the clutch oil fK P l- and the rod is set to the maximum, and TL / (TR + TL) of the input torque To is used to prevent slippage. - Communicate without doing anything. On the other hand, on the TR side, the input torque To TL at this time. 1-R to J, the transmission torque capacity OR is calculated using the following formula. CR=To
Establish. Then, TR of input torque TO/(TL
The drive torque is reduced so that only +-TR) is transmitted, and slippage is allowed. In the above configuration, the I control system 6 separately controls the drive torques of the left and right rear wheels 8L and 8R depending on the vehicle speed and the turning state. When the vehicle is running straight, the torque distribution ratio to the left and right hydraulic clutches 4L and 4R by the torque distribution ratio calculation unit 66 is the same, and the left and right oil clutches 4L and 4R are controlled to the same hydraulic pressure (11/T). The rear wheels 8L and IIR are driven with the same torque. When the vehicle is turning in a medium-low speed range, the torque distribution ratio in the torque distribution ratio section 66 is determined to be large between the inner wheels J and the outer wheels. Based on this, For example, when turning left in the medium and low speed range, the duty signal corresponding to the left hydraulic clutch 4L has a small duty ratio, and the duty solenoid valve 7
The signal oil pressure by 4L is set to be large, and the clutch oil pressure is set to be small. At the same time, the duty ratio of the duty signal corresponding to the right hydraulic clutch 4R increases, the signal hydraulic pressure from the duty solenoid valve 74117 is determined to be small, and the clutch hydraulic pressure increases. 1 engine hydraulic clutch 4
L and 4R are controlled so that the clutch oil pressure on the left side is small and the one on the right side is large depending on the torque distribution ratio. Therefore, the rear wheel 8R on the negative side is driven with a sufficient transmission torque, and the left rear wheel 8L is driven with a transmission torque smaller than that on the right side. In Part 1, this is true for the left hydraulic clutch 4.
L means to allow a certain amount of slippage 1, left rear wheel 8
L rotates at a slightly lower speed than the right rear wheel 8R to absorb the difference in rotation between the inner and outer wheels and enable smooth cornering. In particular, since the drive torque of the left rear wheel 8L on the inside of the turn is small and the drive torque of the right rear wheel 8R on the outside of the turn is large, the vehicle's center of gravity
A leftward yawing moment is generated in the surrounding area (see Figure 3). This is the front wheel 91-. Since it is in the same direction as the yawing moment of the vehicle center of gravity Gl based on the cornering force that the 9R receives, the turning performance is improved. Furthermore, right 1
In the case of 1&times, it acts in exactly the same way symmetrically. Next, when the vehicle is turning in a high speed range, the torque distribution ratio calculated by the torque distribution ratio calculation unit 66 is determined to be larger for the inner wheels than for the outer wheels, contrary to the case in the medium and low speed ranges described above. Therefore, in this case, contrary to the above, the 84I wheel 8L is driven with sufficient transmission torque, and the right rear wheel 8R is driven with a smaller transmission torque than the left side. When cornering in this high-speed range, the drive torque of the left rear wheel 8L on the inside of the corner is most effective, and the drive torque of the right rear wheel 8R on the outside of the corner is most effective.
Because the drive torque is small, the vehicle produces a rightward yawing moment around the center of gravity G based on the difference in drive torque between the inner and outer wheels (see Figure 4). This is in the opposite direction to the yawing moment of the vehicle's center of gravity G [-] based on the 1-knarling force that the front wheels 9L and 9R receive, and acts in a direction that cancels this out to some extent, improving the stability of cornering. do. In addition, even when the right side is the same, it works in exactly the same way. Above, 32 examples of the FR car were described as S* inventions, but the present invention is 4
It can be applied to any vehicle that drives the rear wheels, such as a WD vehicle or a rear engine/single drive vehicle. [Effects of the Invention] As described above, according to the present invention, during general driving, slippage can be prevented by absorbing the difference in rotation between the inner and outer wheels of the rear wheels due to the inherent properties of the hydraulic clutch. When driving at high speeds, the torque distribution between the left and right rear wheels generates a yawing moment in the opposite direction to the yawing moment caused by the cornering force of the front wheels around the center of gravity of the vehicle, which promotes vehicle balance during high-speed turns. stability is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図は制御
系のブロック図、第3図は車両の中低速旋回走行時の作
用説明図、第4図は車両の高速旋回走行時の作用説明図
、第5図(へ)は入力トルク特性を示1図、第5図Φ)
はクラッチ特性を示す図である。 4L・・・左側油圧クラッチ、4R・・・右側油圧クラ
ッチ、5L・・・左側駆動軸、5R・・・右側駆動軸、
7・・・油圧回路、30・・・終減速機、60・・・入
力トルクセンサ、61・・・車速センサ、62・・・舵
角センサ、63・・・制御]ニット、66・・・トルク
配分比算出部、67・・・クラッチ油圧算出部。 特許出願人    富士重工業株式会社代理人 弁理士
  小 橋 信 浮 量  弁理士  村 井   進 第3図      第4図 第5図 (G) (b)
Fig. 1 is a configuration diagram showing an embodiment of the present invention, Fig. 2 is a block diagram of the control system, Fig. 3 is an explanatory diagram of the operation when the vehicle is turning at medium and low speeds, and Fig. 4 is a diagram showing the operation of the vehicle when turning at high speeds. Fig. 5 shows the input torque characteristics (Fig. 1, Fig. 5 Φ)
is a diagram showing clutch characteristics. 4L...Left side hydraulic clutch, 4R...Right side hydraulic clutch, 5L...Left side drive shaft, 5R...Right side drive shaft,
7... Hydraulic circuit, 30... Final reduction gear, 60... Input torque sensor, 61... Vehicle speed sensor, 62... Rudder angle sensor, 63... Control] knit, 66... Torque distribution ratio calculation unit, 67...Clutch oil pressure calculation unit. Patent applicant: Fuji Heavy Industries Co., Ltd. Agent: Patent attorney: Makoto Kobashi, Ukiyo Patent attorney: Susumu Murai Figure 3 Figure 4 Figure 5 (G) (b)

Claims (1)

【特許請求の範囲】 終減速機から伝達トルク容量可変の左右の油圧クラッチ
を介して、左右の後輪駆動軸へそれぞれ伝動構成し、 車速、旋回量および方向、入力トルクの要素により、左
右の油圧クラッチの伝達トルク容量を各別に設定するよ
うに油圧回路構成し、 車両旋回時の高速域では、外輪より内輪の駆動トルクが
大きくなるトルク配分にすべく、左右の油圧クラッチを
トルク制御する車両の後輪駆動装置。
[Scope of Claims] Transmission is configured from the final reduction gear to the left and right rear wheel drive shafts via left and right hydraulic clutches with variable transmission torque capacities, and the left and right transmission torque is determined by vehicle speed, turning amount and direction, and input torque factors. A vehicle that has a hydraulic circuit configured to set the transmission torque capacity of each hydraulic clutch separately, and controls the torque of the left and right hydraulic clutches so that the torque distribution is such that drive torque is greater for the inner wheels than for the outer wheels in the high-speed range when the vehicle turns. rear wheel drive.
JP11228686A 1986-05-16 1986-05-16 Vehicle rear wheel drive Expired - Lifetime JPH078614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11228686A JPH078614B2 (en) 1986-05-16 1986-05-16 Vehicle rear wheel drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11228686A JPH078614B2 (en) 1986-05-16 1986-05-16 Vehicle rear wheel drive

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60234226A Division JPS6294421A (en) 1985-10-18 1985-10-18 Rear-wheel driving apparatus for vehicle

Publications (2)

Publication Number Publication Date
JPS6294423A true JPS6294423A (en) 1987-04-30
JPH078614B2 JPH078614B2 (en) 1995-02-01

Family

ID=14582890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11228686A Expired - Lifetime JPH078614B2 (en) 1986-05-16 1986-05-16 Vehicle rear wheel drive

Country Status (1)

Country Link
JP (1) JPH078614B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189930A (en) * 1990-02-19 1993-03-02 Mazda Motor Corp. Vehicle power transmitting mechanism
JP2006044319A (en) * 2004-07-30 2006-02-16 Toyoda Mach Works Ltd Differential device
CN110040083A (en) * 2018-01-16 2019-07-23 宝沃汽车(中国)有限公司 Condition detection method, device, cloud server and the vehicle of clutch oil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189930A (en) * 1990-02-19 1993-03-02 Mazda Motor Corp. Vehicle power transmitting mechanism
JP2006044319A (en) * 2004-07-30 2006-02-16 Toyoda Mach Works Ltd Differential device
JP4604596B2 (en) * 2004-07-30 2011-01-05 株式会社ジェイテクト Differential
CN110040083A (en) * 2018-01-16 2019-07-23 宝沃汽车(中国)有限公司 Condition detection method, device, cloud server and the vehicle of clutch oil
CN110040083B (en) * 2018-01-16 2021-03-26 宝沃汽车(中国)有限公司 Clutch oil state detection method and device, cloud server and vehicle

Also Published As

Publication number Publication date
JPH078614B2 (en) 1995-02-01

Similar Documents

Publication Publication Date Title
JPH0572290B2 (en)
JP4267495B2 (en) Driving force control method for four-wheel drive vehicle
JP2641724B2 (en) Left and right wheel drive system for vehicles
JPH045128A (en) Differential limit control device for vehicle
JPH04176732A (en) Front and rear wheel torque distribution control device for four-wheel drive vehicle
US5201382A (en) Four-wheel-steered vehicle control system
JPH0764221B2 (en) Differential limiting force controller
JP4417203B2 (en) Driving force control method for four-wheel drive vehicle
JPS6294423A (en) Rear-wheel driving apparatus for vehicle
JPS62181918A (en) Rear wheel torque distribution control device for vehicle
JPS6294422A (en) Rear-wheel driving apparatus for vehicle
JPS59184025A (en) Four-wheel-drive vehicle
JPS61146636A (en) Driving force distribution controller for 4wd car
JP2544295B2 (en) 4-wheel drive vehicle
JPH06115370A (en) Idler wheel differential limiting device of vehicle
JPH02290722A (en) Differential limit clutch control device for vehicle
JPS6167629A (en) Differential-gear restricting apparatus
JPH03281483A (en) Integrated control device for rear wheel steering and drive force
JP3020541B2 (en) Vehicle differential limiter
JPH0596970A (en) Control device for rear wheel differential limit device
JPH04260807A (en) Roll rigidity controlling device
JPH07101262A (en) Torque distribution control device
JPS62134339A (en) Device for controlling driving system clutch for vehicle
JP2631850B2 (en) Four-wheel steering four-wheel drive vehicle
JPS62273129A (en) Control device for clutch in driving system of vehicle

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term