JPS629186A - Air preheater - Google Patents

Air preheater

Info

Publication number
JPS629186A
JPS629186A JP14716585A JP14716585A JPS629186A JP S629186 A JPS629186 A JP S629186A JP 14716585 A JP14716585 A JP 14716585A JP 14716585 A JP14716585 A JP 14716585A JP S629186 A JPS629186 A JP S629186A
Authority
JP
Japan
Prior art keywords
heat conductive
heat
heat transfer
tubular bodies
air preheater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14716585A
Other languages
Japanese (ja)
Inventor
Tsutomu Sakuma
勉 佐久間
Takashi Komagine
駒木根 隆
Minoru Komori
実 小森
Ichiro Hongo
一郎 本郷
Shigemi Nagatomo
長友 繁美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14716585A priority Critical patent/JPS629186A/en
Publication of JPS629186A publication Critical patent/JPS629186A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To provide the air preheater, capable of increasing heat transfer area, reducing heat dissipating loss, miniaturizing the whole of the device and preventing the deformation of constituting members which is caused by thermal expansion by a method wherein the air preheater is provided with a plurality of heat conductive tubular bodies, arranged concentrically so as to surround a combustion chamber, a plurality of heat transfer tubes arranged between the heat conductive tubular bodies, and a pair of flanges which are equipped with angaging and supporting sections, engaging and supporting both ends of the heat transfer tubes and the heat conductive tubular bodies. CONSTITUTION:Six sets of heat conductive tubular bodies 23-28 are arranged concentrically between the flanges 21, 22 opposing to each other in the up-and-down direction. A plurality of heat transfer tubes 29 are arranged between the heat conductive tubular bodies 24, 25 and, further, a plurality of large diametral heat transfer tubes 30 are arranged between the heat conductive tubular bodies 25, 26 in the circumferential direction. The flange 21 is provided with annular grooves 61, 62, 63 at the lower surface thereof to engage with the ends of the heat conductive tubular bodies 26, 27, 28 while the same is provided with stepped holes 64 to engage with the end of the heat transfer tubes 30 by force fitting. The engagement allowance distance (l) of the grooves or the holes is increased as they are closed to the center of the preheater. The axial elongation of respective heat conductive tubular bodies 23-28 and respective heat transfer tubes 29, 30 may be absorbed by the allowance distance (l).

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、空気予熱器に係り、たとえばスターリングエ
ンジンのヒータに組込むのに好適する空気予熱器に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an air preheater, and more particularly, to an air preheater suitable for being incorporated into a heater of a Stirling engine, for example.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

最近、省エネルギ化の一環として、スターリングエンジ
ンが見直され、熱心な研究が行われている。スターリン
グエンジンには種々の形態のものがあるが、たとえば、
2ピストン方式のものを例にとると、それぞれパワーピ
ストンを内蔵した2つのパワーシリンダ間に、再生熱交
換器を閉流路構成に接続するとともに再生熱交換器の一
端と一方のパワーシリンダとの間の流路をヒータで加熱
し、再生熱交換器の他端と他方のパワーシリンダとの間
の流路をタープで冷却するように構成されている。この
機関は、理論的熱効率が高く、あらゆる熱源を使用でき
ると言う特徴を有している。
Recently, as part of efforts to save energy, the Stirling engine has been reviewed and intensive research is being conducted. There are various types of Stirling engines, for example,
Taking a two-piston system as an example, a regenerative heat exchanger is connected in a closed flow configuration between two power cylinders each containing a built-in power piston, and one end of the regenerative heat exchanger is connected to one power cylinder. The flow path between the two is heated by a heater, and the flow path between the other end of the regenerative heat exchanger and the other power cylinder is cooled by a tarp. This engine is characterized by its high theoretical thermal efficiency and the ability to use any heat source.

ところで、スターリングエンジンのヒータは。By the way, what about the Stirling engine heater?

通常、ガス燃料あるいは液体燃料を燃焼させる燃焼器と
、この燃焼器によって得られた高温燃焼ガスでスターリ
ングエンジンを動作させるのに必要な作動流体を加熱す
る熱交換器と、燃焼排ガスで燃焼用空気を予熱する空気
予熱器とで構成されている。スターリングエンジンの場
合、上述した作動流体の加熱温度が高い程、効率が向上
する。したがって、燃焼器で形成される燃焼火炎温度は
高い程よいことになる。このようなことから、空気予熱
器を設け、この空気予熱器で排ガスの熱を回収して燃焼
用空気を高温にし、これによって燃焼火炎温度を高める
方式が採用されている。
Typically, there is a combustor that burns gas or liquid fuel, a heat exchanger that uses the high-temperature combustion gas obtained by the combustor to heat the working fluid necessary to operate the Stirling engine, and a combustion exhaust gas that is used to generate combustion air. It consists of an air preheater and an air preheater to preheat the air. In the case of a Stirling engine, the higher the heating temperature of the working fluid described above, the higher the efficiency. Therefore, the higher the temperature of the combustion flame formed in the combustor, the better. For this reason, a method has been adopted in which an air preheater is provided, and the air preheater recovers the heat of the exhaust gas to raise the combustion air to a high temperature, thereby increasing the combustion flame temperature.

上記目的に供される空気予熱器は、排ガスの熱を効率よ
く回収するために大きな伝熱面積を有していることが望
ましい。しかし、伝熱面積を大きくすると、一般的には
それに対応して空気予熱器全体の大形化を招き、また放
熱損失も増加して効率が低下する。従来、このような点
を考慮に入れて幾つかの空気予熱器が提案されているが
、何れのものも一長一短を有しており、改善が望まれて
いるのが実状である。また、スターリングエンジンの場
合には排ガス温度が非常に高温となる。このため、この
エンジンに組込まれる空気予熱器では、構成部材の熱膨
張が大きく、この膨張に伴う変形対策の出現も望まれて
いる。
The air preheater used for the above purpose desirably has a large heat transfer area in order to efficiently recover heat from exhaust gas. However, increasing the heat transfer area generally results in a corresponding increase in the overall size of the air preheater, and also increases heat dissipation losses, reducing efficiency. Conventionally, several air preheaters have been proposed taking these points into consideration, but all of them have advantages and disadvantages, and the reality is that improvements are desired. Furthermore, in the case of a Stirling engine, the exhaust gas temperature becomes extremely high. For this reason, in the air preheater incorporated in this engine, the thermal expansion of the constituent members is large, and there is a desire for a countermeasure against deformation caused by this expansion.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情に鑑みてなされたもので、そ
の目的とするところは、伝熱面積の増大化、放熱損失の
低減化、全体の小形化および熱膨張による構成部材の変
形防止化を図れる空気予熱器を提供することにある。
The present invention was made in view of the above circumstances, and its objectives are to increase the heat transfer area, reduce heat radiation loss, downsize the whole, and prevent deformation of structural members due to thermal expansion. The purpose of the present invention is to provide an air preheater that can achieve this.

〔発明の概要〕[Summary of the invention]

本発明によれば、燃焼排ガスと燃焼器へ導かれる燃焼用
空気との間で熱交換を行なわせる空気予熱器において、
燃焼器を取り囲むように同心的に配置された複数の伝熱
性筒体と、これら伝熱性筒体間に軸心線を上記伝熱性筒
体の軸心線に平行させてそれぞれ配置され上記伝熱性筒
体とで互いに分離された排ガス通路と燃焼用空気通路と
を構成する複数の伝熱管と、これら伝熱管および前記伝
熱性筒体の両端部を嵌合支持する嵌合支持部をそれぞれ
有した一対のフランジとを備え、前記一対のフランジの
前記嵌合支持部で前記伝熱性筒体および前記伝熱管の熱
膨張を吸収させるようにした空気予熱器が提供される。
According to the present invention, in the air preheater that performs heat exchange between combustion exhaust gas and combustion air guided to the combustor,
A plurality of heat conductive cylindrical bodies are arranged concentrically to surround a combustor, and the axial center line between these heat conductive cylindrical bodies is arranged parallel to the axial center line of the heat conductive cylinder body. A plurality of heat transfer tubes constituting an exhaust gas passage and a combustion air passage separated from each other by a cylindrical body, each having a fitting support portion that fits and supports both ends of these heat transfer tubes and the heat conductive cylindrical body. An air preheater is provided, comprising a pair of flanges, the fitting support portions of the pair of flanges absorbing thermal expansion of the heat conductive cylinder and the heat transfer tube.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、燃焼器を取り囲むように複数の伝熱性
筒体を配置するとともに伝熱性筒体間に前記関係に複数
の伝熱管を配置し、これらで燃焼排ガスと燃焼用空気と
の熱交換通路を形成しているので、伝熱性筒体間の間隔
を狭くして伝熱性筒体の数を増したり、あるいは伝熱管
の数を増すだけで、全体の大形化を招くことなく広い伝
熱面積を設定することができる。したがって、結果的に
全体の小形化、伝熱面積の増大化および放熱損失の低減
化を実現することができる。また、各伝熱性筒体および
伝熱管の両端を一対のフランジで嵌合支持構成に支持さ
せているので2組立て時に嵌合余裕度を持たせて組立て
るだけで、伝熱性筒体および伝熱管の軸心線方向の伸び
を吸収させることができる。このため、伝熱性筒体や伝
熱管の繰り返し熱変形で寿命が低下するのを防止するこ
とができ、装置としての信頼性を向上させることができ
る。したがって、スターリングエンジンに組込むのに適
した空気予熱器を提供できる。
According to the present invention, a plurality of heat conductive cylinders are arranged so as to surround a combustor, and a plurality of heat transfer tubes are arranged in the above-mentioned relationship between the heat conductive cylinders, so that heat between the combustion exhaust gas and the combustion air is transferred. Since it forms an exchange passage, you can increase the number of heat conductive cylinders by narrowing the interval between the heat conductive cylinders, or simply increase the number of heat transfer tubes, without increasing the overall size. Heat transfer area can be set. Therefore, as a result, the overall size can be reduced, the heat transfer area can be increased, and the heat radiation loss can be reduced. In addition, since both ends of each heat conductive cylinder and heat transfer tube are supported by a pair of flanges in a fitting support configuration, the heat conductive cylinder and heat transfer tube can be assembled by simply providing a fitting margin when assembling the two. Elongation in the axial direction can be absorbed. Therefore, it is possible to prevent the life of the heat conductive cylinder or the heat exchanger tube from being shortened due to repeated thermal deformation, and the reliability of the device can be improved. Therefore, an air preheater suitable for being incorporated into a Stirling engine can be provided.

〔発明の実施例〕[Embodiments of the invention]

以下2本発明の実施例を図面を参照しながら説明する。 Two embodiments of the present invention will be described below with reference to the drawings.

第1図は1本発明の一実施例に係る空気予熱器を組込ん
でなる2ピストン方式のスターリングエンジンの縦断面
図を示している。
FIG. 1 shows a longitudinal sectional view of a two-piston Stirling engine incorporating an air preheater according to an embodiment of the present invention.

すなわち、このスターリングエンジンは、大きく別けて
2作動流体の膨張用に供されるパワーシリンダ1〈以後
、膨張シリンダと称す。)と、この膨張シリンダ1内に
摺動自在に装着されたパワーピストン2(以後、膨張ピ
ストンと称す。)と。
That is, this Stirling engine has two main parts: a power cylinder 1 (hereinafter referred to as an expansion cylinder) used for expanding two working fluids; ), and a power piston 2 (hereinafter referred to as an expansion piston) slidably mounted within the expansion cylinder 1.

作動流体の圧縮に供されるパワーシリンダ3(以後、圧
縮シリンダと称す。)と、この圧縮シリンダ3内に摺動
自在に装着されたパワーピストン4(以後、圧縮ピスト
ンと称す。)と、膨張シリンダ1と圧縮シリンダ3との
間に設けられたヒータ5、再生熱交換器6およびクーラ
7と、膨張ピストン2および圧縮ピストン4にそれぞれ
コンロッド8.9.クランク軸10.11を介して連結
さ・れた出力軸12とで構成されている。
A power cylinder 3 (hereinafter referred to as a compression cylinder) used for compressing working fluid, a power piston 4 (hereinafter referred to as a compression piston) slidably installed in this compression cylinder 3, and an expansion The heater 5, the regenerative heat exchanger 6, and the cooler 7 provided between the cylinder 1 and the compression cylinder 3, and the connecting rods 8.9. It consists of an output shaft 12 connected via a crankshaft 10.11.

前記ヒータ5は、膨張シリンダ1のヘッド13を取り囲
むように断熱材14を配置して形成された燃焼室15と
、この燃焼室15内に配置された複数の熱交換器16と
、燃焼室15に臨むように配置されたバーナ17と、燃
焼室15を取り囲むように配置され燃焼に必要な空気を
燃焼排ガスで予熱する空気予熱器18とで構成されて−
いる。
The heater 5 includes a combustion chamber 15 formed by disposing a heat insulating material 14 so as to surround the head 13 of the expansion cylinder 1, a plurality of heat exchangers 16 disposed within the combustion chamber 15, and a combustion chamber 15. The burner 17 is arranged to face the combustion chamber 15, and the air preheater 18 is arranged to surround the combustion chamber 15 and preheat the air necessary for combustion with combustion exhaust gas.
There is.

前記各熱交換器16は、それぞれ外形が棒状に形成され
おり、各流体通路の一端側を膨張シリンダ1内の頂部に
通じさせ、他端側をヘッド13内に形成されたマニホル
ド19に通じさせて、全体で漏斗を形成する如く配置さ
れている。マニホルド19は、接続管20を介して再生
熱交換器6に接続され、この再生熱交換器6は熱交換器
によって構成されたクーラ7を介して圧縮シリンダ3内
の頂部に接続されている。そして、膨張シリンダ1と膨
張ピストン2とで囲まれた空間、各熱交換器16.マニ
ホルド19.接続管20.再生熱交換器6.クーラ7、
圧縮シリンダ3と圧縮とストン4とで囲まれた空間から
なる閉じられた空間には作動流体としてのHeが封入さ
れている。
Each of the heat exchangers 16 has a rod-like outer shape, and one end of each fluid passage communicates with the top of the expansion cylinder 1, and the other end communicates with a manifold 19 formed within the head 13. They are arranged so as to form a funnel as a whole. The manifold 19 is connected to a regenerative heat exchanger 6 via a connecting pipe 20, and the regenerative heat exchanger 6 is connected to the top inside the compression cylinder 3 via a cooler 7 constituted by the heat exchanger. A space surrounded by the expansion cylinder 1 and the expansion piston 2, each heat exchanger 16. Manifold 19. Connecting pipe 20. Regenerative heat exchanger6. Cooler 7,
A closed space surrounded by the compression cylinder 3, the compression cylinder 3, and the stone 4 is filled with He as a working fluid.

しかして、前記空気予熱器18は具体的には第2図乃至
第4図に示すように構成されている。すなわち9図中上
下に対向する関係に一対のフランジ21.22を配置し
、これらフランジ21゜22間に、これらフランジ21
.22によって支持されるとともにバーナ17の先端と
ヘッド13の中心とを結ぶ線を中心にして同心的に6個
の伝熱性筒体23〜28を配置している。そして、伝熱
性筒体24と25との間に、第3図にも示すように両端
がフランジ21.22によって支持される関係に伝熱管
29を周方向に等間隔に複数配置し、さらに伝熱性筒体
25と26との間に両端がフランジ21.22によって
支持される関係に大径の伝熱管30を周方向に等間隔に
複数配置している。伝熱性筒体27と28との間に形成
された環状空間31の図中上端部はフランジ21に周方
向に亙って複数形成された孔32を介して空気ダクト3
3に通じ、このダクト33は空気供給口34に通じてい
る。また、環状空間31の図中下端部はフランジ22に
形成された連絡路35を介して各伝熱管30の下端部に
通じ、これら伝熱管30の上端部はフランジ21に設け
られた孔36゜37およびダクト38を介して各伝熱管
29の上端部に通じている。各伝熱管29の下端部はフ
ランジ22に形成された連絡路39を介して伝熱性筒体
23と24との間に形成された環状空間40の下端部に
通じ、この環状空間40の上端部はフランジ21に周方
向に亙って複数設けられた孔41を介してダクト42に
通じ、このダクト42はスワラ−43を介してバーナ1
7が位置している空間、つまり燃焼W15に通じている
。一方。
Specifically, the air preheater 18 is constructed as shown in FIGS. 2 to 4. In other words, a pair of flanges 21 and 22 are arranged vertically opposite each other in FIG. 9, and between these flanges 21 and 22,
.. Six heat conductive cylindrical bodies 23 to 28 are disposed concentrically around a line connecting the tip of the burner 17 and the center of the head 13. A plurality of heat transfer tubes 29 are arranged between the heat transfer cylinders 24 and 25 at equal intervals in the circumferential direction, with both ends supported by flanges 21.22, as shown in FIG. A plurality of large-diameter heat transfer tubes 30 are arranged at equal intervals in the circumferential direction between the thermal cylinders 25 and 26, with both ends supported by flanges 21 and 22. The upper end of the annular space 31 formed between the heat conductive cylinders 27 and 28 is connected to the air duct 3 through a plurality of holes 32 formed in the flange 21 in the circumferential direction.
3, and this duct 33 communicates with an air supply port 34. Further, the lower end of the annular space 31 in the figure communicates with the lower end of each heat exchanger tube 30 via a communication path 35 formed in the flange 22, and the upper end of these heat exchanger tubes 30 is connected to a hole 36° provided in the flange 21. 37 and a duct 38 to communicate with the upper end of each heat exchanger tube 29. The lower end of each heat transfer tube 29 communicates with the lower end of an annular space 40 formed between the heat conductive cylinders 23 and 24 via a communication path 39 formed in the flange 22, and the upper end of this annular space 40 is connected to a duct 42 through a plurality of holes 41 provided in the flange 21 in the circumferential direction, and this duct 42 is connected to the burner 1 through a swirler 43.
It leads to the space where No. 7 is located, that is, the combustion W15. on the other hand.

フランジ22の下部には燃焼室15に通じた吸込み口4
4が設けてあり、この吸込み口44は周方向に亙って複
数設けられた短管45を介して伝熱性筒体24.25間
に形成された環状空間46の下端部に通じ、この環状空
間46の上端部は伝熱性筒体25の上端に周方向に亙っ
て複数形成された孔47を介して伝熱性筒体25.26
間に形成された環状空間48の上端部に通じ、さらに環
状空間48の下端部は伝熱性筒体26の下端部に周方向
に亙って複数形成された孔49を介して伝熱性筒体26
と27との間に形成された環状空間50の下端部に通じ
ている。そして、環状空間50の上端部は7ランジ21
に周方向に亙って複数形成された孔51を介して排気ダ
クト52に通じている。
A suction port 4 communicating with the combustion chamber 15 is provided at the bottom of the flange 22.
4 is provided, and this suction port 44 communicates with the lower end of an annular space 46 formed between the heat conductive cylinders 24 and 25 through a plurality of short pipes 45 provided in the circumferential direction. The upper end of the space 46 is connected to the heat conductive cylinder 25, 26 through a plurality of holes 47 formed in the upper end of the heat conductive cylinder 25 in the circumferential direction.
The lower end of the annular space 48 is connected to the heat conductive cylinder 26 through a plurality of holes 49 formed in the lower end of the heat conductive cylinder 26 in the circumferential direction. 26
It communicates with the lower end of an annular space 50 formed between and 27. The upper end of the annular space 50 has seven flange 21.
It communicates with an exhaust duct 52 through a plurality of holes 51 formed circumferentially.

しかして、各伝熱性筒体23〜28.各伝熱管29.3
0と各フランジ21.22との接続部分は、第2図中破
線で示す部分Aを代表して取り出して示す第4図のよう
に構成されている。すなわち、フランジ21の下面に環
状の溝61,62゜63を設け、これら溝に対応する伝
熱性筒体28゜27.26の端部を圧入嵌合させている
。また。
Thus, each of the heat conductive cylinders 23 to 28. Each heat exchanger tube 29.3
0 and each flange 21, 22 is constructed as shown in FIG. 4, in which the portion A indicated by the broken line in FIG. 2 is taken out as a representative. That is, annular grooves 61, 62.degree. 63 are provided on the lower surface of the flange 21, and the corresponding ends of the heat conductive cylinder 28.degree. 27.26 are press-fitted into these grooves. Also.

7ランジ21の伝熱管30に対応する部分に下面側が大
径となる段付き孔64を設け、この段付き孔64の大径
側に伝熱管30の端部を圧入嵌合させている。そして、
多溝61.62.63の深さおよび段付き孔64の段部
までの深さは燃焼至15の中心に近いもの程深くなるよ
うに設定されている。したがって、第4図に示すように
上記中心に近い溝あるいは孔程嵌合余裕距111(lが
大きくなっている。
A stepped hole 64 having a larger diameter on the lower surface side is provided in a portion of the seventh flange 21 corresponding to the heat exchanger tube 30, and the end of the heat exchanger tube 30 is press-fitted into the larger diameter side of the stepped hole 64. and,
The depths of the multi-grooves 61, 62, and 63 and the depths to the stepped portions of the stepped holes 64 are set such that the closer they are to the center of the combustion hole 15, the deeper they become. Therefore, as shown in FIG. 4, the fitting clearance distance 111 (l) becomes larger as the groove or hole is closer to the center.

なお、第1図中71は潤滑油が所定レベルまで収容され
たクランク室を示し、72.73はリニアベアリングを
示し、74はクーラ7の冷媒を案内する配管を示し、7
5.76は断熱材を示している。
In FIG. 1, 71 indicates a crank chamber containing lubricating oil to a predetermined level, 72 and 73 indicate linear bearings, 74 indicates piping that guides the refrigerant of the cooler 7, and 72 and 73 indicate linear bearings.
5.76 indicates insulation material.

このような構成であると、バーナ17に点火するととも
に配管74に冷媒を通流させている状態で、外部動力源
によって出力軸12を一時的に回転させると、この出力
軸12にクランク軸10゜11、コンロッド8.9を介
して連結されている膨張ピストン2および圧縮ピストン
4がある位相差を以て往復動する。この往復動によって
膨張ピストン2が圧縮行程に移ると、膨張シリンダ1内
のHeが各熱交換器16.マニホルド19.接続管32
.再生熱交換器6.クーラ7を介して圧縮シリンダ3内
に流れ込み、膨張ピストン2が上死点に達した時点でH
eのほとんどが圧縮シリンダ3内に流れ込む。このとき
、Heは再生熱交換器6を通過する間に、その保有して
いる熱が再生熱交換器6に奪われ、またクーラ7を通過
するときさらに冷却される。出力軸12の回転に伴って
圧縮ピストン4が下死点から上死点に向けて移動を開始
すると、圧縮シリンダ3内の低温のHeが圧縮され、い
ままでとは逆の経路で膨張シリンダ1内へ流れ込む。こ
のとき、Heは再生熱交換器6を通過する間に吸熱して
高温に加熱され1次に各熱交換器16を通過する間にさ
らに加熱される。
With such a configuration, when the output shaft 12 is temporarily rotated by an external power source while the burner 17 is ignited and the refrigerant is flowing through the pipe 74, the output shaft 12 is connected to the crankshaft 10. 11, the expansion piston 2 and the compression piston 4, which are connected via the connecting rod 8.9, reciprocate with a certain phase difference. When the expansion piston 2 moves to the compression stroke due to this reciprocating movement, He in the expansion cylinder 1 is transferred to each heat exchanger 16. Manifold 19. Connecting pipe 32
.. Regenerative heat exchanger6. It flows into the compression cylinder 3 via the cooler 7, and when the expansion piston 2 reaches the top dead center, H
Most of e flows into the compression cylinder 3. At this time, while the He passes through the regenerative heat exchanger 6, the heat it retains is taken away by the regenerative heat exchanger 6, and when it passes through the cooler 7, it is further cooled. When the compression piston 4 begins to move from the bottom dead center toward the top dead center as the output shaft 12 rotates, the low-temperature He in the compression cylinder 3 is compressed, and is moved to the expansion cylinder 1 in the opposite path. Flow inward. At this time, He absorbs heat while passing through the regenerative heat exchanger 6 and is heated to a high temperature, and is further heated while passing through each heat exchanger 16 first.

膨張シリンダ1内に流れ込んだ高温のHeは、膨張して
膨張ピストン2を押し下げる。以後、上述した動作が繰
り返され、外部動力源を断った状態でも出力軸12が回
転を継続し、スターリングエンジンとしての機能を発揮
する。
The high temperature He that has flowed into the expansion cylinder 1 expands and pushes down the expansion piston 2. Thereafter, the above-described operations are repeated, and even when the external power source is cut off, the output shaft 12 continues to rotate, and functions as a Stirling engine.

ところで、上記のような運転状態において、空気予熱器
18は次のように作用する。すなわち。
By the way, in the above operating state, the air preheater 18 operates as follows. Namely.

バーナ17から噴射される燃料を燃焼させるのに必要な
空気は、第2図中実線矢印で示すように空気供給ロ34
〜ダクト33〜孔32〜環状空間31〜通路35〜伝熱
管30〜ダクト38〜伝熱管29〜通路39〜環状空間
40〜孔41〜ダクト42〜スワラ−43〜燃焼室15
の経路で供給される。また、燃焼室15内で生成された
燃焼排ガスは、吸い込みロ44〜短管45〜環状空間4
6〜孔47〜環状空間48〜孔49〜環状空間50〜孔
51〜排気ダクト52の経路で流れる。
The air necessary to burn the fuel injected from the burner 17 is supplied to the air supply hole 34 as shown by the solid line arrow in FIG.
- Duct 33 - Hole 32 - Annular space 31 - Passage 35 - Heat exchanger tube 30 - Duct 38 - Heat exchanger tube 29 - Passage 39 - Annular space 40 - Hole 41 - Duct 42 - Swirler 43 - Combustion chamber 15
It is supplied through the following route. Further, the combustion exhaust gas generated in the combustion chamber 15 is transferred from the suction hole 44 to the short pipe 45 to the annular space 4.
6 - hole 47 - annular space 48 - hole 49 - annular space 50 - hole 51 - exhaust duct 52.

このため、燃焼用空気は、伝熱性筒体23〜27゜伝熱
管29.30を介して燃焼排ガスによって高温に加熱さ
れることになり、ここに空気予熱器としての機能が良好
に発揮される。そして、この場合には、空気予熱器18
が、燃焼室15を取り囲むように同心的に配置された伝
熱性筒体23〜28と、これら伝熱性筒体間に伝熱性筒
体の軸心線と平行するように配置された複数の伝熱管2
9゜30とで構成されているので、伝熱性筒体の間隔を
狭くして伝熱性筒体の数を増したり、伝熱管の数を増し
たりするだけで、全体の大形化を招くことなく両流体間
での熱交換に必要な伝熱面積を十分広く設定できる。し
たがって、全体の小形化。
Therefore, the combustion air is heated to a high temperature by the combustion exhaust gas through the heat conductive cylinders 23 to 27 degrees and the heat exchanger tubes 29 and 30, and the function as an air preheater is effectively demonstrated here. . In this case, the air preheater 18
However, heat conductive cylinders 23 to 28 are arranged concentrically to surround the combustion chamber 15, and a plurality of heat conductive cylinders are arranged parallel to the axis of the heat conductive cylinders between these heat conductive cylinders. heat tube 2
Since it is composed of 9° and 30°, simply increasing the number of heat conductive cylinders by narrowing the interval between the heat conductive cylinders or increasing the number of heat transfer tubes will result in an increase in the overall size. Therefore, the heat transfer area required for heat exchange between both fluids can be set sufficiently wide. Therefore, the overall size is reduced.

放熱損失の低減化を図った状態で大きな伝熱面積を確保
することができる。また、各伝熱性筒体23〜28.各
伝熱管29.30の両端を一対のフランジ21.22に
嵌合支持させているので。
A large heat transfer area can be secured while reducing heat radiation loss. Moreover, each of the heat conductive cylinders 23 to 28. Both ends of each heat exchanger tube 29, 30 are fitted and supported by a pair of flanges 21, 22.

組立て時に嵌合余裕距M1を持たせて組立てれば。If it is assembled with a mating margin M1 during assembly.

この余裕距離1で各伝熱性筒体23〜28および各伝熱
管29.30の軸心線方向の伸びを吸収させることがで
きる。したがって、伝熱性筒体23〜28や伝熱管29
.30の熱膨張によって空気予熱器18全体が破壊され
たり、短期間に全体が変形したりするのを防止でき、結
局、前述した効果を発揮させることかできる。
This margin distance 1 can absorb the elongation of each heat conductive cylinder 23 to 28 and each heat exchanger tube 29, 30 in the axial direction. Therefore, the heat conductive cylinders 23 to 28 and the heat exchange tubes 29
.. It is possible to prevent the entire air preheater 18 from being destroyed or deformed in a short period of time due to the thermal expansion of the air preheater 18, and as a result, the above-mentioned effects can be achieved.

なお1本発明は上述した実施例に限定されるものではな
い。すなわち1本発明に係る空気予熱器はスターリング
エンジンだけにその使用を限定されるものではな(各種
燃焼器に使用できることは勿論である。また、各流体通
路に流体の流れを強制的に乱す部材を設け、この部材の
存在によって熱交換効率を一層向上させるようにしても
よい。
Note that the present invention is not limited to the embodiments described above. In other words, the air preheater according to the present invention is not limited to use only in Stirling engines (of course, it can be used in various types of combustors). The heat exchange efficiency may be further improved by the presence of this member.

その他1本発明の要旨を逸脱しない範囲で種々変形する
ことができる。
Other than that, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る空気予熱器を組込んで
なるスターリングエンジンの縦断面図。 第2図は同エンジンの空気予熱器だけを取り出して示す
縦断面図、第3図は同空気予熱器を第2図におけるX−
X線に沿って切断し矢印方向に見た局部的断面図、第4
図は第2図中に破線で囲んだ部分Aを拡大して示す断面
図である。 1・・・膨張シリンダ、2・・・膨張ピストン、3・・
・圧縮シリンダ、4・・・圧縮ピストン、5・・・ヒー
タ、6・・・再生熱交換器、7・・・タープ、15・・
・燃焼至、16・・・熱交換器、17・・・バーナ、1
8・・・空気予熱器。 21.22・・・フランジ、23〜28・・・伝熱性筒
体。 29.30・・・伝熱管、61〜63・・・嵌合支持部
としての溝、64・・・嵌合支持部としての孔。 出願人代理人 弁理士 鈴江武彦 第2図
FIG. 1 is a longitudinal sectional view of a Stirling engine incorporating an air preheater according to an embodiment of the present invention. Figure 2 is a vertical sectional view showing only the air preheater of the same engine, and Figure 3 is a longitudinal cross-sectional view of the air preheater taken out from the same engine.
Local cross-sectional view taken along the X-ray and seen in the direction of the arrow, No. 4
The figure is an enlarged sectional view showing a portion A surrounded by a broken line in FIG. 2. 1... Expansion cylinder, 2... Expansion piston, 3...
・Compression cylinder, 4... Compression piston, 5... Heater, 6... Regeneration heat exchanger, 7... Tarp, 15...
・Combustion end, 16... Heat exchanger, 17... Burner, 1
8...Air preheater. 21.22...Flange, 23-28...Heat conductive cylinder. 29.30... Heat exchanger tube, 61-63... Groove as a fitting support part, 64... Hole as a fitting support part. Applicant's agent Patent attorney Takehiko Suzue Figure 2

Claims (1)

【特許請求の範囲】[Claims] 燃焼排ガスと燃焼器へ導かれる燃焼用空気との間で熱交
換を行なわせる空気予熱器において、燃焼室を取り囲む
ように同心的に配置された複数の伝熱性筒体と、これら
伝熱性筒体間に軸心線を上記伝熱性筒体の軸心線に平行
させてそれぞれ配置され上記伝熱性筒体とで互いに分離
された排ガス通路と燃焼用空気通路とを構成する複数の
伝熱管と、これら伝熱管および前記伝熱性筒体の両端部
を嵌合支持する嵌合支持部をそれぞれ有した一対のフラ
ンジとを具備し、前記一対のフランジの前記嵌合支持部
で前記伝熱性筒体および前記伝熱管の熱膨張を吸収させ
るようにしてなることを特徴とする空気予熱器。
An air preheater that performs heat exchange between combustion exhaust gas and combustion air guided to a combustor includes a plurality of heat conductive cylinders arranged concentrically to surround a combustion chamber, and these heat conductive cylinders. a plurality of heat exchanger tubes that are arranged in between with their axes parallel to the axis of the heat conductive cylinder and constitute exhaust gas passages and combustion air passages that are separated from each other by the heat conductive cylinder; and a pair of flanges each having a fitting support portion that fits and supports both ends of the heat transfer tube and the heat conductive cylinder, and the fitting support portion of the pair of flanges connects the heat conductive cylinder and An air preheater characterized in that the air preheater is configured to absorb thermal expansion of the heat exchanger tube.
JP14716585A 1985-07-04 1985-07-04 Air preheater Pending JPS629186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14716585A JPS629186A (en) 1985-07-04 1985-07-04 Air preheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14716585A JPS629186A (en) 1985-07-04 1985-07-04 Air preheater

Publications (1)

Publication Number Publication Date
JPS629186A true JPS629186A (en) 1987-01-17

Family

ID=15424055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14716585A Pending JPS629186A (en) 1985-07-04 1985-07-04 Air preheater

Country Status (1)

Country Link
JP (1) JPS629186A (en)

Similar Documents

Publication Publication Date Title
CN101280737A (en) Gas distribution piston type Stirling engine
JP2662612B2 (en) Stirling engine
KR950002624B1 (en) Insulation for stirling engine
EP0180621A1 (en) Stirling engine with air working fluid
CN110878722B (en) Opposed free piston Stirling generator system adopting annular combustor to provide heat
JPS629186A (en) Air preheater
JPH0291463A (en) Stirling engine
JPH0213149B2 (en)
JPS629184A (en) Heat exchanger
JPS62190391A (en) Heat exchanger
JPH0256505B2 (en)
JPS6220660A (en) Air preheater
JPH01244151A (en) High temperature heat exchanger for stirling engine
JP2009228658A (en) Gas heating-cooling device
KR920005330Y1 (en) Heater pin in steering engine
JPS63227944A (en) Air preheater
RU2183767C1 (en) Heat compressor
JPS6357855A (en) Stirling engine
JPH0256504B2 (en)
JPS5865957A (en) Stirling engine
JPH0747945B2 (en) Stirling engine
JPS6048625B2 (en) Stirling engine high temperature heat exchanger
CN111810314A (en) Stirling engine structure
JPS63162953A (en) Stirling engine
JPS62189356A (en) Air preheater