JPS6291757A - Cryogenic refrigerating method and device - Google Patents

Cryogenic refrigerating method and device

Info

Publication number
JPS6291757A
JPS6291757A JP22860885A JP22860885A JPS6291757A JP S6291757 A JPS6291757 A JP S6291757A JP 22860885 A JP22860885 A JP 22860885A JP 22860885 A JP22860885 A JP 22860885A JP S6291757 A JPS6291757 A JP S6291757A
Authority
JP
Japan
Prior art keywords
cryogenic
gas
shield plate
container
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22860885A
Other languages
Japanese (ja)
Other versions
JPH0350950B2 (en
Inventor
松本 孝三
武居 信幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22860885A priority Critical patent/JPS6291757A/en
Publication of JPS6291757A publication Critical patent/JPS6291757A/en
Publication of JPH0350950B2 publication Critical patent/JPH0350950B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、極低温冷凍方法及び装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a cryogenic refrigeration method and apparatus.

〔発明の背景〕[Background of the invention]

極低温冷凍装置において、被冷却体として超電導マグネ
ットを考えた場合、極低温冷媒としてヘリウムが使用さ
れる。以下、極低温液化ガスとして液体ヘリウムの場合
を例にとり説明する。
In a cryogenic refrigeration system, when a superconducting magnet is considered as an object to be cooled, helium is used as a cryogenic refrigerant. Hereinafter, the case of liquid helium as the cryogenic liquefied gas will be explained as an example.

ヘリウム冷凍装置においては、液体ヘリウム塩if(−
269℃)レベルへの熱負荷を低減するために液体窒素
温度レベルの熱シールド板を設けることが一般的に行な
われている。更iこ、液体ヘリウム温度レベルへの熱負
荷を低減するために液体窒素温間レベルと液体ヘリウム
温度レベルの間に中間熱シールド板を設けることがある
In a helium refrigeration system, liquid helium salt if (-
In order to reduce the heat load to the liquid nitrogen temperature level (269° C.), it is common practice to provide a heat shield plate at the liquid nitrogen temperature level. Additionally, an intermediate heat shield plate may be provided between the liquid nitrogen warm level and the liquid helium temperature level to reduce the heat load on the liquid helium temperature level.

従来の極低温冷凍装置での中間熱シールド板の冷却方法
としては、中間熱シールド板を冷却するための極低温冷
凍機を設ける方法、中間熱シールド板温度レベルの冷媒
供給管、および冷媒戻り管を設ける方法、蒸発した極低
温ヘリウムガスで冷却し、常温レベルの圧縮機の吸入側
に戻す液化モードでの冷却方法が採用されていたが、い
ずれも、高価になったり、システムが複雑になったり、
システムの効率が向上しないといった問題がある。
Methods for cooling the intermediate heat shield plate in conventional cryogenic refrigeration equipment include a method of providing a cryogenic refrigerator to cool the intermediate heat shield plate, a refrigerant supply pipe at the temperature level of the intermediate heat shield plate, and a refrigerant return pipe. A cooling method using evaporated cryogenic helium gas and returning it to the suction side of the compressor at room temperature has been adopted, but both methods were expensive and complicated the system. Or,
There is a problem that the efficiency of the system is not improved.

なお、この種の装置として関連するものには、例えば、
特公昭54−30139号等が挙げられる。
Note that related devices of this type include, for example,
For example, Japanese Patent Publication No. 54-30139 can be mentioned.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、極低温容器内で極低温液化ガスから蒸
発したガスが有する寒冷を有効に回収することで、シス
テムの効率を向上できる極低温冷凍方法及び装置を提供
することにある。
An object of the present invention is to provide a cryogenic freezing method and apparatus that can improve system efficiency by effectively recovering cold contained in gas evaporated from cryogenic liquefied gas in a cryogenic container.

〔発明の概要〕[Summary of the invention]

本発明は、極低温冷凍方法を、極低温冷凍機で生成され
た極低温容器内に貯蔵されている極低温液化ガスから蒸
発したガスの寒冷で前記極低温容器の外側に配置された
中間熱シールド板を冷却するステップと、該シールド板
を冷却した後の前記ガスを前記極低温冷凍機に帰還させ
て該ガスの寒冷を回収するステップとを有する方法とし
、極低温冷凍装置を、ガスを圧縮循環する圧縮機と、該
圧縮機で圧縮された前記ガスを冷却し断熱膨張させて極
低温液化ガスを生成する極低温冷凍機と、該冷凍機から
移送された前記極低温液化ガスを貯蔵する極低温容器と
を具備し、該容器内で前記極低温液化ガスから蒸発し前
記極低温容器の外側に配置された中間熱シールド板を冷
却した後のガスが流通する戻り管を前記極低温冷凍機の
低圧ラインに寒冷回収可能な位置で合流連結した装置と
したもので、極低温容器内で極低湛液化ガスから蒸発し
たガスが有する寒冷を有効に回収しようとしたものであ
る。
The present invention provides a cryogenic freezing method for cooling a gas evaporated from a cryogenic liquefied gas stored in a cryogenic container produced by a cryogenic refrigerator using an intermediate heat source disposed outside the cryogenic container. The method includes a step of cooling a shield plate, and a step of returning the gas after cooling the shield plate to the cryogenic refrigerator to recover the cold of the gas. A compressor that performs compression circulation, a cryogenic refrigerator that cools and adiabatically expands the gas compressed by the compressor to generate cryogenic liquefied gas, and stores the cryogenic liquefied gas transferred from the refrigerator. A return pipe through which gas flows after evaporating from the cryogenic liquefied gas in the container and cooling an intermediate heat shield plate disposed outside the cryogenic container is connected to the cryogenic temperature vessel. This device is connected to the low-pressure line of the refrigerator at a location where cold recovery is possible, and is intended to effectively recover the cold contained in the gas evaporated from the extremely low liquefied gas in the cryogenic container.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面によって説明する。 An embodiment of the present invention will be described below with reference to the drawings.

図面で、1は圧縮機、2はコールドボックス、3a〜3
fは熱交換器、4は膨張機人口弁、5aおよび5bは膨
張機、6はジュールトムソン弁(以下、JT弁)、8は
液体窒素供給管、9は液体窒素供給弁、lOは冷媒供給
上、11は冷媒戻り管、■はクライオスタンド、21は
極低温容器、nは被超 冷却体、例えば、ψ′a14マグネット、乙は熱シール
ド板、囚は熱シールド用液体窒素供給管、5は熱シール
ド用液体窒素出口管、がは熱シールド用液体窒素供給弁
、父は中間熱シールド板、31は第2の冷媒戻り管、諺
はシールド用冷媒調整弁、おは戻り冷媒調整弁である。
In the drawing, 1 is a compressor, 2 is a cold box, 3a-3
f is a heat exchanger, 4 is an expander artificial valve, 5a and 5b are expanders, 6 is a Joule-Thomson valve (hereinafter referred to as a JT valve), 8 is a liquid nitrogen supply pipe, 9 is a liquid nitrogen supply valve, 1O is a refrigerant supply Above, 11 is a refrigerant return pipe, ■ is a cryo stand, 21 is a cryogenic container, n is an object to be cooled, for example, ψ'a14 magnet, O is a heat shield plate, and 5 is a liquid nitrogen supply pipe for heat shield. is the liquid nitrogen outlet pipe for the heat shield, is the liquid nitrogen supply valve for the heat shield, is the intermediate heat shield plate, is the second refrigerant return pipe, is the refrigerant adjustment valve for the shield, and is the return refrigerant adjustment valve. be.

次に、以上のように構成された極低温冷凍装置の動作に
ついて説明する。圧縮a1で圧縮されたガス、例えば、
ヘリウムガスはコールドボックス2に導入され、第1の
熱交換器3a、第2の熱交換器3bで冷却されプこ後、
膨張機ラインと液化ラインとに分岐される。膨張機ライ
ンの高圧ヘリウム(ま膨張機人口弁4を通り第1の膨張
機5aで断熱膨張仕事を行なうことにより温間降下して
、第4の熱交換器3dで冷却され第2の膨張i?115
bで再び断熱膨張仕事を行ない潤度降下して低圧ライン
に合流する。一方、液化ラインに分岐した高圧ヘリウム
は、第3〜第6の熱交換器3C〜3fで逆転温度まで冷
却され、JT弁6で断熱膨張して一部液体ヘリウムとな
り、冷媒供給管10を通りクライオスタットI内の極低
温容器21へ送られる。
Next, the operation of the cryogenic refrigeration apparatus configured as above will be explained. Gas compressed by compression a1, e.g.
Helium gas is introduced into the cold box 2, and after being cooled by the first heat exchanger 3a and the second heat exchanger 3b,
It is branched into an expander line and a liquefaction line. The high-pressure helium in the expander line (passes through the expander population valve 4, performs adiabatic expansion work in the first expander 5a, warms down, is cooled in the fourth heat exchanger 3d, and becomes the second expansion i). ?115
At step b, the adiabatic expansion work is performed again, the moisture content decreases, and it joins the low pressure line. On the other hand, the high-pressure helium branched into the liquefaction line is cooled to the inversion temperature in the third to sixth heat exchangers 3C to 3f, adiabatically expanded in the JT valve 6, becomes partially liquid helium, and passes through the refrigerant supply pipe 10. It is sent to the cryogenic container 21 in the cryostat I.

極低温容器4へ送られた液体ヘリウムは超電導マグネッ
トnを冷却すると共に、常温部からの熱侵入を吸収しガ
ス化さlしる。このガスの一部は冷媒戻り管11を通す
コールドボックス2に戻り、戻り冷媒調整弁おを通り第
6〜第1の熱交換器3f〜3aで寒冷回収された後、圧
縮8!IIこ戻される。
The liquid helium sent to the cryogenic container 4 cools the superconducting magnet n, absorbs heat entering from the normal temperature part, and gasifies it. A part of this gas returns to the cold box 2 passing through the refrigerant return pipe 11, passes through the return refrigerant regulating valve O, is cooled and recovered in the sixth to first heat exchangers 3f to 3a, and is then compressed 8! II is returned.

極低温容器21の残りのガスは中間熱シールド板加を冷
却し、第2の冷媒戻り管31を通すコールドボックス2
に戻り、シールド用冷媒調整弁ηを通り、第2の熱交換
器3bと第3の熱交換器3Cの中間の低圧ライン1二合
流する。中間熱シールド板(9)冷却用冷媒は、シール
ド用冷媒調整弁ηで調整され、中間熱シールド板(資)
の温度を熱シールド板nと極低温容器21の中間の所定
値に保持する。なお、戻り冷媒調整弁おは、超電導マグ
ネットηの予冷時、冷奴供給弁】0で供給され超電導マ
グネットηを冷却した冷媒の大部分を中間熱シールド板
(資)の冷却ラインの方にバイパスさせるための調整弁
である。
The remaining gas in the cryogenic container 21 cools the intermediate heat shield plate and passes through the second refrigerant return pipe 31 to the cold box 2.
, passes through the shielding refrigerant regulating valve η, and joins the low pressure line 1 between the second heat exchanger 3b and the third heat exchanger 3C. Intermediate heat shield plate (9) The cooling refrigerant is regulated by the shield refrigerant adjustment valve η, and the intermediate heat shield plate (equipment)
The temperature is maintained at a predetermined value between the heat shield plate n and the cryogenic container 21. In addition, when pre-cooling the superconducting magnet η, the return refrigerant regulating valve bypasses most of the refrigerant supplied by the cold supply valve 0 and cooling the superconducting magnet η to the cooling line of the intermediate heat shield plate (equipment). It is a regulating valve for

補助冷媒である液体窒素は、コールドボックス2へ液体
窒素供給管8.液体窒素供給弁9を介して供給され、ク
ライオスタット囚へは、熱シールド用液体窒素供給管冴
、熱シールド用液体窒素供給弁3を通り供給され、熱シ
ールド板スな液体窒素温度に冷却し、熱シールド用液体
窒素出口管5を通り流出する。
Liquid nitrogen, which is an auxiliary refrigerant, is supplied to the cold box 2 through a liquid nitrogen supply pipe 8. The liquid nitrogen is supplied to the cryostat via the liquid nitrogen supply valve 9, and is supplied to the cryostat through the heat shield liquid nitrogen supply pipe and the heat shield liquid nitrogen supply valve 3, and is cooled to the same liquid nitrogen temperature as the heat shield plate. It flows out through the heat shield liquid nitrogen outlet pipe 5.

本実施例では、次のような効果が得られる。In this embodiment, the following effects can be obtained.

(1)  極低温容器内で液体ヘリウムから蒸発したヘ
リウムガスが有する寒冷を、中間熱シールド板の冷却と
極低温冷凍機のコールドボックスに4人されたヘリウム
ガスの予冷とで有効に回収できるため、システムの効率
を向上できる。
(1) The cold contained in the helium gas evaporated from liquid helium in the cryogenic container can be effectively recovered by cooling the intermediate heat shield plate and pre-cooling the helium gas placed in the cold box of the cryogenic refrigerator. , can improve the efficiency of the system.

(2)  中間熱シールド板の冷却ラインは予冷時の′
&( バイパスラインを兼用できるため、真空−熱が必要な高
価な極低温冷媒移送配管を単純化および長さを短縮でき
経済性および信頼性の向上を図ることができる。
(2) The cooling line of the intermediate heat shield plate is
&( Since the bypass line can be used in combination, the expensive cryogenic refrigerant transfer piping that requires vacuum and heat can be simplified and shortened in length, improving economic efficiency and reliability.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように、極低温容器内で極低温
液化ガスから蒸発したガスが有する寒冷を有効に回収で
き、システムの効率を向上できるという効果がある。
As explained above, the present invention has the effect that the cold contained in the gas evaporated from the cryogenic liquefied gas in the cryogenic container can be effectively recovered and the efficiency of the system can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明を実施した極低温冷凍装置の一例を示す
ブロック構成図である。 1・・・・・・圧縮機、2・・・・・・コールドボック
ス、21・・・極低温容器、30・・−・・中間熱シー
ルド板、31・・・・・・第2の冷媒戻り管
The drawing is a block configuration diagram showing an example of a cryogenic refrigeration apparatus embodying the present invention. 1...Compressor, 2...Cold box, 21...Cryogenic container, 30...Intermediate heat shield plate, 31...Second refrigerant return pipe

Claims (1)

【特許請求の範囲】 1、極低温冷凍機で生成され極低温容器内に貯蔵されて
いる極低温液化ガスから蒸発したガスの寒冷で前記極低
温容器の外側に配置された中間熱シールド板を冷却する
ステップと、該シールド板を冷却した後の前記ガスを前
記極低温冷凍機に帰還させて該ガスの寒冷を回収するス
テップとを有することを特徴とする極低温冷凍方法。 2、ガスを圧縮循環する圧縮機と、該圧縮機で圧縮され
た前記ガスを冷却し断熱膨張させて極低温液化ガスを生
成する極低温冷凍機と、該冷凍機から移送された前記極
低温液化ガスを貯蔵する極低温容器とを具備し、該容器
内で前記極低温液化ガスから蒸発し前記極低温容器の外
側に配置された中間熱シールド板を冷却した後のガスが
流通する戻り管を前記極低温冷凍機の低圧ラインに寒冷
回収可能な位置で合流連結したことを特徴とする極低温
冷凍装置。
[Claims] 1. An intermediate heat shield plate disposed outside the cryogenic container is cooled by the gas evaporated from the cryogenic liquefied gas produced in a cryogenic refrigerator and stored in the cryogenic container. A cryogenic freezing method comprising the steps of: cooling the shield plate; and returning the gas after cooling the shield plate to the cryogenic refrigerator to recover the coldness of the gas. 2. A compressor that compresses and circulates gas, a cryogenic refrigerator that cools and adiabatically expands the gas compressed by the compressor to generate cryogenic liquefied gas, and the cryogenic temperature transferred from the refrigerator. a cryogenic container for storing liquefied gas, and a return pipe through which gas flows after being evaporated from the cryogenic liquefied gas in the container and cooling an intermediate heat shield plate disposed outside the cryogenic container. A cryogenic freezing device characterized in that the cryogenic refrigerator is connected to a low-pressure line of the cryogenic refrigerator at a position where cold recovery is possible.
JP22860885A 1985-10-16 1985-10-16 Cryogenic refrigerating method and device Granted JPS6291757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22860885A JPS6291757A (en) 1985-10-16 1985-10-16 Cryogenic refrigerating method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22860885A JPS6291757A (en) 1985-10-16 1985-10-16 Cryogenic refrigerating method and device

Publications (2)

Publication Number Publication Date
JPS6291757A true JPS6291757A (en) 1987-04-27
JPH0350950B2 JPH0350950B2 (en) 1991-08-05

Family

ID=16879013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22860885A Granted JPS6291757A (en) 1985-10-16 1985-10-16 Cryogenic refrigerating method and device

Country Status (1)

Country Link
JP (1) JPS6291757A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522846A (en) * 1978-08-05 1980-02-18 Mitsubishi Electric Corp Super conductivity device
JPS60117059A (en) * 1983-11-28 1985-06-24 株式会社神戸製鋼所 Method of preventing heat intrusion of he liquefying refrigerator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522846A (en) * 1978-08-05 1980-02-18 Mitsubishi Electric Corp Super conductivity device
JPS60117059A (en) * 1983-11-28 1985-06-24 株式会社神戸製鋼所 Method of preventing heat intrusion of he liquefying refrigerator

Also Published As

Publication number Publication date
JPH0350950B2 (en) 1991-08-05

Similar Documents

Publication Publication Date Title
US3323315A (en) Gas liquefaction employing an evaporating and gas expansion refrigerant cycles
JPS5880474A (en) Cryogenic cooling device
JPS59122868A (en) Cascade-turbo helium refrigerating liquefier utilizing neon gas
JPS6291757A (en) Cryogenic refrigerating method and device
JP4409828B2 (en) Gas liquefaction equipment
JP2003185280A (en) Refrigerating system and cold generation method
JP2574815B2 (en) Cryogenic refrigeration equipment
JP2617172B2 (en) Cryogenic cooling device
JPS61226904A (en) Very low temperature cooling method and very low temperature cooling device
JPS62280571A (en) Method and device for precooling liquefying refrigerator
JPS6317360A (en) Cryogenic refrigerating method
JPS62785A (en) Precooling method of cryogenic device
JPH04189B2 (en)
JP2602982B2 (en) Cooling system
JPS61250482A (en) Method of preventing heat intrusion of he liquefying refrigerator
JP2837096B2 (en) Cryogenic liquefaction equipment
JPH01150757A (en) Method and device for precooling cryogenic refrigerator
JPS62786A (en) Precooling method of cryogenic generator
JPS6240291Y2 (en)
Ganni et al. Operational Modes and Control Philosophy of the SSCL Magnet Test Lab (MTL) Cryogenic System
JPS63187066A (en) Cryogenic refrigerator
JPS63302280A (en) Method of liquefying helium
JP2574823B2 (en) Operation control method of cryogenic refrigeration refrigeration system
JPH0579716A (en) Very-low temperature refrigerator using auxiliary cold source
JPH0250381B2 (en)