JPS6291630A - Two cylinder rotary engine - Google Patents

Two cylinder rotary engine

Info

Publication number
JPS6291630A
JPS6291630A JP60229997A JP22999785A JPS6291630A JP S6291630 A JPS6291630 A JP S6291630A JP 60229997 A JP60229997 A JP 60229997A JP 22999785 A JP22999785 A JP 22999785A JP S6291630 A JPS6291630 A JP S6291630A
Authority
JP
Japan
Prior art keywords
cylinder
communication passage
working chamber
ventilation
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60229997A
Other languages
Japanese (ja)
Other versions
JPH0573901B2 (en
Inventor
Yoichi Yamazaki
洋一 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60229997A priority Critical patent/JPS6291630A/en
Publication of JPS6291630A publication Critical patent/JPS6291630A/en
Publication of JPH0573901B2 publication Critical patent/JPH0573901B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/04Charge admission or combustion-gas discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B2053/005Wankel engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To allow intake air heating under a high loading to be suspended with a high responsiveness as well as to reduce the pump loss under a low loading by providing a radiation section in a communication passage which passes through a intermediate housing, so as to form a ventilation heating device. CONSTITUTION:An in-line two cylinder rotary engine includes a communication passage 8 passing through an intermediate housing 3 which repeats communication between two cylinders 5a reciprocally in accordance with the planetary rotary motion of two rotors 6a and 6b, besides, a ventilation control valve 24 which opens when an engine runs under a low loading, is provided to the communication passage 8. In this constitution, a radiation section is provided in the communication passage 8 to form a ventilation heating device 49. And the ventilation heating device 49 allows one end of a heat pipe 10 to be arranged in the communication passage 8, and the other end of the pipe to be arranged in a cooling water passage 11 of said housing 3. This constitution enables the pump loss under a low loading to be reduced, and also enables intake heating under a high loading to be suspended with high responsiveness.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、吸気絞り弁により出力制御する直列二気筒バ
ンケル型ロータリエンジンに、二つのロータの遊星回路
電動に応じて、一方の気筒の圧縮行程中の作動室と他方
の気筒の吸入行程中の作動室との連通状態と、前記他方
の気筒の圧縮行程中の作動室と前記一方の気筒の吸入行
程中の作動室との連通状態とを交互に繰り返すインタメ
ディエイトハウジングを貫通する連通路を設け、該連通
路に高負荷時に閉じ、アイドリングを含む低負荷時に開
く通気制御弁を設けたロータリエンジンの改良に関する
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides an in-line two-cylinder Wankel rotary engine whose output is controlled by an intake throttle valve. The communication state between the working chamber of the cylinder and the working chamber of the other cylinder during the suction stroke, and the communication state between the working chamber of the other cylinder during the compression stroke and the working chamber of the one cylinder during the suction stroke are alternately changed. The present invention relates to an improvement in a rotary engine in which a communication passage is provided that penetrates an intermediate housing, and the communication passage is provided with a ventilation control valve that closes during high loads and opens during low loads including idling.

従来の技術 オットーサイクルエンジンにおいては、気筒内で発生す
る熱エネルギのすべてを軸出力として取り出すことはで
きず、その相当部分が熱損失、機械損失等の各種損失と
して失われ、燃費改善の障害となっている。この機械損
失の一つとして吸・排行程でのポンプ損失があり、この
ポンプ損失は、高負荷時よりも低負荷時に大きく、この
ため、特に中・低負荷での使用頻度の高い自動車用エン
ジンでは燃費向上が妨げられている。
In conventional Otto cycle engines, it is not possible to extract all of the thermal energy generated within the cylinders as shaft output, and a considerable portion of it is lost as various losses such as heat loss and mechanical loss, which becomes an obstacle to improving fuel efficiency. It has become. One of these mechanical losses is the pump loss during the suction and exhaust strokes, and this pump loss is larger at low loads than at high loads. This is hindering improvements in fuel efficiency.

一方、同一車両に行程容積の小さいエンジンを搭載する
と燃費が良くなることが知られているが、これは、エン
ジンを相対的に高負荷側で運転することになるため、ポ
ンプ損失が減少することが大きな理由の一つである。従
って、エンジンに、低負荷時のみに小行程容積エンジン
と同じ働きをさせれば、高負荷時の要求出力特性を損わ
ずに、低負荷時のポンプ損失を低減し、燃費を改善する
ことができると考えられる。
On the other hand, it is known that installing an engine with a small stroke volume in the same vehicle improves fuel efficiency, but this means that the engine is operated at a relatively high load, which reduces pump loss. is one of the major reasons. Therefore, if the engine performs the same function as a small stroke volume engine only at low loads, it is possible to reduce pump loss at low loads and improve fuel efficiency without impairing the required output characteristics at high loads. It is thought that it can be done.

つまり、低負荷時のポンプ損失を減少するには、吸入行
程での小絞り弁開度に基づく吸入負圧増大による絞り損
失を低減すればよい。このことは、往復動ピストンエン
ジンに限らず、回転ピストンエンジンであるバンケル型
ロータリエンジン(以下、単にロータリエンジンと記す
)でも同様で、このことに対処するためには、例えば、
特関昭58−172429号に記載されているように、
直列二気筒ロータリエンジンが、等間隔点火・作動と電
動部分の静的つり合いを確保する関係から、二つの気筒
のロータがエキセントリックシャフト回転角で180度
ごとに交互に同一位相を繰り返すことを利用して、二つ
のロータの遊星回転電動に応じて、一方の気筒の圧縮行
程中の作動室と他方の気筒の吸入行程中の作動室との連
通状態と、前記他方の気筒の圧縮行程中の作動室と前記
一方の気筒の吸入行程中の作動室との連通状態とを交互
に繰り返すインタメディエイトハウジングを貫通する連
通路を設け、該連通路に高負荷時に閉じ、アイドリング
を含む低負荷時に開く通気制御弁を設けたものが提案さ
れている。
In other words, in order to reduce the pump loss during low load, it is sufficient to reduce the throttling loss due to an increase in suction negative pressure based on the small throttle valve opening in the suction stroke. This is true not only for reciprocating piston engines but also for Wankel rotary engines (hereinafter simply referred to as rotary engines), which are rotary piston engines.To deal with this, for example,
As stated in Tokukan Sho 58-172429,
The in-line two-cylinder rotary engine uses the fact that the rotors of the two cylinders alternately repeat the same phase every 180 degrees at the eccentric shaft rotation angle, in order to ensure equal interval ignition and operation and static balance of the electric part. According to the planetary rotation electric power of the two rotors, the communication state between the working chamber of one cylinder during the compression stroke and the working chamber of the other cylinder during the suction stroke, and the operation during the compression stroke of the other cylinder are determined. A communication passage passing through the intermediate housing is provided that alternately communicates between the chamber and the working chamber during the intake stroke of the one cylinder, and the communication passage is closed at high load and opened at low load including idling. A device equipped with a ventilation control valve has been proposed.

この公如の構造によれば、高負荷時には通気制御弁が閉
じ、従来のエンジンと同様な出力特性を得ることができ
るとともに、低負荷時には、通気制御弁全開のときに、
連通路を介して圧縮行程中の作動室から吸入行程中の作
動室へ両作動室内圧力が等しくなるまで吸気が抜けると
仮定すれば、実質的な行程容積は圧縮行程中の作動室を
画成するロータが連通路を閉じたところから始まること
になるので、実質的に小行程容積エンジンとなり、従来
のエンジンより相対的に高負荷側で運転されることにな
るため、吸入行程での小絞り弁開度に基づく吸入負圧増
大による絞り損失は緩和され、ポンプ損失が低減するの
で燃費を改善することができるものと考えられる。
According to this known structure, the ventilation control valve closes when the load is high, making it possible to obtain the same output characteristics as a conventional engine, and at low loads, when the ventilation control valve is fully open,
Assuming that intake air escapes from the working chamber during the compression stroke to the working chamber during the suction stroke through the communication passage until the pressures in both working chambers become equal, the effective stroke volume defines the working chamber during the compression stroke. Since the rotor starts from the point where the communication passage is closed, it is essentially a small stroke volume engine, and it is operated at a relatively higher load than a conventional engine, so a small throttle during the suction stroke is required. It is thought that the throttling loss due to the increase in suction negative pressure based on the valve opening degree is alleviated, and the pump loss is reduced, so that fuel efficiency can be improved.

発明が解決しようとする問題点 しかしながら、上記提案はポンピング作用のみを考案し
たものであり、実機に適用した場合には燃焼の面で不都
合を生ずることが判明した。
Problems to be Solved by the Invention However, the above proposal devised only a pumping action, and it was found that when applied to an actual machine, it would cause problems in terms of combustion.

確かに低負荷時には小行程容積エンジンにはなるが、圧
縮上死点における作動室容積は常に一定であるため、小
行程容積エンジンになると同時に実質的には低圧縮比エ
ンジンにもなってしまう。
It is true that it becomes a small stroke volume engine at low load, but since the volume of the working chamber at compression top dead center is always constant, it becomes a small stroke volume engine and essentially a low compression ratio engine.

そのため、連通路を設けない従来エンジンと比較すると
、低負荷時には相対的に高負荷側で運転されるため、吸
気絞りによる吸入行程全行程における吸気の断熱膨張が
小さくなり作動室壁面からの吸熱量が少なくなることと
、これに加えて低圧縮比であることから、結果として、
圧縮上死点に至ったときの作動室内混合気の温度・圧力
が相対的に低くなる。
Therefore, compared to a conventional engine that does not have a communication passage, it is operated at a relatively high load when the load is low, so the adiabatic expansion of the intake air during the entire intake stroke due to the intake throttle is small, and the amount of heat absorbed from the wall surface of the working chamber is reduced. As a result, due to the lower compression ratio and the lower compression ratio,
The temperature and pressure of the air-fuel mixture in the working chamber when it reaches compression top dead center are relatively low.

火花点火エンジンにおいては、点火火花が飛んでから火
炎伝ぱを始めるまでの火炎伝ぱ遅れがあり、これは燃焼
室内混合気の温度・圧力に影響され、この温度・圧力が
低下すると、火炎伝ぱ遅れが大きくなるとともに遅れ時
間のばらつきも大きくなり、火炎伝ぱ始まり時期により
作動室内を火炎伝ぱするときの作動室位相が変化するの
で、質量燃焼速度にも影響を与え、火炎伝ぱ遅れが大き
い場合には燃焼後半の作動室内圧力および温度の低下に
よって火炎伝ぱが中絶する部分燃焼サイクルが発生し、
さらには、点火火花が飛んでも火炎伝ぱしない失火サイ
クルが発生するなど、サイクルごとのトルク変動が激し
くなり、円滑な運転状態が得られなくなる。これに対処
するには混合気の空燃比を小さく、すなわち混合気を濃
くするのが従来一般的手段であり、ポンプ損失が低減し
ても必ずしも燃費低減にはつながらない。
In a spark ignition engine, there is a delay in flame propagation from when the ignition spark flies until the flame propagation begins. This is affected by the temperature and pressure of the mixture in the combustion chamber, and when this temperature and pressure decrease, the flame propagation delay increases. As the delay time increases, the variation in the delay time also increases, and the phase of the working chamber when the flame propagates inside the working chamber changes depending on the timing of the start of flame propagation, which also affects the mass burning rate, and if the flame propagation delay is large, the combustion A partial combustion cycle occurs in which flame propagation is interrupted due to the decrease in pressure and temperature in the working chamber in the second half,
Furthermore, a misfire cycle occurs in which the flame does not propagate even when the ignition spark flies, resulting in severe torque fluctuations from cycle to cycle, making it difficult to obtain smooth operating conditions. To deal with this, the conventional common method is to reduce the air-fuel ratio of the air-fuel mixture, that is, to make the air-fuel mixture richer, and even if the pump loss is reduced, this does not necessarily lead to a reduction in fuel consumption.

問題点を解決するための手段 前記問題点を解決するための手段を実施例に対応する第
1〜5図を用いて以下に説明する。
Means for Solving the Problems Means for solving the problems described above will be explained below using FIGS. 1 to 5 corresponding to the embodiments.

本発明は、吸気絞り弁(図示せず)により出力制御する
直列二気筒ロータリエンジンに、二つのロータ6a,6
bの遊星回転電動に応じて、一方の気筒5aの圧縮行程
中の作動室と他方の気筒5bの吸入行程中の作動室との
連通状態と、前記他方の気筒5bの圧縮行程中の作動室
と前記一方の気筒5aの吸入行程中の作動室との連通状
態とを交互に繰り返すインタメディエイトハウジング3
を貫通する連通路8を設け、該連通路に高負荷時に閉じ
、アイドリングを含む低負荷時に開く通気制御弁24を
設けたロータリエンジンにおいて、放熱部13を該連通
路8中に設置した通気加熱装置49を設けた。実施例で
は、該通気加熱装置は、ヒートパイプ10の一方を連通
路8中に、他方をインタメディエイトハウジング3内の
冷却水通路11中に設置したものであり、前記通気制御
弁24は、吸気管(図示せず)負圧により作動するアク
チュエータ28と、それにより開動作する連通路8のヒ
ートパイプ10放熱部13の両側に配置された弁体9a
,9bとから構成されている。
The present invention provides an in-line two-cylinder rotary engine whose output is controlled by an intake throttle valve (not shown), and two rotors 6a, 6.
According to the planetary rotation electric power of b, the communication state between the working chamber of one cylinder 5a during the compression stroke and the working chamber of the other cylinder 5b during the suction stroke, and the working chamber of the other cylinder 5b during the compression stroke. and an intermediate housing 3 that alternately repeats a state of communication with the working chamber during the intake stroke of the one cylinder 5a.
In a rotary engine, a ventilation control valve 24 is provided in the communication passage, which closes at high load and opens at low load, including idling. A device 49 was provided. In the embodiment, the ventilation heating device has one of the heat pipes 10 installed in the communication path 8 and the other installed in the cooling water path 11 in the intermediate housing 3, and the ventilation control valve 24 is An actuator 28 operated by the negative pressure of an intake pipe (not shown), and a valve body 9a disposed on both sides of the heat pipe 10 of the communication path 8 which is opened by the actuator 28
, 9b.

作用 低負荷時、通気制御弁24が開き、一方の気筒5aの圧
縮行程中の作動室から混合気の一部が連通路8を介して
通気加熱装置49の放熱部13により加熱され、他方の
気筒5bの吸入行程中の作動室の低温の混合気中に排出
拡散され混合気の温度を上昇させる。そして、ロータ6
a,6bの回転が進行すると、今度は、他方の気筒5b
の吸入行程にあった作動室が圧縮行程になり、該作動室
から混合気の一部が連通路8を介して通気加熱装置49
の放熱部13により加熱され、一方の気筒5aの後続す
る吸入行程中の作動室の低温の混合気中に排出拡散され
混合気の温度を上昇させる。
Operation When the load is low, the ventilation control valve 24 opens, and part of the air-fuel mixture from the working chamber during the compression stroke of one cylinder 5a is heated by the heat radiation part 13 of the ventilation heating device 49 through the communication passage 8, It is discharged and diffused into the low-temperature air-fuel mixture in the working chamber during the intake stroke of the cylinder 5b, raising the temperature of the air-fuel mixture. And rotor 6
As the rotation of cylinders a and 6b progresses, the other cylinder 5b
The working chamber that was in the suction stroke enters the compression stroke, and a part of the air-fuel mixture from the working chamber passes through the communication passage 8 to the ventilation heating device 49.
It is heated by the heat radiation part 13 of the cylinder 5a, and is discharged and diffused into the low-temperature air-fuel mixture in the working chamber during the subsequent intake stroke of one cylinder 5a, raising the temperature of the air-fuel mixture.

この二つの動作をロータ6a,6bの回転に応じて、エ
キセントリックシャフト(図示せず)回転角で180度
ごとに交互に繰り返す。このとき、加熱により混合気が
膨張することと、それにより通気加熱装置49を設けな
い場合と同じ混合気充てん量にするのには吸気絞り弁開
度を大きくしなければならないことから、吸入負圧に基
づくポンプ損失はさらに低減する。これにより、圧縮行
程中の作動室を画成するロータ6aまたは6bが連通路
8を閉じたときの作動室内混合気の温度・圧力は高くな
り、圧縮上死点付近における混合気の温度・圧力も上昇
する。これに加えて、連通路8内を通る混合気は加熱に
より燃焼の気化が促進され混合気生成能力が向上するこ
とと、前記吸入負圧の低減により、吸・排ポートのオー
バラップ時に吸気ポート7a,7b内に吸引されて再循
環する排気の量が減少することも手伝って、混合気を濃
くしなくても、火炎伝ぱ遅れが小さくなり、そのばらつ
きも小さくなり、また、燃焼も安定するため、サイクル
ごとのトルク変動が小さくなり円滑な運転状態が得られ
る。
These two operations are alternately repeated every 180 degrees at an eccentric shaft (not shown) rotation angle in accordance with the rotation of the rotors 6a and 6b. At this time, the air-fuel mixture expands due to heating, and the opening of the intake throttle valve must be increased in order to achieve the same amount of air-fuel mixture as when the ventilation heating device 49 is not provided. Pressure-based pumping losses are further reduced. As a result, when the rotor 6a or 6b that defines the working chamber during the compression stroke closes the communication passage 8, the temperature and pressure of the air-fuel mixture in the working chamber become high, and the temperature and pressure of the air-fuel mixture near the compression top dead center increase. will also rise. In addition, the air-fuel mixture passing through the communication passage 8 is heated to promote vaporization of combustion, improving the air-fuel mixture generation ability, and by reducing the suction negative pressure, the intake port is opened when the intake and exhaust ports overlap. Thanks to the reduction in the amount of exhaust gas that is sucked into 7a and 7b and recirculated, the flame propagation delay becomes smaller and its dispersion becomes smaller, and combustion becomes more stable, even without enriching the air-fuel mixture. As a result, torque fluctuations from cycle to cycle are reduced, resulting in smooth operating conditions.

また、高負荷時には通気制御弁24が閉じ、二つの気筒
5a,5b間での圧縮行程中の作動室から吸入行程中の
作動室への連通路8を介しての加熱された混合気のやり
取りを阻止するので、応答性良く吸気加熱を停止するこ
とができる。
In addition, when the load is high, the ventilation control valve 24 is closed, and the heated air-fuel mixture is exchanged between the two cylinders 5a and 5b via the communication passage 8 from the working chamber during the compression stroke to the working chamber during the suction stroke. Therefore, intake air heating can be stopped with good responsiveness.

実施例 第1〜5図に基づいて実施例について説明すると、トロ
コイド状内周面1を有する二つのロータハウジング2a
,2bと、該ロータハウジング間に位置するインタメデ
ィエイトハウジング3と、ロータハウジング2a,2b
のインタメディエイトハウジング3とは反対側に位置す
る二つのサイドハウジング(図示せず)とをテンション
ボルト4で締め付けて二つの気筒5a,5bを構成し、
該二つの気筒中をエキセントリックシャフト(図示せず
)に支承されたロータ6a,6bがエキセントリックシ
ャフト回転角で180度の位相差をもって遊星回転電動
し、該ロータ6a,6bのまわりに画成される三つずつ
の作動室が吸入、圧縮、膨張、排気の四行程を順次行う
Embodiment An embodiment will be described based on FIGS. 1 to 5. Two rotor housings 2a each having a trochoidal inner peripheral surface 1 are used.
, 2b, an intermediate housing 3 located between the rotor housings, and rotor housings 2a, 2b.
Two side housings (not shown) located on the opposite side of the intermediate housing 3 are tightened with tension bolts 4 to form two cylinders 5a and 5b,
In the two cylinders, rotors 6a and 6b supported by an eccentric shaft (not shown) are planetarily rotated with a phase difference of 180 degrees at the eccentric shaft rotation angle, and are defined around the rotors 6a and 6b. Three working chambers sequentially perform four strokes: suction, compression, expansion, and exhaust.

前記インタメディエイトハウジング3の両側面には吸気
ポート7a,7bが開口し、該吸気ポートには吸気管(
図示せず)が接続され気筒5a,5bへの吸気通路をな
しており、該吸気管上流にはスロットルボデー(図示せ
ず)が接続され、該スロットルボデー内の吸気通路には
出力制御するための吸気絞り弁(図示せず)が設けられ
ている。
Intake ports 7a and 7b are opened on both sides of the intermediate housing 3, and an intake pipe (
(not shown) is connected to form an intake passage to the cylinders 5a and 5b, and a throttle body (not shown) is connected upstream of the intake pipe, and the intake passage within the throttle body is connected to the intake passage for controlling output. An intake throttle valve (not shown) is provided.

吸気ポート7a,7b近傍には燃料噴射装置のインジェ
クタ(図示せず)が設置され、空気の充てん量に応じて
該吸気ポート内に燃料を噴射する。
An injector (not shown) of a fuel injection device is installed near the intake ports 7a and 7b, and injects fuel into the intake ports depending on the amount of air filled.

吸気ポート7a,7bより設定値遅れてロータ6a,6
bにより閉じられる位置に連通路8がインタメディエイ
トハウジング3を貫通して、ロータ6a,6bの回転に
応じて、一方の気筒5aの圧縮行程中の作動室と他方の
気筒5bの吸入行程中の作動室との連通状態と、前記他
方の気筒5bの圧縮行程中の作動室と前記一方の気筒5
aの吸入行程中の作動室との連通状態とを交互に繰り返
すように設けられている。
The rotors 6a, 6 are delayed by the set value from the intake ports 7a, 7b.
A communication passage 8 passes through the intermediate housing 3 in the position closed by b, and in response to the rotation of the rotors 6a and 6b, the working chamber of one cylinder 5a is in the compression stroke and the other cylinder 5b is in the suction stroke. and the communication state between the working chamber and the one cylinder 5 during the compression stroke of the other cylinder 5b.
The state of communication with the working chamber during the suction stroke of a is alternately repeated.

該連通路は8の位置設定の詳細は、ロータ6a,6bは
インタメディエイトハウジング3とはロータ6a,6b
側面の半径方向内方のランド部(図示せず)により当接
し、他の部分は非接触であるので、連通路8は実質的に
はロータ6a,6b輪郭に沿ってロータ側面に装着され
たサイドシール(図示せず)により開閉されるので、連
通路8の開き時期は、該連通路が開臨しようとする作動
室のトレーリング側に位置するアペックスシール(図示
せず)がトロコイド状内周面1に開口する排気ポート(
図示せず)を閉じてからサイドシールによって開かれる
ように設定すると、連通路8を介しての排気の持ち込み
を抑制することができ効果的である。
The details of the position setting of the communicating path 8 are as follows: The rotors 6a, 6b are different from the intermediate housing 3.
The communication path 8 is attached to the rotor side surface substantially along the contours of the rotors 6a and 6b, since it is in contact with the radially inward land portion (not shown) of the side surface and is not in contact with the other portions. Since it is opened and closed by a side seal (not shown), the opening timing of the communication passage 8 is determined when the apex seal (not shown) located on the trailing side of the working chamber where the communication passage is about to open is in the trochoidal shape. Exhaust port opening on peripheral surface 1 (
(not shown) is closed and then opened by a side seal, it is effective to suppress exhaust gas from being brought in through the communication path 8.

また、連通路8の閉じ時期は、低回転高負荷時の、閉じ
ている後述する弁体9a,9bのすきまからの圧縮漏れ
と、サイドシールが連通路8上を通過するときの圧縮行
程作動室からロータ6a、6b側面とインタメディエイ
トハウジング3との間隙への吹き抜け圧縮漏れとによる
出力低下が許容値内に収まるように設定する。また、連
通路8はトロコイド状内周面1に近い位置にするほど閉
じるときにサイドシールが通過する時間が短かくなり効
果的である。
In addition, the timing of closing the communication passage 8 is determined by compression leakage from the gap between closed valve bodies 9a and 9b, which will be described later, at low rotation speeds and high loads, and compression stroke operation when the side seal passes over the communication passage 8. The setting is made so that the reduction in output due to compression leakage from the chamber to the gap between the side surfaces of the rotors 6a, 6b and the intermediate housing 3 is within an allowable value. Further, the closer the communicating path 8 is located to the trochoidal inner circumferential surface 1, the shorter the time it takes for the side seal to pass when closing, which is more effective.

このようにして設定した一例が第1図であり、ロータ6
bが連通路8を開き始めてからロータ6aが連通路8を
閉じるまでの間、つまり、連通路8が連通している間の
ロータ6a、6bの位相を示している。ただし、図面が
煩雑化するのを避けるためロータ6a、6b輪郭により
開閉されるものとして示してある。
An example of setting in this way is shown in Fig. 1, where the rotor 6
b shows the phase of the rotors 6a and 6b from the time when the communication path 8 begins to open until the rotor 6a closes the communication path 8, that is, while the communication path 8 is communicating. However, in order to avoid complicating the drawing, the rotors 6a and 6b are shown as being opened and closed according to their outlines.

ロータリエンジンは作動室が回転するため作動室のトレ
ーリング側に燃料液粒が集まりやすく、この部分が過濃
になってしまうが、図示のように連通路8をロータ6a
,6bのリーディング側で開き、トレーリング側で閉じ
るような位置にすると、燃料液粒を連通路8の後述する
ヒートパイプ10放熱部13で加熱して気化を促進し、
吸入行程中の作動室の中央部に排出するので混合気生成
能力を高め作動室内混合気の均質化を助長するので効率
よく燃焼させることができる。また、吸入行程中の作動
室内に連通路8を介して加熱されて入ってきた混合気と
は別の部分の混合気を圧縮行程になったときに別の気筒
に排出するので混合気の加熱効率が向上する。
In a rotary engine, since the working chamber rotates, fuel droplets tend to collect on the trailing side of the working chamber, and this area becomes overly concentrated.
, 6b are opened on the leading side and closed on the trailing side, the fuel droplets are heated by the heat pipe 10 heat dissipation section 13 (described later) in the communication path 8 to promote vaporization.
Since it is discharged to the center of the working chamber during the intake stroke, the air-fuel mixture generation ability is increased and the homogenization of the air-fuel mixture in the working chamber is promoted, so that efficient combustion can be achieved. In addition, a portion of the air-fuel mixture that is heated and enters the working chamber through the communication passage 8 during the suction stroke is discharged to another cylinder during the compression stroke, so that the air-fuel mixture is heated. Increased efficiency.

以上のような位置設定の連通路8がロータ6a、6bに
より画成される作動室を通過しているときの両作動室容
積のエキセントリックシャフト回転角に対する変化を示
したものが第5図である。一方のロータ6aまたは6b
が連通路8を開くときのエキセントリックシャフト回転
角のところで両方の作動室容積変化を示す曲線に接線c
,dを引いてみると、連通路8を開くところの接線dの
方が接線cよりも立っており、このことはロータ6aま
たは6bが連通路8を開く側の吸入行程中の作動室のほ
うが吸入行程終期の作動室より容積増大率が大きく圧力
降下が大きいことを示しており、両方の作動室が吸入行
程にあるにもかかわらず、連通路8を開いた瞬間からそ
の作動室方向に通気は流れ、エキセントリックシャフト
回転角で180度ごとに逆方向に向きを変えて流れる。
FIG. 5 shows the change in the volume of both working chambers with respect to the rotation angle of the eccentric shaft when the communicating path 8 with the above-determined position passes through the working chamber defined by the rotors 6a and 6b. . One rotor 6a or 6b
A tangent line c is drawn to the curve showing the volume change of both working chambers at the eccentric shaft rotation angle when the communicating path 8 is opened.
, d, the tangent d where the communication passage 8 is opened is higher than the tangent c, which means that the rotor 6a or 6b is in the working chamber during the suction stroke when the communication passage 8 is opened. This shows that the volume increase rate is larger and the pressure drop is larger in the working chamber than in the working chamber at the end of the suction stroke, and even though both working chambers are in the suction stroke, from the moment the communication passage 8 is opened, the The air flows and flows in opposite directions every 180 degrees with the eccentric shaft rotation angle.

次に、通気加熱装置49の構成について述べると、連通
路8の軸方向中央部に交わるようにインタメディエイト
ハウジング3外周から冷却水通路11を通っておよそ半
径方向にヒートパイプ挿入孔12を設け、該ヒートパイ
プ挿入孔には、連通路8内に露出する放熱部13にフィ
ン14を有するヒートパイプ10が挿入される。該ヒー
トパイプにはヒートパイプ挿入孔12の小径部15に合
致する大径部16と、段部17に当接するフランジ部1
8が設けられている。また、ヒートパイプ挿入孔12の
段部17より外方の大径部はねじ穴19になっており、
ヒートパイプ10のフランジ部18より上方をその上方
端部付近が冷却水通路11中に露出するように挿入する
ことのできる中空を有する中空ボルト20を前記ねじ穴
19に締め込み、フランジ部18を段部17との間で締
め付けて冷却水が連通路8内に漏れないようにしてある
。そして、これらの加工・組立ての便宜上設けられたね
じ穴21には六角穴付きボルト22をガスケット23を
介して締め込み、冷却水が外部に漏れないようにしてあ
る。
Next, regarding the configuration of the ventilation heating device 49, a heat pipe insertion hole 12 is provided approximately radially from the outer periphery of the intermediate housing 3 through the cooling water passage 11 so as to intersect with the axial center of the communication passage 8. A heat pipe 10 having fins 14 in the heat dissipating portion 13 exposed in the communication path 8 is inserted into the heat pipe insertion hole. The heat pipe has a large diameter portion 16 that matches the small diameter portion 15 of the heat pipe insertion hole 12, and a flange portion 1 that abuts the step portion 17.
8 is provided. Further, the large diameter portion of the heat pipe insertion hole 12 outward from the stepped portion 17 is a screw hole 19.
A hollow bolt 20 having a hollow space that can be inserted above the flange portion 18 of the heat pipe 10 so that its upper end portion is exposed into the cooling water passage 11 is tightened into the screw hole 19, and the flange portion 18 is tightened. It is tightened with the stepped portion 17 to prevent the cooling water from leaking into the communication path 8. Hexagon socket head bolts 22 are tightened through gaskets 23 into screw holes 21 provided for convenience of processing and assembly, to prevent cooling water from leaking to the outside.

24は連通路8の作動室側開口部25a,25bに近接
して高負荷時に閉じ、アイドリングを含む低負荷時に開
く通気制御弁である。
Reference numeral 24 denotes a ventilation control valve located close to the working chamber side openings 25a, 25b of the communication passage 8, which closes when the load is high and opens when the load is low, including idling.

該通気制御弁は、連通路8のヒートパイプ10の放熱部
13の両側に交わるように設けられた弁体挿入孔26a
、26bに回動自在に挿入された連通路8の一部を担う
連通孔27a,27bを有する円柱状の弁体9a,9b
と、該弁体を開閉駆動するインタメディエイトハウジン
グ3上部に固定されたアクチュエータ28とからなる。
The ventilation control valve has a valve body insertion hole 26a provided so as to cross both sides of the heat dissipation part 13 of the heat pipe 10 of the communication path 8.
, 26b are rotatably inserted into cylindrical valve bodies 9a, 9b having communication holes 27a, 27b serving as part of the communication path 8.
and an actuator 28 fixed to the upper part of the intermediate housing 3 for driving the valve body to open and close.

該アクチュエータは吸気管負圧で作動するように構成さ
れており、29はケース30内を圧力室31と大気圧室
32とに区画するダイヤフラム、33は該ダイヤフラム
に一端を固定されガイド34に支持されたロッド、35
は圧力室31に縮装されたスプリング、36は圧力室3
1への吸気管圧力導入管である。
The actuator is configured to operate with negative pressure in the intake pipe, and 29 is a diaphragm that divides the inside of the case 30 into a pressure chamber 31 and an atmospheric pressure chamber 32, and 33 has one end fixed to the diaphragm and supported by a guide 34. rod, 35
is a spring compressed into the pressure chamber 31, and 36 is the pressure chamber 3.
This is an intake pipe pressure introduction pipe to 1.

そして、上記アクチュエータ28のロッド33の先端は
連接プレート37a,37b、レバー38a,38bを
介してシャフト39a,39bに連結され、該シャフト
は弁体9a,9bの上下動を規制するスペーサ管40a
,40bを貫通して先端が弁体9a,9bのシャフト挿
入孔41a、41bにピン42a,42bにより連結さ
れている。
The tip of the rod 33 of the actuator 28 is connected to shafts 39a, 39b via connecting plates 37a, 37b and levers 38a, 38b, and the shaft is connected to a spacer tube 40a that restricts the vertical movement of the valve bodies 9a, 9b.
, 40b, and their tips are connected to shaft insertion holes 41a, 41b of the valve bodies 9a, 9b by pins 42a, 42b.

さらに、43a,43bはシャフト39a,39bと、
インタメディエイトハウジング3上部にガスケット44
をはさんでボルト45により固定されたカバー46との
間に介装されたシールであり、ネジ47によりカバー4
6に締結されたシール押え部材48a,48bにより固
定されている。
Furthermore, 43a and 43b are shafts 39a and 39b,
Gasket 44 on top of intermediate housing 3
This is a seal interposed between the cover 46 which is fixed with bolts 45 across the cover 46 with screws 47.
It is fixed by seal presser members 48a and 48b fastened to 6.

上記アクチュエータ28の圧力室31に導入される吸気
管圧力はエンジン負荷に対応して変化するものであって
、負圧が設定値以上になる低負荷時には、ダイヤフラム
29はスプリング35の押圧力に抗して圧力室31側に
引き寄せられ、ロッド33の引込み動作によりシャフト
39a,39bを介して弁体9a,9bを開回動し、連
通路8を連通し始める。尚、第4図には弁体9a,9b
が全開している状態を示してある。
The intake pipe pressure introduced into the pressure chamber 31 of the actuator 28 changes depending on the engine load, and when the load is low and the negative pressure exceeds a set value, the diaphragm 29 resists the pressing force of the spring 35. The rod 33 is pulled toward the pressure chamber 31, and the retracting action of the rod 33 causes the valve bodies 9a, 9b to rotate open via the shafts 39a, 39b, and the communication passage 8 begins to communicate. In addition, valve bodies 9a and 9b are shown in FIG.
is shown fully open.

以上のように通気制御弁24が開いているとき連通路8
を通る通気はヒートパイプ10の放熱部13により加熱
され吸入行程中の作動室に排出される。ヒートパイプは
小さな温度差でも多くの熱を伝えることができ、見掛け
の熱伝導率が銅の100倍に達するものもあり、エンジ
ン冷却水のような比較的低温の熱源からでも通気に大量
の熱を放出することができる。言い換えれば、冷却水温
に近い温度に通気を加熱することができるのである。
As described above, when the ventilation control valve 24 is open, the communication passage 8
The air passing through is heated by the heat radiation part 13 of the heat pipe 10 and discharged into the working chamber during the suction stroke. Heat pipes can transfer a large amount of heat even with a small temperature difference, and some have an apparent thermal conductivity of up to 100 times that of copper, allowing large amounts of heat to be transferred through ventilation even from a relatively low-temperature heat source such as engine coolant. can be released. In other words, the ventilation can be heated to a temperature close to that of the cooling water.

この実施例ではインタメディエイトハウジング3の連通
路8近くの冷却水通路11中にヒートパイプ10の吸熱
部を設置しており、この部分の冷却水通路11にはエン
ジン各部の温度を平均化させるために冷却水加熱側で加
熱された冷却水を通しており、しかも、エンジン温度を
適正に保つための冷却水温度制御手段により制御された
温度の冷却水が通る部分でもある。該冷却水温度制御手
段としては、一般に、エンジンにより加熱された冷却水
のラジエータを通さないでのエンジン内への再循環量を
サーモスタットにより自動制御する手法がとられている
In this embodiment, the heat absorbing part of the heat pipe 10 is installed in the cooling water passage 11 near the communication passage 8 of the intermediate housing 3, and the temperature of each part of the engine is averaged in the cooling water passage 11 in this part. Therefore, the coolant heated on the coolant heating side passes through it, and it is also the part through which the coolant whose temperature is controlled by the coolant temperature control means to keep the engine temperature at an appropriate level passes through. Generally speaking, the coolant temperature control means uses a thermostat to automatically control the amount of coolant heated by the engine that is recirculated into the engine without passing through the radiator.

以上のような構成によれば、エンジン始動時の通気加熱
の立ち上がり特性が向上する。従って、ヒートパイプ1
0の吸熱部は、冷却水通路の冷却水加熱側を含むそれよ
り下流で、しかも、エンジン温度を適正に保つための冷
却水温度制御手段により冷却水温度が制御される部分中
ならどこでもよく、必要によっては冷却水加熱側に設置
してもよい。
According to the above configuration, the start-up characteristics of ventilation heating at the time of starting the engine are improved. Therefore, heat pipe 1
The heat absorption part of 0 may be anywhere downstream of the coolant heating side of the coolant passage, including the coolant heating side, and in the part where the coolant temperature is controlled by the coolant temperature control means for maintaining the engine temperature appropriately. If necessary, it may be installed on the cooling water heating side.

次に、吸気管負圧が設定値以下になった高負荷時には、
スプリング35の押圧力によってロッド33が突出し、
弁体9a,9bを閉回動し、連通をしゃ断すると同時に
、放熱部13を両気筒5a,5bの作動室から隔離して
しまう。
Next, at high loads when the intake pipe negative pressure is below the set value,
The rod 33 protrudes due to the pressing force of the spring 35,
When the valve bodies 9a and 9b are rotated closed to cut off communication, the heat radiating section 13 is isolated from the working chambers of both cylinders 5a and 5b.

以上のようなものにおいて、エンジン始動時の冷却水温
度が低いときには十分な通気加熱を行うことができない
ので、吸気管圧力導入管36の中途に、圧力室31に導
入する圧力を必要に応じて吸気管負圧から大気圧に切り
換える三方ソレノイド弁(図示せず)を介設し、水温セ
ンサ(図示せず)により水温を検出し、設定温度以下時
に圧力室31に導入する圧力を前記三方ソレノイド弁に
より吸気管負圧から大気圧に切り換えて通気制御弁24
を閉じておく。
In the above system, when the coolant temperature is low at the time of starting the engine, sufficient ventilation heating cannot be performed, so the pressure introduced into the pressure chamber 31 is adjusted midway through the intake pipe pressure introduction pipe 36 as necessary. A three-way solenoid valve (not shown) is installed to switch from negative pressure in the intake pipe to atmospheric pressure, and the water temperature is detected by a water temperature sensor (not shown), and the pressure introduced into the pressure chamber 31 when the temperature is lower than the set temperature is controlled by the three-way solenoid valve. The valve switches from the intake pipe negative pressure to atmospheric pressure and the ventilation control valve 24
Keep it closed.

さらに、自動車用エンジンの場合にはエンジンブレーキ
効果を向上させるため、吸気絞り弁開度とエンジン回転
数から減速状態を検出し、この場合にも上記と同じよう
にして通気制御弁24を閉じる。
Further, in the case of an automobile engine, in order to improve the engine braking effect, the deceleration state is detected from the intake throttle valve opening and the engine rotational speed, and in this case, the ventilation control valve 24 is closed in the same manner as described above.

また、必要とあらば、アイドリングまたはアイドリング
を除く低負荷時のみに通気制御弁24を開くようにして
もよい。
Furthermore, if necessary, the ventilation control valve 24 may be opened only when the vehicle is idling or when the load is low, excluding idling.

尚、通気加熱装置49としてはディーゼルエンジン始動
用のグロープラグの如き電気加熱によるものであっても
よい。
The ventilation heating device 49 may be an electric heating device such as a glow plug for starting a diesel engine.

また、連通路8径を大きくしたい場合には、通気制御弁
24を、弁体挿入孔26a,26b内で円柱体を該弁体
挿入孔方向に抜き差しする形式のものにすれば、弁体径
を小さくすることができる。
In addition, if you want to increase the diameter of the communication passage 8, if the ventilation control valve 24 is of a type in which the cylindrical body is inserted and removed in the direction of the valve body insertion holes 26a and 26b, the valve body diameter can be increased. can be made smaller.

発明の効果 以上に説明したように本発明によれば、吸気絞り弁によ
り出力制御する直列二気筒ロータリエンジンに、二つの
ロータの遊星回転電動に応じて、一方の気筒の圧縮行程
中の作動室と他方の気筒の吸入行程中の作動室との連通
状態と、前記他方の気筒の圧縮行程中の作動室と前記一
方の気筒の吸入行程中の作動室との連通状態とを交互に
繰り返すインタメディエイトハウジングを貫通する連通
路を設け、該連通路に高負荷時に閉じ、アイドリングを
含む低負荷時に開く通気制御弁を設けたロータリエンジ
ンにおいて、放熱部を該連通路中に設置した通気加熱装
置を設けたことにより、低負荷時に、ポンプ損失をさら
に低減することができるとともに、実質的に低圧縮比エ
ンジンと化してしまうことに基因する不都合を解消する
ことができ、燃費改善が可能になり、また、高負荷時に
は応答性良く吸気加熱を停止することができるので、従
来の吸気管加熱に比較して、充てん効率の低下やノッキ
ング発生などの出力性能に対する熱的悪影響をはるかに
小さくできる効果がある。
Effects of the Invention As explained above, according to the present invention, in an in-line two-cylinder rotary engine whose output is controlled by an intake throttle valve, the working chamber is adjusted in response to the planetary rotation electric power of the two rotors during the compression stroke of one cylinder. An interface that alternately repeats a state of communication between the working chamber of the other cylinder during the suction stroke and a state of communication between the working chamber of the other cylinder during the compression stroke and the working chamber of the one cylinder during the suction stroke. A ventilation heating device in which a heat dissipation part is installed in a rotary engine in which a communication passage passing through a mediate housing is provided, and a ventilation control valve is provided in the communication passage, which closes at high load and opens at low load, including idling. By providing this, it is possible to further reduce pump loss at low loads, and it is also possible to eliminate the disadvantages caused by essentially turning into a low compression ratio engine, making it possible to improve fuel efficiency. In addition, since intake air heating can be stopped with good response during high loads, compared to conventional intake pipe heating, it has the effect of significantly reducing negative thermal effects on output performance, such as a reduction in charging efficiency and the occurrence of knocking. There is.

さらに、通気制御弁が、連通路両端の開口部と、通気加
熱装置の連通路中に設置した放熱部との間で開閉するも
のである場合には、前記出力性能に対する熱的悪影響を
ほとんど無くすることができる。
Furthermore, if the ventilation control valve opens and closes between the openings at both ends of the communication path and the heat radiation section installed in the communication path of the ventilation heating device, there is almost no adverse thermal effect on the output performance. can do.

また、エンジンが水冷式のものであり、通気加熱装置が
、ヒートパイプの一方を連通路中に、他方を冷却水通路
の冷却水加熱側を含むそれより下流で、しかも、エンジ
ン温度を適正に保つための冷却水温度制御手段により冷
却水温度が制御される部分中に設置したものである場合
には、冷却水が冷却水温度制御手段により温度制御され
るので、通気加熱装置に特別な温度制御手段を必要とせ
ず簡素化でき、しかも、エンジン始動時の通気加熱の立
ち上がり特性が良好になる。また、ヒートパイプの放熱
部は冷却水温度以上にはならず、通気制御弁の動作に支
障をきたすことはない。そして、ヒートパイプは見掛け
の熱伝導率が高く、燃焼により加熱された冷却水から吸
熱して通気に大量の熱を放出し加熱することができるの
で、低負荷時には、ラジエータから大気中に拡散される
損失熱の一部を有効に回収することになり、冷却損失の
大きいロータリエンジンにおいて熱効率の改善につなが
る。
In addition, if the engine is a water-cooled type, the ventilation heating device has one side of the heat pipe in the communication passage and the other side in the cooling water passage downstream including the cooling water heating side, and furthermore, the ventilation heating device maintains the engine temperature appropriately. If the device is installed in a part where the cooling water temperature is controlled by a cooling water temperature control means to maintain the cooling water temperature, the temperature of the cooling water is controlled by the cooling water temperature control means. It can be simplified without requiring a control means, and the start-up characteristics of ventilation heating at the time of starting the engine can be improved. Further, the heat dissipation portion of the heat pipe does not exceed the temperature of the cooling water, and does not interfere with the operation of the ventilation control valve. Heat pipes have high apparent thermal conductivity and can absorb heat from the cooling water heated by combustion and release a large amount of heat into the ventilation. This effectively recovers a portion of the lost heat, leading to improved thermal efficiency in rotary engines that suffer from large cooling losses.

また、前記ヒートパイプがインタメディエイトハウジン
グに内装されている場合には、エンジン製造時および分
解修理時に一体部品として扱えるので非常に合理的であ
るとともに、ヒートパイプが外部に露出しないので損傷
を防ぐことができ信頼性が向上する。
Furthermore, if the heat pipe is housed inside the intermediate housing, it is very rational because it can be treated as an integral part during engine manufacturing and overhaul, and damage is prevented because the heat pipe is not exposed to the outside. It can improve reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明一実施例ロータリエンジンの要部を示す
軸直角断面一部破砕断面図、第2図は第1図のA−A断
面図、第3図は第1図の上面図、第4図は第1図のB−
B断面図、第5図は本発明一実施例ロータリエンジンに
おいて連通路が二つの気筒の作動室を連通しているとき
の両作動室容積のエキセントリックシャフト回転角に対
する変化を示す図である。
FIG. 1 is a partially exploded sectional view at right angles to the axis showing the main parts of a rotary engine according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line AA in FIG. 1, and FIG. 3 is a top view of FIG. Figure 4 is B- in Figure 1.
B sectional view, FIG. 5 is a diagram showing a change in the volume of both working chambers with respect to the eccentric shaft rotation angle when a communication passage communicates the working chambers of two cylinders in a rotary engine according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 吸気絞り弁により出力制御する直列二気筒バンケル
型ロータリエンジンに、二つのロータの遊星回転電動に
応じて、一方の気筒の圧縮行程中の作動室と他方の気筒
の吸入行程中の作動室との連通状態と、前記他方の気筒
の圧縮行程中の作動室と前記一方の気筒の吸入行程中の
作動室との連通状態とを交互に繰り返すインタメディエ
イトハウジングを貫通する連通路を設け、該連通路に高
負荷時に閉じ、アイドリングを含む低負荷時に開く通気
制御弁を設けたロータリエンジンにおいて、放熱部を該
連通路中に設置した通気加熱装置を設けたことを特徴と
する二気筒ロータリエンジン。 2 通気制御弁が、連通路両端の開口部と、通気加熱装
置の連通路中に設置した放熱部との間で開閉するもので
ある特許請求の範囲第1項記載の二気筒ロータリエンジ
ン。 3 エンジンが水冷式のものであり、通気加熱装置が、
ヒートパイプで一方を連通路中に、他方に冷却水通路の
冷却水加熱側を含むそれより下流で、しかも、エンジン
温度を適正に保つための冷却水温度制御手段により冷却
水温度が制御される部分中に設置したものである特許請
求の範囲第1項または第2項記載の二気筒ロータリエン
ジン。 4 ヒートパイプがインタメディエイトハウジングに内
装されている特許請求の範囲第3項記載の二気筒ロータ
リエンジン。
[Scope of Claims] 1. In an in-line two-cylinder Wankel rotary engine whose output is controlled by an intake throttle valve, the working chamber during the compression stroke of one cylinder and the intake of the other cylinder according to the planetary rotation electric power of the two rotors. Penetrating through an intermediate housing that alternately communicates with the working chamber during the stroke, and communicates with the working chamber of the other cylinder during the compression stroke and the working chamber of the one cylinder during the suction stroke. A rotary engine having a communication passage and a ventilation control valve in the communication passage that closes during high loads and opens during low loads including idling, characterized in that a ventilation heating device is provided in which a heat dissipation part is installed in the communication passage. A two-cylinder rotary engine. 2. The two-cylinder rotary engine according to claim 1, wherein the ventilation control valve opens and closes between the openings at both ends of the communication path and a heat radiation section installed in the communication path of the ventilation heating device. 3 The engine is water-cooled and the ventilation heating device is
The cooling water temperature is controlled by a heat pipe in the communication passage on one side, and downstream including the cooling water heating side of the cooling water passage on the other side, and by a cooling water temperature control means to maintain the engine temperature at an appropriate level. A two-cylinder rotary engine according to claim 1 or 2, which is installed in a section. 4. The two-cylinder rotary engine according to claim 3, wherein the heat pipe is housed in the intermediate housing.
JP60229997A 1985-10-17 1985-10-17 Two cylinder rotary engine Granted JPS6291630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60229997A JPS6291630A (en) 1985-10-17 1985-10-17 Two cylinder rotary engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60229997A JPS6291630A (en) 1985-10-17 1985-10-17 Two cylinder rotary engine

Publications (2)

Publication Number Publication Date
JPS6291630A true JPS6291630A (en) 1987-04-27
JPH0573901B2 JPH0573901B2 (en) 1993-10-15

Family

ID=16900982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60229997A Granted JPS6291630A (en) 1985-10-17 1985-10-17 Two cylinder rotary engine

Country Status (1)

Country Link
JP (1) JPS6291630A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153525A (en) * 1985-12-27 1987-07-08 Mazda Motor Corp Suction device for rotary piston engine
JPS6371520A (en) * 1986-09-13 1988-03-31 Mazda Motor Corp Intake device for engine
JPS6371519A (en) * 1986-09-13 1988-03-31 Mazda Motor Corp Intake device for engine
JPS6371517A (en) * 1986-09-13 1988-03-31 Mazda Motor Corp Intake device for engine
JPS6371521A (en) * 1986-09-13 1988-03-31 Mazda Motor Corp Intake device for engine
US4942414A (en) * 1987-09-17 1990-07-17 Asahi Kogaku Kogyo Kabushiki Kaisha Front conversion adapter for lens shutter type of zoom lens camera

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153525A (en) * 1985-12-27 1987-07-08 Mazda Motor Corp Suction device for rotary piston engine
JPH0656109B2 (en) * 1985-12-27 1994-07-27 マツダ株式会社 Intake device for rotary piston engine
JPS6371520A (en) * 1986-09-13 1988-03-31 Mazda Motor Corp Intake device for engine
JPS6371519A (en) * 1986-09-13 1988-03-31 Mazda Motor Corp Intake device for engine
JPS6371517A (en) * 1986-09-13 1988-03-31 Mazda Motor Corp Intake device for engine
JPS6371521A (en) * 1986-09-13 1988-03-31 Mazda Motor Corp Intake device for engine
US4942414A (en) * 1987-09-17 1990-07-17 Asahi Kogaku Kogyo Kabushiki Kaisha Front conversion adapter for lens shutter type of zoom lens camera

Also Published As

Publication number Publication date
JPH0573901B2 (en) 1993-10-15

Similar Documents

Publication Publication Date Title
KR101396755B1 (en) Split cycle variable capacity rotary spark ignition engine
KR890000749B1 (en) Intake system for diesel engines
CA1054942A (en) Compound spark-ignition and diesel engine
JPS6291630A (en) Two cylinder rotary engine
CA1045555A (en) Rotary engine with intake valve having a variable open period for power control
US3528084A (en) Rotary piston internal combustion engine
JPS602496B2 (en) Intake system for 2-cylinder rotary piston engine
US3901198A (en) Fuel injection type rotary piston engine
WO2019076148A1 (en) Eccentric rotor engine and combusting and working method thereof
JPH03117658A (en) External combustion type rotary piston engine
US4513707A (en) Multiple port intake means for rotary piston engines
JPS5851377Y2 (en) Rotary piston engine intake system
JPS6146177Y2 (en)
JP2573515B2 (en) Two cylinder rotary engine
JPS6069235A (en) Diesel engine with supercharger
JPS5851378Y2 (en) Rotary piston engine intake system
JPS6313393Y2 (en)
JPS6045719A (en) Internal-combustion system with supercharger
JPS599057Y2 (en) Rotary piston engine intake system
JPS62170729A (en) Intake device for rotary piston engine
JPH037549Y2 (en)
JPH03185217A (en) Suction air amount control device of engine
JPS6334290B2 (en)
JPS61197719A (en) Intake device for internal-combustion engine
JPS62288318A (en) Suction device for 4-stroke engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees