JPS6289355A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6289355A
JPS6289355A JP22894285A JP22894285A JPS6289355A JP S6289355 A JPS6289355 A JP S6289355A JP 22894285 A JP22894285 A JP 22894285A JP 22894285 A JP22894285 A JP 22894285A JP S6289355 A JPS6289355 A JP S6289355A
Authority
JP
Japan
Prior art keywords
layer
oxide film
alloy
substrate
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22894285A
Other languages
Japanese (ja)
Inventor
Hideo Honma
本間 秀男
Yutaka Misawa
三沢 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22894285A priority Critical patent/JPS6289355A/en
Publication of JPS6289355A publication Critical patent/JPS6289355A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To easily realize a thermally stable and highly reliable semiconductor device by providnig a blocking layer made of an alloy of at least one metal selected from among Mo, W, Ta and Ti, and Si and N between an electrode and the connecting region of a semiconductor element. CONSTITUTION:A p-type base region 2 and an n-type emitter region 3 are formed on the main surface of an n-type Si substrate 1 and an Si oxide film 4 is coated on the surface. Then, after an aperture is formed in the Si oxide film 4, an alloy layer 5 made of Mo, Si and N as the first metal layer which is brought into contact with the surface of the Si substrate in the aperture and an Al layer 6 which contains 2% Cu are coated in sequence. Then, the alloy layer 5 made of Mo, Si and N and the Al layer 6 which contains 2% Cu are selectively etched until to reach the Si oxide film 4. This makes the Mo-Si-N alloy layer 5 completely block the reaction of the Si semiconductor substrate and the Al-Cu layer 6 and the diffusion of Al atoms into the Si semi conductor substrate in the aperture of the Si oxide film 4 and the thermal reliability of the junction characteristics between an emitter and a base can drastically be improved.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体装置に係り、特に大規模集積回路におけ
る高信頼性の電極配線に好適な電極構造を備えた半導体
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor device, and particularly to a semiconductor device having an electrode structure suitable for highly reliable electrode wiring in a large-scale integrated circuit.

〔発明の背景〕[Background of the invention]

シリコン半導体基板に直接アルミニウム系電極を接続す
ることは種々の問題がある。すなわちAJ、Al−Cu
 C・アルミニウム・銅合金)又はAll−Mg(アル
ミニウム・マグネシウム合金)!極を用いた場合、40
0〜500℃程度の熱処理でこれらの電極と接するシリ
コン基板から前記電極中にシリコンの析出が生じたり、
或いは前記電極のAl(アルミニウム)がシリコン基板
内に拡散したりして、結果的にシリコン基板内に形成さ
れたPn接合を破壊するなどの問題がある。
Connecting an aluminum-based electrode directly to a silicon semiconductor substrate has various problems. That is, AJ, Al-Cu
C/aluminum/copper alloy) or All-Mg (aluminum/magnesium alloy)! When using poles, 40
Heat treatment at about 0 to 500°C may cause precipitation of silicon from the silicon substrate in contact with these electrodes into the electrodes,
Alternatively, there is a problem that Al (aluminum) of the electrode may diffuse into the silicon substrate, resulting in destruction of the Pn junction formed within the silicon substrate.

一方A1Si (アルミニウム・シリコン合金)、II
i極を用いた場合は、Al−8ifi極とシリコン基板
の界面にP型シリコ/が固相成長するので、n型シリコ
ン基板に対して接触抵抗が増大量る問題がある。
On the other hand, A1Si (aluminum-silicon alloy), II
When an i-pole is used, there is a problem in that the contact resistance with respect to the n-type silicon substrate increases because P-type silico/ is grown in a solid phase at the interface between the Al-8ifi electrode and the silicon substrate.

これらの問題に対し、従来は例えば特開昭57−482
49号公報記載のようにシリコン半導体基板とAl[極
の間に9化チタン(TiN)を阻止層として設ける構造
が提案されていた。しかし、TiNは500℃程度の熱
処理でAlと反応すること及び’l’iN膜の結晶粒界
を通してAlが基板シリコン内に拡散することから、T
INの厚みをその結晶粒以上の十分な厚みにしなければ
阻止層としての機能を果さない。従ってTl1NはAl
に対して十分な阻止効果があるとは言い難い。なお、同
様な提案として、特開昭59−100565号公報によ
るものもある。
In order to solve these problems, for example, Japanese Patent Laid-Open No. 57-482
As described in Japanese Patent No. 49, a structure in which titanium 9ide (TiN) is provided as a blocking layer between a silicon semiconductor substrate and an Al electrode has been proposed. However, since TiN reacts with Al during heat treatment at about 500°C and because Al diffuses into the substrate silicon through the crystal grain boundaries of the 'l'iN film,
Unless the thickness of IN is made sufficiently thicker than the crystal grains, it will not function as a blocking layer. Therefore, Tl1N is Al
It is difficult to say that it has a sufficient deterrent effect. A similar proposal is also made in Japanese Patent Laid-Open No. 100565/1983.

〔発明の目的〕[Purpose of the invention]

本発明は、上記した従来技術の問題点に対処するために
なされたもので、その目的とするところは、熱的に安定
で高信頼性の電極構造を備えた半導体装置を容易に提供
し得るようにするにある。
The present invention has been made to address the problems of the prior art described above, and its purpose is to easily provide a semiconductor device having a thermally stable and highly reliable electrode structure. It is to do so.

〔発明の概要〕[Summary of the invention]

この目的を達成するため、本発明は、半導体基板上に形
成された半導体素子に対する接続用の電極として、例え
ばACA7!−Cu、 Al−Cu −8i (アルミ
ニウム・銅・シリコンの合金)、Al−8i、Al−M
gなどのアルミニウム系金属を用いた半導体装置におい
て、この電極と半導体素子の接続部分との間に、Mo(
モリプデ7)、W(タングステン)。
In order to achieve this object, the present invention provides an electrode for connecting a semiconductor element formed on a semiconductor substrate, for example, ACA7! -Cu, Al-Cu -8i (aluminum-copper-silicon alloy), Al-8i, Al-M
In semiconductor devices using aluminum-based metals such as aluminum, Mo(
Molypude 7), W (tungsten).

Ta(タンタル)、Ti(チタン)の中から選ばれた少
くとも一種の金属と、Si(シリコン)及びN(窃素)
との合金からなる阻止層を設けた点を特徴とするもので
ある。
At least one metal selected from Ta (tantalum) and Ti (titanium), Si (silicon) and N (steel)
It is characterized by the provision of a blocking layer made of an alloy of

そして、このことは、以下の認識にたつものである。す
なわち、例えばモリブデンシリサイド(MoS is 
)をアルミニウム系電極に対する阻止層として用いたと
きには、−ヒ紀した従来のTiNによる阻止層よりも阻
止効果が劣った結果しか得られなかった。しかしながら
、Mo−8i合金中にNを数10%オーダ添加してMo
−8t−N合金とした場合には、・アルミニウム系電極
との反応が全く現われず、かつ、Al半導体基板中への
拡散も完全に抑えられほぼ完壁な阻止機能が得られるこ
とを見い出し、これにより本発明に到ったのである。
This leads to the following recognition. That is, for example, molybdenum silicide (MoS is
) was used as a blocking layer for an aluminum-based electrode, the blocking effect was inferior to that of a conventional TiN blocking layer. However, when N is added to the Mo-8i alloy on the order of several tens of percent, Mo
-8t-N alloy has been found to: - No reaction with aluminum-based electrodes occurs, and diffusion into the Al semiconductor substrate is completely suppressed, resulting in an almost perfect blocking function. This led to the present invention.

なお、このMo−8i−N合金を種々の分析手法で評価
してみた結果、この合金は、主としてM o S i 
* +Mo、N(9化モリブデン)、及び811N4(
窒化シリコン)の混合物からなる多結晶であることがわ
かった。
In addition, as a result of evaluating this Mo-8i-N alloy using various analytical methods, it was found that this alloy mainly contains MoSi
*+Mo, N (molybdenum 9ide), and 811N4 (
It was found to be polycrystalline, consisting of a mixture of silicon nitride).

l〜か1〜て、上記各物質がどのように分布しているか
は不明であるが、該Mo−8t−N合金の結晶粒径が極
めて小さいことと、Si、N、が存在することとがAl
との反応及び拡散を阻止する役割を果しているものと推
定される。周知の如くSl、N4は絶縁物であるが、M
o5tユ及びMo*Nが電気伝導の役割を果すため、半
導体基板と電極配線との接続抵抗はほとんど問題となら
ない。
Although it is unclear how the above substances are distributed, it is believed that the crystal grain size of the Mo-8t-N alloy is extremely small and that Si and N are present. is Al
It is presumed that this plays a role in preventing the reaction and spread of the substance. As is well known, Sl and N4 are insulators, but M
Since o5t and Mo*N play the role of electrical conduction, the connection resistance between the semiconductor substrate and the electrode wiring hardly becomes a problem.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.

第1図は本発明をトランジスタに適用した場合の一実施
例を示す主要断面図で、図において、N型シリコン基板
1の主面にP型ベース領域2及びn型エミッタ領域3を
形成し、表面にシリコン酸化膜4を被着する。次いで、
シリコン酸化膜4に開孔を形成した後、該開孔部におい
てシリコン基板の表面に接触する第1の金桐層として、
MoとSt及びNからなる合金層5及びCuを2%含有
するAl 層6を順次被着する。次いで、一般に広く使
用されているホトリソグラフィーを用いて、ilMoと
St及びNから成る合金層5と該Cuを2%含有するA
lra6をシリコン酸化膜4に達するまで選択蝕刻する
。これにより、シリコン酸化膜40開孔部におけるシリ
コン半導体基板と該A71!−Cu層6との反応、及び
Al原子のシリコン半導体基板内への拡散が該Mo−8
i−N合金層5で完全に阻止されることになり、エミツ
ターベース間の接合特性の熱的信頼性を飛躍的に向上で
きる。なお該Mo−8iN合金層5の組成は、AIの阻
止効果及び合金層の抵抗率の関係から適切な比に制御す
る必要がある。例えばMo/St比をイとした場合、N
の含有率は約10〜40原子チが望ましい。
FIG. 1 is a main cross-sectional view showing an embodiment in which the present invention is applied to a transistor. In the figure, a P-type base region 2 and an n-type emitter region 3 are formed on the main surface of an N-type silicon substrate 1, A silicon oxide film 4 is deposited on the surface. Then,
After forming an opening in the silicon oxide film 4, as a first gold paulownia layer that contacts the surface of the silicon substrate at the opening,
An alloy layer 5 consisting of Mo, St and N and an Al layer 6 containing 2% Cu are successively deposited. Next, using generally widely used photolithography, an alloy layer 5 consisting of ilMo, St, and N and A containing 2% of Cu were formed.
The lra6 is selectively etched until it reaches the silicon oxide film 4. As a result, the silicon semiconductor substrate in the silicon oxide film 40 opening and the A71! -The reaction with the Cu layer 6 and the diffusion of Al atoms into the silicon semiconductor substrate cause the Mo-8
This is completely blocked by the i-N alloy layer 5, and the thermal reliability of the emitter-base bonding characteristics can be dramatically improved. Note that the composition of the Mo-8iN alloy layer 5 needs to be controlled to an appropriate ratio in view of the relationship between the AI blocking effect and the resistivity of the alloy layer. For example, if the Mo/St ratio is
The content is preferably about 10 to 40 atoms.

第2図は、第1図の実施例におけるエミッタ(ト)−ペ
ース(B)間耐圧の耐熱性を評価した結果を、合金層5
として従来例のようにTiNを用いた場合と比較して示
したものである。なおMo−8t−N合金及びTiNの
厚みは共に500A0とした。
FIG. 2 shows the results of evaluating the heat resistance of the emitter (T)-paste (B) breakdown voltage in the example of FIG.
This figure shows a comparison with a case where TiN is used as in the conventional example. Note that the thicknesses of both the Mo-8t-N alloy and TiN were 500A0.

この第2図から明らかなように、Mo−8i−N合金を
Alの阻止材として用いることでE−B間耐圧の耐熱性
が格段に向上することが確認できた。なお、本実施例で
は、バイポーラトランジスタに適用した例を述べたが、
MO8Ii’ETなどに適用しても全く同様の効果を確
認できた。またAlの阻止材としてMo−8t−N合金
を例としたが、W−S i −N 。
As is clear from FIG. 2, it was confirmed that the heat resistance of the E-B breakdown voltage was significantly improved by using the Mo-8i-N alloy as a blocking material for Al. Note that in this example, an example of application to a bipolar transistor was described; however,
Exactly the same effect was confirmed when applied to MO8Ii'ET and the like. In addition, although Mo-8t-N alloy was used as an example of the Al blocking material, W-S i -N.

Ta−8t−N及びTi −8i−N等の合金でもよく
、これらの混合物であっても同様の効果を奏することが
できた。濾らに他の高融点金属−8i−N合金であって
も同様の効果が得られると考えられる。
Alloys such as Ta-8t-N and Ti-8i-N may also be used, and even a mixture thereof could produce similar effects. It is thought that similar effects can be obtained even if other high melting point metal-8i-N alloys are used.

ところで、前記した様に、Si、N、の存在がAlの阻
止効果とi〜て大きな役割を果すと推定されることを述
べたが、例えばMo−8t又はTi−8tをデポジショ
ンする際に、単にN原子を添加しても、自由エネルギー
の関係からNはMo又はT1と結合する割合が極めて高
く、Stとの結合(stsN+)  が得難い。このた
め、例えばMo−8i又はTi−8tとSi、N、を同
時にデボジショ/する方法を用いることもできるが、こ
の方法ではSi、N、の混合比制御が難しい。これに対
し、あらかじめ例えばMo−8t又はTi−8iを形成
した後に、Nをイオン打込みし、熱処理することで容易
にかつ制御性良く、Mo−8t又はTi−8t中に5i
−1”Lを形成できる。
By the way, as mentioned above, it is estimated that the presence of Si and N plays a large role in inhibiting Al, but for example, when depositing Mo-8t or Ti-8t, Even if N atoms are simply added, the ratio of N bonding with Mo or T1 is extremely high due to free energy, making it difficult to obtain a bond with St (stsN+). For this reason, for example, a method of depositing Mo-8i or Ti-8t and Si and N at the same time can be used, but with this method it is difficult to control the mixing ratio of Si and N. On the other hand, by forming, for example, Mo-8t or Ti-8i in advance, and then ion-implanting N and heat-treating, it is possible to easily and with good controllability.
-1”L can be formed.

第3図は、本発明による半導体装置の製造方法を主要工
程における断面図で順次水した図である。
FIG. 3 is a sequential cross-sectional view of the main steps of the method for manufacturing a semiconductor device according to the present invention.

まず、同図(a)に示すように、P型シリコン基板11
の主面に、素子間分離用の厚いシリコン酸化膜12とゲ
ート絶縁膜となる薄いシリコン酸化膜13を、それぞれ
通常の熱酸化法により形成し、その上に多結晶シリコン
膜をシリコン基板表面全面に被着した後、ホトリソグラ
フィー技術を用いて所望形状に加工し、ゲート電極14
を形成する。
First, as shown in the same figure (a), a P-type silicon substrate 11
A thick silicon oxide film 12 for isolation between elements and a thin silicon oxide film 13 to serve as a gate insulating film are formed on the main surface of the substrate by normal thermal oxidation, and then a polycrystalline silicon film is formed over the entire surface of the silicon substrate. After depositing on the gate electrode 14, it is processed into a desired shape using photolithography technology, and the gate electrode 14 is
form.

次いで同図(b)に示すように、ひ素イオン15を打込
んだ上で活性化熱処理することで、n型のソース・ドレ
イン領域16を形成する。更に同図(c)に示すように
、PSG等の絶縁膜17を被着し、ホトリソグラフィー
技術を用いて、ソース・ドレイン領域−に等の所望領域
を選択的に開口し、コンタクト窓18を形成する。その
後、同図(d)に示すように、Mo/81の組成比を%
としたMo−8i膜40を約1000 A0被着し、こ
の膜40中にNイオン20を60KeVのエネルギーで
3×1017cm  打込み、800℃、30分の熱処
理を施すことで、このMo−81膜40の上層部約50
0 AoがMoS iy 、 Mat N及びSi、N
、の混合物に愛す、層21が形成される。
Next, as shown in FIG. 3B, arsenic ions 15 are implanted and an activation heat treatment is performed to form n-type source/drain regions 16. Furthermore, as shown in FIG. 2C, an insulating film 17 such as PSG is deposited, and contact windows 18 are formed by selectively opening desired regions such as source/drain regions using photolithography. Form. After that, as shown in the same figure (d), the composition ratio of Mo/81 was changed to %
A Mo-8i film 40 of approximately 1000 A0 was deposited, N ions 20 were implanted into the film 40 at a depth of 3 x 1017 cm with an energy of 60 KeV, and heat treatment was performed at 800°C for 30 minutes to form the Mo-81 film. Approximately 50 upper layer of 40
0 Ao is MoS iy , Mat N and Si, N
A layer 21 is formed in the mixture of .

一方、この膜40の下層部はMoult膜19となる。On the other hand, the lower layer portion of this film 40 becomes the Mault film 19.

次いで同図(e)に示すようにAl膜を約10000A
0被着し、ホトリソグラフィー技術を用い、Al膜を前
記Mo51m + MOl N及び5taNtの混合物
層21及びMoSix層19と同時に選択的に加工する
ことでAl電極配線層22を形成する。
Next, as shown in the same figure (e), the Al film was heated to about 10,000 A.
The Al electrode wiring layer 22 is formed by selectively processing the Al film simultaneously with the Mo51m+MO1N and 5taNt mixture layer 21 and the MoSix layer 19 using photolithography.

このような製造方法を用いることで、Al電極22とソ
ース・ドレイン領域におけるシリコン基板16との反応
及びシリコン基板16中へのAlの拡散を完全に阻止る
ために必要な、Mo S i * * Mo*N及びS
i、N、から成る混合層21を容易に形成でき、しかも
上記した混合1m21に必要な組成を確実に実現でき、
かつNイオンの打込み蟻の調整だけで容易に組成比の制
御も可能でもる。
By using such a manufacturing method, the Mo Si * * necessary to completely prevent the reaction between the Al electrode 22 and the silicon substrate 16 in the source/drain regions and the diffusion of Al into the silicon substrate 16 can be achieved. Mo*N and S
The mixed layer 21 consisting of i and N can be easily formed, and the composition required for the above-mentioned mixture 1m21 can be reliably achieved,
Moreover, the composition ratio can be easily controlled simply by adjusting the N ion implantation method.

なお、以上の実施例では、Mo−8i系にNイオンを打
込む方法を例にもげて説明1〜たが、W−8l。
In the above embodiments, the method of implanting N ions into Mo-8i system was explained as an example from 1 to 1, but W-8l.

Ta−8t、 Ti−8t等にNイオンを打込む方法で
も本発明の効果を奏することがでへた。
The effects of the present invention could also be achieved by implanting N ions into Ta-8t, Ti-8t, or the like.

ところで、以上の第1図及び第3図で示17た実施例で
は、コンタクト窓領域以外のAl系電極配線層下にもす
べてAlの阻止層を設ける構造及び方法について述べた
が、第4図及び第5図のようにコンタクト開孔部にのみ
選択的に形成しても本発明の効果を奏することができる
By the way, in the embodiment shown in FIGS. 1 and 3 above, the structure and method were described in which a blocking layer of Al is provided even under the Al-based electrode wiring layer in areas other than the contact window area. The effects of the present invention can also be achieved even if the contact holes are selectively formed only in the contact openings as shown in FIG.

まず、第4図の実施例は、P型シリコン基板31の主面
にn型拡散層32を形成し、表面にシリコン酸化膜33
を被着させ、次いでこのシリコン酸化膜33に開孔を形
成した後、該開孔部のみに選択的にMo−8t−Nから
成る合金層34を被着し、この後全面にA1層35を被
着する。その後、一般に広く使用されているホトリソグ
ラフィー技術を用いてAl 35をシリコン酸化膜33
に達するまで選択蝕刻して製造したものである。
First, in the embodiment shown in FIG. 4, an n-type diffusion layer 32 is formed on the main surface of a P-type silicon substrate 31, and a silicon oxide film 33 is formed on the surface.
After forming an opening in this silicon oxide film 33, an alloy layer 34 made of Mo-8t-N is selectively deposited only on the opening, and then an A1 layer 35 is deposited on the entire surface. be coated with. Thereafter, Al 35 is formed into a silicon oxide film 33 using commonly used photolithography technology.
It is manufactured by selective etching until it reaches .

次に、第5図の実施例は、P型半導体基板41の主面に
シリコン酸化膜47を選択的に形成し、該シリコン酸化
膜47で覆われていない領域にn型拡散)@42を形成
し、次いでこのn型拡散層42上にMovieを選択的
に形成した後、その表面にシリコン酸化膜45を被着し
、シリコン酸化膜45に開孔を形成した後、核間孔部を
通してNイオンを打込み、熱処理することで、Mo5j
t43の上層部のみをMo−8t−Nから成る合金層4
4に変化せしめる。この後全面にA1層46を被着し、
さらに前述同様A1層46をシリコン酸化膜45まで達
するまで選択蝕刻することで製造されたものである。
Next, in the embodiment shown in FIG. 5, a silicon oxide film 47 is selectively formed on the main surface of a P-type semiconductor substrate 41, and an n-type diffusion)@42 is formed in a region not covered with the silicon oxide film 47. After selectively forming a movie on this n-type diffusion layer 42, a silicon oxide film 45 is deposited on the surface of the film, and after forming an opening in the silicon oxide film 45, a film is formed through the internuclear pore. By implanting N ions and heat treatment, Mo5j
Alloy layer 4 consisting of Mo-8t-N only in the upper layer of t43
Change it to 4. After this, an A1 layer 46 is applied to the entire surface,
Further, as described above, the A1 layer 46 is selectively etched until it reaches the silicon oxide film 45.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、Al系電極と半導体基板の反応及び半
導体基板中へのAIの拡散が完全に阻止できるので、熱
的に信頼性の高い半導体装置を容易に実現できる。
According to the present invention, since the reaction between the Al-based electrode and the semiconductor substrate and the diffusion of AI into the semiconductor substrate can be completely prevented, it is possible to easily realize a thermally reliable semiconductor device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における主要部断面構造図、
第2図は、第1図のエミッターベース間(E−B間)耐
圧の耐熱性計画結果を従来法と比較して示した図、第3
図は本発明の製造方法な主要工程における断面図で順次
示した図、第4図、第5図は第1図の変形実施例を示す
断面図である。 1・・・・・・n型シリコン基板、2・・・・・・P型
ベース領域、3・・・・・・n型エミッタ領域、4・・
・・・・シリコン酸化膜、5・・・・・・Mo−8i−
Nから成る合金j−16・・・・・・Al−2多Cu層
、11・・・・・・P型シリコン基板、12・・・・・
・シリコン酸化膜、13・・・・・・ゲート酸化膜、(
シリコン酸化膜)、14・・・・・・ゲート電極(多結
晶シリコン)、15・・・・・・ひ$(As)イオン、
 16・・・・・・n型ソース・ドレイン領域、17・
・・・・・PSG。 18・・・・・・コンタクトホール、19.40・・・
・・・Mo S i t20・・・・・・窒素Nイオン
、21・・・・・・Mo S i * * Mow N
及びS t 、 Naから成る混合層、22・・・・・
・Ae電極、31.41・・・・・・P型/リコン基板
、32.42・・・・・・n型拡散層、33.45・・
・・・・シリコン酸化膜、34゜44−− Mo −8
i−Nからなる合金層、35.46・・・・・・i電極
、43・・・・・・Movie、47・・・・・・シリ
コン酸化膜。 4吃( 第1図 第2図 500’CI:あ゛け3熱処理里時間(hr〕第3図 第4囚
FIG. 1 is a cross-sectional structural diagram of main parts in an embodiment of the present invention.
Figure 2 is a diagram showing the heat resistance planning results of the emitter-base (E-B) withstand pressure in Figure 1 in comparison with the conventional method.
The figures are sectional views sequentially showing main steps of the manufacturing method of the present invention, and FIGS. 4 and 5 are sectional views showing a modified embodiment of FIG. 1. 1... N-type silicon substrate, 2... P-type base region, 3... N-type emitter region, 4...
...Silicon oxide film, 5...Mo-8i-
Alloy j-16 consisting of N... Al-2 multi-Cu layer, 11... P-type silicon substrate, 12...
・Silicon oxide film, 13... Gate oxide film, (
silicon oxide film), 14...gate electrode (polycrystalline silicon), 15...hi$ (As) ion,
16... n-type source/drain region, 17.
...PSG. 18...Contact hole, 19.40...
...Mo S i t20...Nitrogen N ion, 21...Mo S i * * Mow N
and S t , a mixed layer consisting of Na, 22...
・Ae electrode, 31.41...P type/recon board, 32.42...n type diffusion layer, 33.45...
...Silicon oxide film, 34°44-- Mo -8
Alloy layer made of i-N, 35.46...i electrode, 43...Movie, 47...silicon oxide film. 4 (Figure 1 Figure 2 500' CI: Ake 3 heat treatment time (hr) Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1、半導体基板上に少くとも1個の半導体素子と、アル
ミニウムを主成分とする電気配線層とを有する半導体装
置において、上記半導体素子の電極接続部に、少くとも
モリブデン、タングステン、タンタル、それにチタンの
中から選ばれた一種の金属と、珪素と、それに窒素とを
含む合金層を設け、上記半導体素子と上記電気配線層と
の間の電気的接続が上記合金層を介して得られるように
構成したことを特徴とする半導体装置。 2、特許請求の範囲第1項において、上記少くともモリ
ブデン、タングステン、タンタル、それにチタンの中か
ら選ばれた一種の金属が珪化物及び窒化物の形で、そし
て上記珪素が窒化物の形でそれぞれ上記合金層に含まれ
ていることを特徴とする半導体装置。 3、特許請求の範囲第2項において、上記窒化物が窒素
のイオン打込みと熱処理で形成されていることを特徴と
する半導体装置。
[Claims] 1. In a semiconductor device having at least one semiconductor element on a semiconductor substrate and an electrical wiring layer mainly composed of aluminum, at least molybdenum, An alloy layer containing a metal selected from tungsten, tantalum, and titanium, silicon, and nitrogen is provided, and electrical connection between the semiconductor element and the electrical wiring layer is provided through the alloy layer. 1. A semiconductor device characterized in that it is configured to be obtained through a semiconductor device. 2. In claim 1, at least one metal selected from molybdenum, tungsten, tantalum, and titanium is in the form of silicide and nitride, and the silicon is in the form of nitride. A semiconductor device characterized in that each of these is contained in the above alloy layer. 3. The semiconductor device according to claim 2, wherein the nitride is formed by nitrogen ion implantation and heat treatment.
JP22894285A 1985-10-16 1985-10-16 Semiconductor device Pending JPS6289355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22894285A JPS6289355A (en) 1985-10-16 1985-10-16 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22894285A JPS6289355A (en) 1985-10-16 1985-10-16 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6289355A true JPS6289355A (en) 1987-04-23

Family

ID=16884264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22894285A Pending JPS6289355A (en) 1985-10-16 1985-10-16 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6289355A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066615A (en) * 1989-10-23 1991-11-19 At&T Bell Laboratories Photolithographic processes using thin coatings of refractory metal silicon nitrides as antireflection layers
US5498572A (en) * 1993-06-25 1996-03-12 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing semiconductor device
JPH10242078A (en) * 1997-02-25 1998-09-11 Sharp Corp Multilayer electrode using oxide conductor
US5965942A (en) * 1994-09-28 1999-10-12 Sharp Kabushiki Kaisha Semiconductor memory device with amorphous diffusion barrier between capacitor and plug

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088476A (en) * 1983-10-21 1985-05-18 Seiko Epson Corp Semiconductor device
JPS60153121A (en) * 1984-01-20 1985-08-12 Nec Corp Fabrication of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088476A (en) * 1983-10-21 1985-05-18 Seiko Epson Corp Semiconductor device
JPS60153121A (en) * 1984-01-20 1985-08-12 Nec Corp Fabrication of semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066615A (en) * 1989-10-23 1991-11-19 At&T Bell Laboratories Photolithographic processes using thin coatings of refractory metal silicon nitrides as antireflection layers
US5498572A (en) * 1993-06-25 1996-03-12 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing semiconductor device
US5965942A (en) * 1994-09-28 1999-10-12 Sharp Kabushiki Kaisha Semiconductor memory device with amorphous diffusion barrier between capacitor and plug
JPH10242078A (en) * 1997-02-25 1998-09-11 Sharp Corp Multilayer electrode using oxide conductor

Similar Documents

Publication Publication Date Title
KR100243286B1 (en) Method for manufacturing a semiconductor device
US4337476A (en) Silicon rich refractory silicides as gate metal
US5170242A (en) Reaction barrier for a multilayer structure in an integrated circuit
US5278099A (en) Method for manufacturing a semiconductor device having wiring electrodes
EP0282781B1 (en) Contact to gallium-arsenide and method of forming such
JPH0523055B2 (en)
JPH1084003A (en) Method and structure for formation of semiconductor metallization system
JPH0750697B2 (en) Method for manufacturing semiconductor device
JPS6289355A (en) Semiconductor device
EP0209654B1 (en) Semiconductor device having wiring electrodes
JPS59197162A (en) Semiconductor device
US5461006A (en) Method for forming contacts with anomalously low resistance
JPH0795539B2 (en) Integrated circuit and manufacturing method thereof
JPS59177926A (en) Manufacture of semiconductor device
JPS59110115A (en) Manufacture of semiconductor device
JPS6276518A (en) Manufacture of semiconductor device
JPS61150376A (en) Semiconductor device
JPS59208772A (en) Manufacture of semiconductor device
JPH05183117A (en) Semiconductor device and manufacture thereof
JPS61225838A (en) Forming method for electrode wirings
JPS6347962A (en) Semiconductor device
JPS5898968A (en) Semiconductor device
JPH05267164A (en) Integrated circuit having silicon contact with silicide
JPS61156837A (en) Manufacture of semiconductor device
JPH03201558A (en) Bi-cmos semiconductor device