JPS628931B2 - - Google Patents

Info

Publication number
JPS628931B2
JPS628931B2 JP52047167A JP4716777A JPS628931B2 JP S628931 B2 JPS628931 B2 JP S628931B2 JP 52047167 A JP52047167 A JP 52047167A JP 4716777 A JP4716777 A JP 4716777A JP S628931 B2 JPS628931 B2 JP S628931B2
Authority
JP
Japan
Prior art keywords
insulating resin
resin layer
heat
dielectric
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52047167A
Other languages
Japanese (ja)
Other versions
JPS53132755A (en
Inventor
Juji Etani
Yukio Maeda
Shoji Hara
Kunio Ooshima
Fumio Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4716777A priority Critical patent/JPS53132755A/en
Publication of JPS53132755A publication Critical patent/JPS53132755A/en
Publication of JPS628931B2 publication Critical patent/JPS628931B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、フイルムコンデンサ等の積層コンデ
ンサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a multilayer capacitor such as a film capacitor.

従来の技術 従来、フイルムコンデンサは、プラスチツクフ
イルムとアルミニウム箔とを巻回することにより
製造されていたが、生産性が低く、価格が高く、
また静電容量にばらつきが大きい等の欠点があつ
たため、それを解決することが進められていた。
Conventional technology Conventionally, film capacitors have been manufactured by winding plastic film and aluminum foil, but productivity is low and the price is high.
Furthermore, since there were drawbacks such as large variations in capacitance, efforts were being made to solve these problems.

また、このうな欠点を解消した積層法によるフ
イルムコンデンサの製造法が特公昭52−1101号公
報に記載されている。その要点は、内部電極であ
る蒸着被膜で被覆された誘電体フイルム上に、誘
電プラスチツク被膜を形成した複合ストリツプを
多数重ねて高温高圧を印加し、この誘電プラスチ
ツク被膜を互いに融着させた後、金属溶射により
電極を形成して積層コンデンサを構成したもので
ある。このコンデンサにおいては、誘電プラスチ
ツク被膜が互いに融着しているため、層間の接着
力が強く、層間剥離に対しては強く安定なものと
なるが、高い熱と圧力を加えるため、融着する層
間のすき間がせまくなり、金属溶射によつて形成
する電極のくい込みが悪く、内部電極と十分な接
触が得られにくく、また融着の際に対向する内部
電極同志が接触短絡しやすいという問題が生じる
場合があつた。また、単に複合ストリツプの積層
数を増しても、1層1層の密着力を向上させるこ
とはできなかつた。
Further, a method for manufacturing a film capacitor by a lamination method that eliminates these drawbacks is described in Japanese Patent Publication No. 1101/1983. The key point is that a large number of composite strips each having a dielectric plastic film formed thereon are stacked on top of a dielectric film coated with a vapor-deposited film, which serves as the internal electrode, and high temperature and pressure is applied to fuse the dielectric plastic films together. A multilayer capacitor is constructed by forming electrodes by metal spraying. In this capacitor, the dielectric plastic coatings are fused to each other, so the adhesion between the layers is strong, making it strong and stable against delamination, but because high heat and pressure are applied, the fused layers The gap becomes narrow, and the electrodes formed by metal spraying do not penetrate well, making it difficult to make sufficient contact with the internal electrodes, and also causing problems such as short-circuiting between opposing internal electrodes during fusion bonding. The situation was ripe. Furthermore, simply increasing the number of laminated composite strips did not improve the adhesion of each layer.

本発明者らはこれらの問題に鑑み種々検討した
結果、内部電極である蒸着被膜で被覆された誘電
体フイルム上に誘電プラスチツク被膜を形成した
複合ストリツプを多数重ねた場合、熱圧着する際
に120℃、5Kg/cm2という比較的低い熱と圧力で
行えば良いことを見出した。
The inventors of the present invention have conducted various studies in view of these problems, and have found that when a large number of composite strips in which a dielectric plastic film is formed on a dielectric film coated with a vapor-deposited film, which serves as an internal electrode, is stacked, It has been found that the process can be carried out using relatively low heat and pressure of 5 Kg/cm 2 at 5 Kg/cm 2 .

以下、上記構成による積層コンデンサについて
第1図〜第3図を参照して説明する。
Hereinafter, a multilayer capacitor having the above structure will be explained with reference to FIGS. 1 to 3.

上記構成による積層コンデンサでは、第1図お
よび第2図に示すようにポリエステルフイルム1
の両面にアルミニウムの金属蒸着層2を対向させ
て形成し、かつこの金属蒸着層2上にポリカーボ
ネート誘電体層3を形成した複合ストリツプを作
つておき、これを複数段積層してコンデンサ素子
4を構成し、このコンデンサ素子4の両方の積層
面に前記コンデンサ素子4の誘電体フイルムと同
材質のフイルム、すなわちポリエステルフイルム
からなる絶縁樹脂層5を接着させている。絶縁樹
脂層5は、第3図に示すようにポリエステルフイ
ルム5aとエステル系感熱性接着剤層5bとを順
次積層し、これをヒートプレスすることにより両
者を接着して構成している。また、コンデンサ素
子4と絶縁樹脂層5との接着は、絶縁樹脂層5の
コンデンサ素子4側の面に感熱性接着剤層5bを
設け、コンデンサ素子4と絶縁樹脂層5とを積層
してヒートプレスすることにより行なつている。
In the multilayer capacitor having the above structure, as shown in FIGS. 1 and 2, the polyester film 1
A composite strip is prepared by forming metal vapor deposited aluminum layers 2 on opposite sides of the metal vapor deposited layer 2 and a polycarbonate dielectric layer 3 formed on the metal vapor deposited layer 2, and stacks these strips in multiple stages to form the capacitor element 4. An insulating resin layer 5 made of the same material as the dielectric film of the capacitor element 4, that is, a polyester film, is adhered to both laminated surfaces of the capacitor element 4. As shown in FIG. 3, the insulating resin layer 5 is constructed by sequentially laminating a polyester film 5a and an ester heat-sensitive adhesive layer 5b, and bonding them together by heat pressing. In addition, to bond the capacitor element 4 and the insulating resin layer 5, a heat-sensitive adhesive layer 5b is provided on the surface of the insulating resin layer 5 on the capacitor element 4 side, and the capacitor element 4 and the insulating resin layer 5 are laminated and heated. This is done by pressing.

ここで、コンデンサの容量は、第1の誘電体で
あるポリエステルフイルム1を介して対向する電
極間と、第2の誘電体であるポリカーボネート誘
電体層3を介して対向する電極間の両者で得るこ
とは第2図の構成より明らかである。すなわち上
記構成の素子は、複合誘電体のコンデンサ素子と
なつている。ポリカーボネート誘電体層3は通
常、コーテイング技術により形成しうる。
Here, the capacitance of the capacitor is obtained both between the electrodes facing each other through the polyester film 1 which is the first dielectric, and between the electrodes facing each other through the polycarbonate dielectric layer 3 which is the second dielectric. This is clear from the configuration shown in FIG. In other words, the element having the above structure is a capacitor element made of a composite dielectric material. Polycarbonate dielectric layer 3 can typically be formed by coating techniques.

なお、第1図において6は電極で、この電極6
はコンデンサ素子4と絶縁樹脂層5の互いに対向
する端面に電極材料を溶射することにより形成さ
れている。
In addition, in FIG. 1, 6 is an electrode, and this electrode 6
are formed by spraying an electrode material onto mutually opposing end surfaces of the capacitor element 4 and the insulating resin layer 5.

発明が解決しようとする問題点 上記したように、第1図および第2図に示した
構成は、金属溶射によつて形成した電極と内部電
極との十分な接触が得られる点および対向する内
部電極同志の短絡が生じ難い点において優れてい
るが、その反面、比較的ゆるい熱圧着になつてい
るため、複合ストリツプの各層間の密着力が劣
り、リード線溶接時に、熱と力を受け素子の積層
が剥離して破壊しやすく、また取扱い中の外力に
より素子の積層が剥離し破壊しやすいという別の
問題が生じていた。また、このため電気的特性の
上でも劣化することが多く、特に高周波における
誘電損失率(tanδ)の低下が問題となつてい
た。
Problems to be Solved by the Invention As described above, the configurations shown in FIGS. 1 and 2 are advantageous in that sufficient contact can be obtained between the electrodes formed by metal spraying and the internal electrodes, and It is excellent in that it is difficult to cause short circuits between electrodes, but on the other hand, because the thermocompression bonding is relatively loose, the adhesion between each layer of the composite strip is poor, and when lead wires are welded, the elements receive heat and force. Another problem has arisen in that the laminated layers of the element are easily peeled off and destroyed, and the laminated layers of the element are easily peeled off and destroyed due to external force during handling. In addition, for this reason, the electrical characteristics often deteriorate, and in particular, a decrease in dielectric loss factor (tan δ) at high frequencies has been a problem.

本発明は上記従来の問題点を解決し、機械的強
度を向上させて製造工程におけるコンデンサ素子
の変形や破壊を防止した積層コンデンサを提供す
るものである。
The present invention solves the above conventional problems and provides a multilayer capacitor that has improved mechanical strength and prevents deformation and destruction of capacitor elements during the manufacturing process.

問題点を解決するための手段 上記問題点を解決するため本発明は、コンデン
サ素子の上下の積層面に接着した、複数層の誘電
体フイルムからなる絶縁樹脂層を、誘電体フイル
ム間に挾まれた接着層の幅が絶縁樹脂層の幅より
も小さくなるよう形成することによつて、絶縁樹
脂層の電極が形成される端面の誘電体フイルム間
に空隙を設け、かつこの空隙に電極が入り込むよ
うに、コンデンサ素子の互いに対向している端面
に電極を形成したものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides an insulating resin layer consisting of a plurality of dielectric films bonded to the upper and lower laminated surfaces of a capacitor element, which is sandwiched between the dielectric films. By forming the adhesive layer so that the width is smaller than the width of the insulating resin layer, a gap is created between the dielectric films on the end face of the insulating resin layer where the electrode is formed, and the electrode enters this gap. In this case, electrodes are formed on the mutually opposing end surfaces of the capacitor element.

作 用 上記したように本発明では、絶縁樹脂層の誘電
体フイルム間に挾まれた接着層の幅を絶縁樹脂層
の幅よりも小さくしており、絶縁樹脂層の電極が
形成される側の端面の誘電体フイルム間に空隙が
でき、この空隙に電極が入り込むようにしている
ため電極付着強度が強く、リード線を電極に溶接
しても素子の劣化が生じない。
Function As described above, in the present invention, the width of the adhesive layer sandwiched between the dielectric films of the insulating resin layer is made smaller than the width of the insulating resin layer, and the width of the adhesive layer sandwiched between the dielectric films of the insulating resin layer is made smaller than the width of the insulating resin layer. A gap is created between the dielectric films on the end face, and since the electrode is inserted into this gap, the electrode adhesion strength is strong, and even if the lead wire is welded to the electrode, the element will not deteriorate.

実施例 次に、本発明の実施例を第4図および第5図に
より説明する。
Embodiment Next, an embodiment of the present invention will be described with reference to FIGS. 4 and 5.

基本的な構成は第1図〜第3図に示したものと
同様であるが、第4図および第5図に示す実施例
による積層コンデンサでは、絶縁樹脂層5におけ
る感熱性接着剤層5bの長さをポリエステルフイ
ルム5aの長さよりも短かくし、ポリエステルフ
イルム5a間に空隙を設けている。なお、絶縁樹
脂層5でポリエステルフイルム5a間に空隙を設
けるのは、コンデンサ素子4の電極6を形成する
端面と一致する側の端面のみである。また、本実
施例では、空隙の大きさを第5図に示すようにポ
リエステルフイルム5a間の間隔Tを2μ、ポリ
エステルフイルム5aの端面から感熱性接着剤層
5bの端面までの間隔Lを0.5mmとしている。
The basic structure is the same as that shown in FIGS. 1 to 3, but in the multilayer capacitor according to the embodiment shown in FIGS. 4 and 5, the heat-sensitive adhesive layer 5b in the insulating resin layer 5 The length is made shorter than the length of the polyester film 5a, and gaps are provided between the polyester films 5a. Note that gaps are provided between the polyester films 5a in the insulating resin layer 5 only on the end face of the capacitor element 4 that corresponds to the end face on which the electrode 6 is formed. Further, in this embodiment, as shown in FIG. 5, the gap size is 2 μm between the polyester films 5a, and the distance L from the end surface of the polyester film 5a to the end surface of the heat-sensitive adhesive layer 5b is 0.5 mm. It is said that

すなわち、本実施例では、コンデンサ素子4と
絶縁樹脂層5の端面に電極6を形成すると、その
電極材料が絶縁樹脂層5のポリエステルフイルム
5a間の端部に形成された空隙の内部にまで入り
込み、電極6の付着強度が増すとともに、絶縁樹
脂層5によりコンデンサ素子4の機械的強度を向
上させることができる。
That is, in this embodiment, when the electrode 6 is formed on the end faces of the capacitor element 4 and the insulating resin layer 5, the electrode material penetrates into the gap formed at the end between the polyester films 5a of the insulating resin layer 5. , the adhesion strength of the electrode 6 is increased, and the mechanical strength of the capacitor element 4 can be improved by the insulating resin layer 5.

ところで、絶縁樹脂層5を構成するプラスチツ
クフイルムとしては加熱接着処理の都合上、感熱
性接着剤よりも軟化温度が高いことが必要で、こ
のようなプラスチツクフイルムと感熱性接着剤の
組合せとして最も好ましいのは、前記第3図で説
明したポリエステルフイルムまたはポリカーボネ
ートフイルムと分子中にエステル結合を含む低分
子ポリエステル等のエステル系感熱性接着剤を用
いることである。
By the way, the plastic film constituting the insulating resin layer 5 needs to have a softening temperature higher than that of the heat-sensitive adhesive for convenience of heat adhesion treatment, and the most preferable combination of such a plastic film and heat-sensitive adhesive is The method is to use the polyester film or polycarbonate film described in FIG. 3 above and an ester-based heat-sensitive adhesive such as a low-molecular-weight polyester containing an ester bond in the molecule.

また本実施例では、絶縁樹脂層はコンデンサ素
子を構成している誘電体フイルムと同材質の誘電
体フイルムとしており、コンデンサ素子と誘電体
フイルムを同時に熱圧着しても熱ひずみが生じな
いため、コンデンサ容量が安定しており、熱圧着
後冷却しても層間接着力が安定している。
In addition, in this example, the insulating resin layer is made of a dielectric film made of the same material as the dielectric film constituting the capacitor element, and no thermal distortion occurs even if the capacitor element and the dielectric film are bonded together by thermocompression. The capacitor capacity is stable, and the interlayer adhesion is stable even after cooling after thermocompression bonding.

第6図は本発明の他の実施例を示すもので、こ
の実施例では、絶縁樹脂層5の感熱性接着剤層5
bの電極材料が入り込んでくる端面側の形状を波
形状にしたものである。
FIG. 6 shows another embodiment of the present invention, in which the heat-sensitive adhesive layer 5 of the insulating resin layer 5 is
The shape of the end face side into which the electrode material b enters is wave-shaped.

すなわち、本実施例ではくさび状に入り込んで
くる電極材料と感熱性接着剤層5bとの接着面積
が増加するため接着力がさらに強固になり、上記
第4図および第5図に示す実施例の場合よりも電
極6の接着力を増大させることができる。
That is, in this embodiment, the bonding area between the wedge-shaped electrode material and the heat-sensitive adhesive layer 5b is increased, so that the bonding force is further strengthened, and the bonding force is further strengthened. The adhesive force of the electrode 6 can be increased more than in the case.

次に、絶縁樹脂層5と電極6の付着強度との関
係を説明する。
Next, the relationship between the adhesion strength between the insulating resin layer 5 and the electrode 6 will be explained.

第7図は絶縁樹脂層5の厚みと電極6の付着強
度との関係を示しており、第1図〜第3図に示す
先行例による積層コンデンサの場合の曲線イと、
第4図および第5図に示すように絶縁樹脂層5の
ポリエステルフイルム5a間に空隙を設けた本発
明の積層コンデンサの場合の曲線ロとから明らか
なように、絶縁樹脂層5の厚みを増せば電極6の
付着強度が増加する。なお、曲線イ、曲線ロとも
ポリエステルフイルムの厚さは3.5μであり、曲
線ロに示す積層コンデンサではポリエステルフイ
ルム5a間の空隙のTを1μにした場合の特性を
示しており、複数のポリエステルフイルム5aの
端部の空隙に電極6が入り込むため効果が大き
い。
FIG. 7 shows the relationship between the thickness of the insulating resin layer 5 and the adhesion strength of the electrode 6. Curve A in the case of the multilayer capacitor according to the prior example shown in FIGS. 1 to 3,
As shown in FIGS. 4 and 5, the thickness of the insulating resin layer 5 can be increased, as is clear from the curve B in the case of the multilayer capacitor of the present invention in which a gap is provided between the polyester films 5a of the insulating resin layer 5. This increases the adhesion strength of the electrode 6. The thickness of the polyester film in both curves A and B is 3.5μ, and the multilayer capacitor shown in curve B shows the characteristics when the gap T between the polyester films 5a is set to 1μ. The effect is great because the electrode 6 enters the gap at the end of the electrode 5a.

また、第8図は第4図および第5図または第6
図の積層コンデンサにおける感熱性接着剤層5b
の厚みと電極6の付着強度との関係を示してお
り、この第8図から明らかなように、第4図〜第
6図の積層コンデンサの場合には、感熱性接着剤
層5bの厚みが0.5μ以上の時、電極6の付着強
度が大幅に向上しており、これから感熱性接着剤
層5bの厚みは0.5μ以上が好ましい。これは、
電極6形成のための電極材料の粒子径の下限がほ
ぼ0.5μであるためで、これよりも厚みが小さい
と電極材料の粒子がポリエステルフイルム5a間
の空隙に入り込み難くなるためと考えられる。な
お、第8図の特性図は、絶縁樹脂層5の厚みを
0.2mmの一定にした場合のものである。
Also, Figure 8 is similar to Figure 4 and Figure 5 or Figure 6.
Heat-sensitive adhesive layer 5b in the multilayer capacitor shown in the figure
8 shows the relationship between the thickness of the heat-sensitive adhesive layer 5b and the adhesion strength of the electrode 6. As is clear from FIG. 8, in the case of the multilayer capacitors shown in FIGS. When the thickness is 0.5 μm or more, the adhesion strength of the electrode 6 is significantly improved, and therefore, the thickness of the heat-sensitive adhesive layer 5b is preferably 0.5 μm or more. this is,
This is because the lower limit of the particle size of the electrode material for forming the electrode 6 is approximately 0.5 μm, and it is thought that if the thickness is smaller than this, it becomes difficult for the particles of the electrode material to enter the gaps between the polyester films 5a. Note that the characteristic diagram in FIG. 8 shows the thickness of the insulating resin layer 5.
This figure is for a constant value of 0.2 mm.

本発明の他の実施例として、感熱性接着剤に赤
色染料等を用いて着色しておくことにより、絶縁
樹脂層5を構成する場合、プラスチツクフイルム
に対する感熱性接着剤の相対的位置決めを容易か
つ確実に行なうことができる。
As another embodiment of the present invention, when forming the insulating resin layer 5 by coloring the heat-sensitive adhesive with red dye or the like, the relative positioning of the heat-sensitive adhesive with respect to the plastic film can be easily and It can be done reliably.

これは、一般にプラスチツクフイルムは無色透
明あるいは半透明であるためで、感熱性接着剤を
着色しておけば、プラスチツクフイルムと感熱性
接着剤とを積層する場合に感熱性接着剤のプラス
チツクフイルムに対する相対的な位置決めを目視
または適当な光学的な判別装置によつて容易かつ
確実に行なうことができるのである。
This is because plastic film is generally colorless and transparent or translucent, and if the heat-sensitive adhesive is colored, the relative difference between the heat-sensitive adhesive and the plastic film will be reduced when the plastic film and heat-sensitive adhesive are laminated together. The positioning can be easily and reliably performed visually or by using an appropriate optical discrimination device.

次に、本発明の積層コンデンサを製造する場合
の一例を挙げる。
Next, an example of manufacturing the multilayer capacitor of the present invention will be described.

上記説明では、コンデンサ素子4と絶縁樹脂層
5とを接着する場合、それぞれを別々に製造した
後、接着する方法を示したが、別の方法として、
平板状の回転ボビンに、片面に感熱性接着剤を塗
布したプラスチツクフイルムを一定の厚みに巻取
り、その上から金属蒸着層および誘電体層を形成
したプラスチツクフイルムを所要の厚みに巻取
り、さらにその上に再び片面に感熱性接着剤を塗
布したプラスチツクフイルムを一定の厚みに巻取
り、そしてこの巻回積層物を回転ボビンごと巻取
装置から取外し、そのままの状態でプレス機によ
りヒートプレスすることにより製造する方法もあ
る。
In the above explanation, when bonding the capacitor element 4 and the insulating resin layer 5, a method was shown in which they were manufactured separately and then bonded together, but as another method,
A plastic film coated with a heat-sensitive adhesive on one side is wound onto a flat rotating bobbin to a certain thickness, and then a plastic film with a metal vapor deposited layer and a dielectric layer formed thereon is wound to a desired thickness, and then On top of that, a plastic film coated with a heat-sensitive adhesive on one side is wound again to a certain thickness, and this wound laminate is removed from the winding device together with the rotating bobbin, and heat-pressed in that state using a press machine. There is also a manufacturing method.

なお、製造する場合、絶縁樹脂層5を構成する
プラスチツクフイルムが感熱性接着剤によつて、
あたかも1枚の厚い絶縁樹脂層5となるように強
固に接着するように加熱、加圧する必要がある。
In addition, when manufacturing, the plastic film constituting the insulating resin layer 5 is bonded with a heat-sensitive adhesive.
It is necessary to apply heat and pressure so that the adhesive is firmly bonded as if it were a single thick insulating resin layer 5.

発明の効果 以上のように本発明の積層コンデンサによれ
ば、次のような効果を得ることができる。
Effects of the Invention As described above, according to the multilayer capacitor of the present invention, the following effects can be obtained.

(1) 絶縁樹脂層の補強効果によりコンデンサ素子
の機械的強度が向上し、比較的低い温度と圧力
でヒートプレスを行つても層間はく離が生じな
く、リード線溶接工程、素子の切断工程等の製
造工程におけるコンデンサ素子の変形および破
壊を防止することができる。
(1) The mechanical strength of the capacitor element is improved by the reinforcing effect of the insulating resin layer, and interlayer delamination does not occur even when heat pressing is performed at relatively low temperatures and pressures, making it easier to perform lead wire welding processes, element cutting processes, etc. Deformation and destruction of the capacitor element during the manufacturing process can be prevented.

(2) リード線溶接時の加圧力を大きくすることが
できるため、リード線溶接強度を大きくするこ
とができる。
(2) Since the pressure force during lead wire welding can be increased, the lead wire welding strength can be increased.

(3) 電極の付着強度が絶縁樹脂層を設けることに
よつて接着面積が広くなつて増大し、tanδを
安定させることができる。
(3) By providing an insulating resin layer, the adhesion strength of the electrode increases as the adhesion area becomes wider, and tanδ can be stabilized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の発明者らが先に提案した積層
コンデンサの斜視図、第2図は同コンデンサの要
部断面図、第3図は同じく要部斜視図、第4図お
よび第5図は本発明の一実施例における積層コン
デンサの要部斜視図および断面図、第6図は本発
明の他の実施例による積層コンデンサの要部を示
す斜視図、第7図および第8図は本発明の効果を
説明するための特性図である。 4……コンデンサ素子、5……絶縁樹脂層、5
a……ポリエステルフイルム(プラスチツクフイ
ルム)、5b……感熱性接着剤層、6……電極。
Fig. 1 is a perspective view of a multilayer capacitor previously proposed by the inventors of the present invention, Fig. 2 is a sectional view of the main part of the capacitor, Fig. 3 is a perspective view of the main part, and Figs. 4 and 5. 6 is a perspective view and a cross-sectional view of the main parts of a multilayer capacitor according to an embodiment of the present invention, FIG. 6 is a perspective view showing the main parts of a multilayer capacitor according to another embodiment of the invention, and FIGS. FIG. 3 is a characteristic diagram for explaining the effects of the invention. 4... Capacitor element, 5... Insulating resin layer, 5
a... Polyester film (plastic film), 5b... Heat-sensitive adhesive layer, 6... Electrode.

Claims (1)

【特許請求の範囲】 1 誘電体フイルムと対向電極とを交互に積層し
たコンデンサ素子の上下の積層面に、複数の誘電
体フイルムからなる絶縁樹脂層を接着し、前記絶
縁樹脂層の誘電体フイルム間に挾まれる接着層の
幅を前記絶縁樹脂層の幅よりも小さくして前記絶
縁樹脂層の電極が形成される端面の誘電体フイル
ム間に空隙を設け、前記空隙に入り込んで前記コ
ンデンサ素子の互いに対向する端面に電極が形成
されていることを特徴とする積層コンデンサ。 2 コンデンサ素子を構成する誘電体フイルムと
絶縁樹脂層を構成する誘電体フイルムを同材質の
フイルムとした特許請求の範囲第1項記載の積層
コンデンサ。
[Scope of Claims] 1. An insulating resin layer consisting of a plurality of dielectric films is adhered to the upper and lower laminated surfaces of a capacitor element in which dielectric films and counter electrodes are alternately laminated, and the dielectric film of the insulating resin layer is The width of the adhesive layer sandwiched therebetween is made smaller than the width of the insulating resin layer to provide a gap between the dielectric films at the end faces of the insulating resin layer where the electrodes are formed, and the capacitor element enters into the gap. A multilayer capacitor characterized in that electrodes are formed on mutually opposing end surfaces of the multilayer capacitor. 2. The multilayer capacitor according to claim 1, wherein the dielectric film constituting the capacitor element and the dielectric film constituting the insulating resin layer are made of the same material.
JP4716777A 1977-04-22 1977-04-22 Laminated capacitor Granted JPS53132755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4716777A JPS53132755A (en) 1977-04-22 1977-04-22 Laminated capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4716777A JPS53132755A (en) 1977-04-22 1977-04-22 Laminated capacitor

Publications (2)

Publication Number Publication Date
JPS53132755A JPS53132755A (en) 1978-11-18
JPS628931B2 true JPS628931B2 (en) 1987-02-25

Family

ID=12767502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4716777A Granted JPS53132755A (en) 1977-04-22 1977-04-22 Laminated capacitor

Country Status (1)

Country Link
JP (1) JPS53132755A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810813A (en) * 1981-07-13 1983-01-21 松下電器産業株式会社 Condenser

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521101A (en) * 1975-06-16 1977-01-06 Sca Development Ab Method of treating material containing lignocellulose

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521101A (en) * 1975-06-16 1977-01-06 Sca Development Ab Method of treating material containing lignocellulose

Also Published As

Publication number Publication date
JPS53132755A (en) 1978-11-18

Similar Documents

Publication Publication Date Title
JP2018056464A (en) Method for manufacturing multilayer ceramic electronic component
US3616039A (en) Method of making a laminated capacitor
JPS628931B2 (en)
JPH0563926B2 (en)
JPS6159522B2 (en)
JPS62211974A (en) Laminated piezoelectric element and manufacture thereof
JPS62190828A (en) Manufacture of metallized film capacitor
JPS59145583A (en) Laminated type piezoelectric displacement element
JPH047577B2 (en)
JPS61253811A (en) Manufacture of laminate ceramic capacitor
JPH0618148B2 (en) Method for manufacturing porcelain capacitor
JPH0158853B2 (en)
JPS6029214B2 (en) Manufacturing method of multilayer capacitor
JP2792011B2 (en) Manufacturing method of multilayer film capacitor
JP3185739B2 (en) High-voltage film capacitors
JP2560286Y2 (en) Metallized film capacitors
JPH01151220A (en) Manufacture of film capacitor
JPS6125235Y2 (en)
JPH03190703A (en) Manufacture of electrode-forming ceramic green sheet
JP2000124065A (en) Thin-film multilayer capacitor and manufacture of the thin-film multilayer capacitor
JPH0230829Y2 (en)
US3651387A (en) Stacked mica capacitors
JPS6354205B2 (en)
JPH0334520A (en) Manufacture of film capacitor
JP2009272461A (en) Film capacitor