JPS62190828A - Manufacture of metallized film capacitor - Google Patents

Manufacture of metallized film capacitor

Info

Publication number
JPS62190828A
JPS62190828A JP61034648A JP3464886A JPS62190828A JP S62190828 A JPS62190828 A JP S62190828A JP 61034648 A JP61034648 A JP 61034648A JP 3464886 A JP3464886 A JP 3464886A JP S62190828 A JPS62190828 A JP S62190828A
Authority
JP
Japan
Prior art keywords
film
metallized film
sided
double
metalized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61034648A
Other languages
Japanese (ja)
Other versions
JPH043098B2 (en
Inventor
久明 立原
杉浦 紀行
西川 之康
山村 重成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61034648A priority Critical patent/JPS62190828A/en
Publication of JPS62190828A publication Critical patent/JPS62190828A/en
Publication of JPH043098B2 publication Critical patent/JPH043098B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子機器、電気機器に用いられる金属化フィ
ルムコンデンサの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing metallized film capacitors used in electronic and electrical equipment.

従来の技術 近年、電子機器、電気機器の発達に伴い、電子部品は多
量に使われるようになり、特にコンデンサ、抵抗器など
の受動部品の単価の引下げに対する市場要望が強い。
BACKGROUND OF THE INVENTION In recent years, with the development of electronic and electrical equipment, electronic components have come to be used in large quantities, and there is particularly strong market demand for lower unit prices of passive components such as capacitors and resistors.

金属化フィルムコンデンサは、静電容量の拡大、形状の
小型化のため、極薄のフィルムが用いられる。極薄のフ
ィルムを使用するために、製造上取扱いに注意を要し、
工作精度が必要である。また金属化フィルムコンデンサ
の製造工程の中で、非蒸着部(以下蒸着マージンと称す
。)を形成しながらフィルムに金属を蒸着(蒸着の中に
はスパッタリングやイオンブレーティング等を含む。)
する工程、および金属化フィルムを切断する工程、およ
び金属化フィルムを巻取る工程、あるいは積層型金属化
フィルムコンデンサの場合は積層する工程、また複合フ
ィルムを用いる場合に金属化フィルム面上に誘電体を設
ける工程は、特にフィル広幅方向に非常に精度を要求さ
れ、フィルム位置制御が必要である。
Metalized film capacitors use ultra-thin films to increase capacitance and reduce size. Due to the use of ultra-thin film, care must be taken during manufacturing.
Machining precision is required. In addition, during the manufacturing process of metallized film capacitors, metal is deposited on the film while forming a non-deposited area (hereinafter referred to as a deposition margin) (vapor deposition includes sputtering, ion blating, etc.).
a step of cutting the metallized film, a step of winding the metallized film, or a step of laminating the metallized film in the case of a laminated metallized film capacitor, and a step of cutting the metallized film on the surface of the metallized film when using a composite film. The process of providing the film requires great precision, especially in the film width direction, and requires film position control.

以下、従来の技術について図面を用いて説明する。Hereinafter, conventional techniques will be explained using drawings.

第8図は、両面金属化フィルムを用いた場合の従来例の
構成を示した断面図である。11は蒸着マージン部14
を設けて両面を金属化した両面金属化フィルム、12は
非金属化フィルム(合わせフィルムと称される。)であ
る。本従来例では合わせフィルム12の幅に)は溶射金
属をフィルム相互間の間隙に侵入させて蒸着電極13と
接続させるために、両面金属化フィルム11の幅より小
さくなればならない。また侵入する溶射金属が、対向す
る蒸着電極13と接触しないように、蒸着電極130対
向幅(イ)より大きくなけばならない。したがって、こ
の従来例では両面金属化フィルム11が合わせフィルム
12よりつき出しているつき出し量(つ)を制御する必
要がある。ここで巻取速度を速くすると、フィルム位置
の制御が行いにくく、フィルムが蛇行し、安定した走行
を保ちにくい。
FIG. 8 is a sectional view showing the structure of a conventional example in which a double-sided metallized film is used. 11 is a vapor deposition margin part 14
12 is a non-metalized film (referred to as a laminated film). In this conventional example, the width of the laminated film 12) must be smaller than the width of the double-sided metallized film 11 in order to allow the sprayed metal to penetrate into the gap between the films and connect with the vapor deposited electrode 13. Further, the width must be larger than the opposing width (a) of the vapor deposition electrode 130 so that the invading sprayed metal does not come into contact with the opposing vapor deposition electrode 13. Therefore, in this conventional example, it is necessary to control the amount by which the double-sided metallized film 11 protrudes from the laminating film 12. If the winding speed is increased, it is difficult to control the film position, the film meanderes, and it is difficult to maintain stable running.

その結果、短絡や、溶射金属と蒸着電極の未接続が発生
し、歩留が低下する。よって本従来例は大量生産には不
向きであるといえる。
As a result, short circuits and non-connections between the sprayed metal and the vapor deposition electrode occur, resulting in a decrease in yield. Therefore, it can be said that this conventional example is not suitable for mass production.

次に、第9図は片面金属化フィルム16を用いた場合の
従来例の構成を示す断面図である。第9図の例でも第8
図の例と同様に片面金属化フィルム15のつき出し量を
制御する必要があり、大量生産には不向きであるといえ
る。
Next, FIG. 9 is a sectional view showing the structure of a conventional example in which a single-sided metallized film 16 is used. In the example of Figure 9, the 8th
As in the example shown in the figure, it is necessary to control the amount of protrusion of the single-sided metallized film 15, and it can be said that this is not suitable for mass production.

次に、両面金属化フィルム11の両面に誘電体を形成し
た複合フィルムを積層するタイプの従来例について説明
する。第10図はこのタイプの構成を示す断面図である
。16は塗工法により形成した誘電体膜である。この例
では、溶射金栴をフィルム相互間の間隙に侵入させて、
蒸着電極13と接続させるために誘電体膜16に非塗工
部17(以下コートマージンと称す。)が必要である。
Next, a conventional example of a type in which a composite film in which dielectrics are formed on both sides of a double-sided metallized film 11 is laminated will be described. FIG. 10 is a sectional view showing this type of configuration. 16 is a dielectric film formed by a coating method. In this example, the sprayed metal is applied to the gaps between the films.
A non-coated portion 17 (hereinafter referred to as a coat margin) is required in the dielectric film 16 in order to connect it to the vapor deposition electrode 13 .

ここで量産性を上げるために高速で塗工すると、コート
マージンがズレやすく、溶射金属と蒸着電極13の接続
がなくなり、コンデンサとしての機能を失うか、短絡す
るかの危険性があり、非常に重大な問題である。この例
のタイプの金属化フィルムコンデンサは、第11図のよ
うに多数の蒸着マージンが形成された両面金属化フィル
ム11上に、塗工法により誘電体膜16を形成した後、
そのまま広幅で積層し、切断することによって製造する
ことができ、多数個同時に生産できることによシ、高い
量産性をもつ製造法である。しかし、コートマージンの
位置制御については、第8図の例、第9図の例のフィル
ム位置制御と同じ精度が要求される上、蛇行した場合に
は、多数個同時生産のため、歩留りが極端に低下する危
険性を含んでいる。
If coating is performed at high speed to increase mass production, the coating margin will easily shift and the connection between the sprayed metal and the vapor deposited electrode 13 will be lost, causing the risk of losing its function as a capacitor or short-circuiting. This is a serious problem. In the metallized film capacitor of this example type, a dielectric film 16 is formed by a coating method on a double-sided metallized film 11 on which a large number of vapor deposition margins are formed as shown in FIG.
It can be manufactured by laminating wide sheets as they are and cutting them, and is a manufacturing method with high mass productivity because it can produce a large number of pieces at the same time. However, the position control of the coat margin requires the same precision as the film position control in the examples shown in Figures 8 and 9, and in the case of meandering, the yield is extremely high due to simultaneous production of many pieces. Contains a risk of deterioration.

発明が解決しようとする問題点 以上述べたように金属化フィルムコンデンサは、フィル
ム位置制御、あるいはコートマージン位置制御の問題か
ら、高速で巻取り、あるいは高速で塗工することができ
なかった。そのため量産効果が低く、コストに占める人
件費の割合が高くなっているため、単価がセラミックコ
ンデンサやアルミ電解コンデンサに比べて高いという問
題点をもっており、量産性の高い製造方法が望まれてい
た。
Problems to be Solved by the Invention As described above, metallized film capacitors cannot be wound up at high speeds or coated at high speeds due to problems with film position control or coat margin position control. As a result, mass production efficiency is low, and labor costs account for a high proportion of costs, resulting in a higher unit price than ceramic capacitors or aluminum electrolytic capacitors, and a manufacturing method with high mass production efficiency has been desired.

本発明は上記問題点に鑑み、従来より高速で巻取り、あ
るいは高速で塗工が可能で、量産性の高い、低コストで
小型の金属化フィルムコンデンサの製造方法を提供する
ことを目的とする。
In view of the above problems, it is an object of the present invention to provide a method for manufacturing a small, low-cost metallized film capacitor that can be wound or coated at a higher speed than conventional methods, has high mass productivity, and is highly mass-producible. .

問題点を解決するための手段 前記目的を達成するために、本発明の金属化フィルムコ
ンデンサの製造方法は、金属化フィルムと誘電体膜また
は非金属化フィルムを重ね合わせて巻回、もしくは積層
した後、電極引出し層が形成される端部を、エツチング
して蒸着電極をフィルム縁辺部に露出させる構成として
いる。
Means for Solving the Problems In order to achieve the above object, the method for manufacturing a metallized film capacitor of the present invention includes a method for manufacturing a metallized film capacitor, in which a metallized film and a dielectric film or a non-metalized film are overlapped and wound or laminated. After that, the end portion where the electrode lead layer is formed is etched to expose the vapor-deposited electrode at the edge of the film.

作用 本発明の金属化フィルムコンデンサの製造方法によって
巻回型の金属化フィルムコンデンサは、フィルム位置制
御に特に、高精度を必要としなくなるため、高速で巻取
りでき、量産性を上げることができる。またコーティン
グ時に、コートマージンを作る必要のあった積層型ある
いは巻回型の金属化フィルムコンデンサでは、コートマ
ージンが不要となり、全面にコーティングできるため、
コートマージン位置制御が不要となり、高速でコーティ
ングでき、量産性を上げることができる。
Function: By using the method for manufacturing a metallized film capacitor of the present invention, a wound type metallized film capacitor does not require particularly high precision in film position control, so that it can be wound at high speed and mass productivity can be increased. In addition, unlike laminated or wound type metallized film capacitors that require a coating margin during coating, coating margins are no longer required and the entire surface can be coated.
Coat margin position control is no longer required, coating can be performed at high speed, and mass productivity can be increased.

実施例 以下、本発明の実施例について図面を参照しながら説明
する。
EXAMPLES Hereinafter, examples of the present invention will be described with reference to the drawings.

実施例1 第1図a、bは、本発明の巻回型の両面金属化フィルム
コンデンサの要部工程の一例を示す断面図である。1は
ポリエチレンテレフタレートフィルム上にアルミニウム
を両面蒸着した両面金属化フィルム、2はポリーカーボ
ネート製の合わせフィルム、3はアルミニウム蒸着によ
る電極、4は蒸着マージン部、5は金属溶射による電極
引出し層が形成される端部である。第2図aは巻取った
後、加熱プレスして偏平状にした状態の要部の断面図を
示している。偏平状にした後、金属溶射される端部5を
、両面金属化フィルム1のつき出し量を得るのに必要な
深さだけ、トリクロルエチレンに漬け、エツチングした
。エツチング後の状態を第1図b1および第2図すに示
す。エツチングにより形成された両面金属化フィルム1
のつき出し量は、フィルム端部に金属溶射した際に、侵
入する溶射金属が対向する電極と接触するほど大きくな
く、また溶射金属とフィルムの付着強度が十分保てる大
きさになっていた。エツチングの後、亜鉛を溶射してコ
ンデンサ素子とした。
Example 1 FIGS. 1a and 1b are cross-sectional views showing an example of the main steps of a wound type double-sided metallized film capacitor of the present invention. 1 is a double-sided metallized film in which aluminum is vapor-deposited on both sides on a polyethylene terephthalate film, 2 is a laminated film made of polycarbonate, 3 is an electrode formed by aluminum vapor deposition, 4 is a vapor deposition margin, and 5 is an electrode extraction layer formed by metal spraying. This is the end of the FIG. 2a shows a cross-sectional view of the main part after being rolled up and heated and pressed into a flat shape. After being flattened, the end portion 5 to be metal sprayed was immersed in trichlorethylene and etched to a depth necessary to obtain the protrusion amount of the double-sided metallized film 1. The state after etching is shown in FIG. 1b1 and FIG. 2S. Double-sided metallized film 1 formed by etching
The amount of protrusion was not so large that the invading sprayed metal would come into contact with the opposing electrode when the metal was sprayed on the edge of the film, and was large enough to maintain sufficient adhesion strength between the sprayed metal and the film. After etching, zinc was sprayed to form a capacitor element.

以上のようにして得られた両面金属化フィルムコンデン
サの素子特性および信頼性は、従来例で述べた第8図の
例の両面金属化フィルムコンデンサのそれらと比較し、
何ら劣る点はみられず、優秀な特性を示した。本実施例
の材料は前記したとおりであるが、材料はこれに限るも
のではない。
The device characteristics and reliability of the double-sided metalized film capacitor obtained as described above are compared with those of the double-sided metalized film capacitor shown in FIG. 8 described in the conventional example.
No inferiority was observed and it showed excellent characteristics. The materials used in this embodiment are as described above, but the materials are not limited thereto.

たとえば、両面金属化フィルムの材料としてポリプロピ
レンフィルム上に亜鉛を両面蒸着したものを、合わせフ
ィルムとしてポリスチレンフィルムを用い、エツチング
用溶剤としてトルエンを用いても本発明の製造方法が実
施でき、効果を得ることができる。本実施例の場合、両
面金属化フィルムの基体フィルムがエツチング用溶剤に
不溶で、かつ、合わせフィルムがエツチング用溶剤に可
溶であればよい。また合わせフィルムは少なくとも片面
にエツチングに用いる溶剤に可溶な材料が形成された複
合フィルムであっても同様の効果を得ることができる。
For example, the manufacturing method of the present invention can be carried out and the effect obtained by using a polypropylene film with zinc vapor-deposited on both sides as the material for the double-sided metallized film, a polystyrene film as the laminating film, and toluene as the etching solvent. be able to. In the case of this embodiment, it is sufficient that the base film of the double-sided metallized film is insoluble in the etching solvent, and the combined film is soluble in the etching solvent. Furthermore, the same effect can be obtained even if the laminated film is a composite film in which a material soluble in the solvent used for etching is formed on at least one side.

実施例2 第3図a、bは、本発明の両面に誘電体膜を設けた両面
金属化フィルムを積層したタイプの金属化フィルムコン
デンサの要部工程の一例を示す断面図で、第4図a、b
は斜視図である。6は塗工法によシ形成した誘電体膜と
してのポリカーボネート膜である。まず、第5図に示す
ように、多数の蒸着マージン部を設けた広幅の両面金属
化フィルム1上にポリカーボネート膜6を両面に全面ベ
タ塗工し、広幅のまま積層した後、蒸着マージン部4で
切断する。切断した後、金属溶射される端部5を、両面
金属化フィルム1のつき出し量を得るのに必要な深さだ
けトリクロルエチレンに漬はエツチングした。エツチン
グ後の状態を第3図b1第4図すに示す。エツチングに
より形成された両面金属化フィルム1のつき出し量は、
フィルム端部へ金属溶射した際に、侵入する溶射金属が
対向する電極と接触するほど大きくなく、また溶射金属
とフィルムの付着強度が十分保てる大きさになっていた
。エツチングの後、亜鉛を溶射してコンデンサ素子とし
た。
Embodiment 2 FIGS. 3a and 3b are cross-sectional views showing an example of the main steps of a metallized film capacitor of the present invention in which double-sided metalized films with dielectric films provided on both sides are laminated, and FIG. a, b
is a perspective view. 6 is a polycarbonate film as a dielectric film formed by a coating method. First, as shown in FIG. 5, a polycarbonate film 6 is applied all over the entire surface of a wide double-sided metallized film 1 having a large number of vapor deposition margins, and the film is laminated with the wide width. Cut with. After cutting, the end portion 5 to be metal sprayed was etched in trichlorethylene to a depth necessary to obtain the overhang of the double-sided metallized film 1. The state after etching is shown in FIG. 3b and FIG. 4. The amount of protrusion of the double-sided metallized film 1 formed by etching is:
When metal spraying was applied to the edge of the film, the invading sprayed metal was not so large as to come into contact with the opposing electrode, and was large enough to maintain sufficient adhesion strength between the sprayed metal and the film. After etching, zinc was sprayed to form a capacitor element.

以上のようにして得られた両面金属化フィルムコンデン
サの素子特性および信頼性は、従来例で述べた第10図
の例の両面金属化フィルムコンデンサのそれらと比較し
、何ら劣る点はみられず、優秀な特性を示した。本実施
例の場合も、材料は前記のものに限るものではなく、両
面金属化フィルムの基体フィルムがエツチング用溶剤に
不溶で、かつ前記両面金属化フィルムの両面に形成され
る誘電体膜がエツチング用溶剤に可溶であればよい。
The device characteristics and reliability of the double-sided metalized film capacitor obtained as described above are not inferior to those of the double-sided metalized film capacitor shown in FIG. 10 described in the conventional example. , showed excellent properties. In the case of this example as well, the materials are not limited to those mentioned above; the base film of the double-sided metalized film is insoluble in the etching solvent, and the dielectric film formed on both sides of the double-sided metalized film is etched. It is sufficient if it is soluble in the solvent used.

また前記誘電体膜は両面金属化フィルムの片面にのみ形
成されていてもよい。
Further, the dielectric film may be formed only on one side of the double-sided metallized film.

実施例3 実施例1,2とも両面金属化フィルムコンデンサの例に
ついて述べたが、片面金属化フィルムでも本発明は実施
できる。第6図に示すように、片面金属化フィルム7の
間に合わせフィルム2をはさんだ構成にすればよい。本
実施例の場合、片面金属化フィルム7の基体フィルムの
材料はエツチングに用いる溶剤に不溶で、合わせフィル
ム2がエツチングに用いる溶剤に可溶であればよい。ま
た、第7図a、bのように片面金属化フィルム7の少な
くとも片面に誘電体層6を設けた構成にしても本発明は
実施できる。第7図の例でも、片面金属化フィルム7の
基体フィルムの材料がエツチングに用いる溶剤に不溶で
、少なくとも片面に設けられる誘電体層の材料がエツチ
ングに用いる溶剤に可溶であればよい。
Example 3 Although both Examples 1 and 2 are examples of double-sided metalized film capacitors, the present invention can also be practiced with single-sided metalized films. As shown in FIG. 6, a structure may be adopted in which a makeshift film 2 is sandwiched between a single-sided metallized film 7. In the case of this embodiment, it is sufficient that the material of the base film of the single-sided metallized film 7 is insoluble in the solvent used for etching, and that the laminated film 2 is soluble in the solvent used for etching. Further, the present invention can also be practiced with a structure in which a dielectric layer 6 is provided on at least one side of the single-sided metallized film 7 as shown in FIGS. 7a and 7b. In the example of FIG. 7 as well, it is sufficient that the material of the base film of the single-sided metallized film 7 is insoluble in the solvent used for etching, and the material of the dielectric layer provided on at least one side is soluble in the solvent used for etching.

発明の効果 以上のように本発明は、金属化フィルムの少なくとも片
面に形成される誘電体もしくは非金属化フィルムの端部
をエツチングすることにより蒸着電極が露出して、電極
引出し層と接触を持つことができるので、巻回型金属化
フィルムコンデンサの場合、巻取るフィルムの位置制御
に特に高精度を要求しないので、高速巻取りが可能で、
歩留が向上し、量産性を上げることが可能となる。また
広幅のフィルムにコートマージンを作る必要のあった積
層型、あるいは巻回型の金属化フィルムコンデンサでは
、コートマージンが不要となり、全面にコーティングで
きるため、コートマージン位置精御が不要と々す、高速
でコーティングでき、量産性を上げることができる。以
上のように本発明により、金属化フィルムコンデンサの
歩留りを向上させ、量産性を上げることが可能となり、
工業的9社会的に大きな効果をもたらすものである。
Effects of the Invention As described above, the present invention is characterized in that by etching the edge of the dielectric or non-metalized film formed on at least one side of the metalized film, the vapor-deposited electrode is exposed and comes into contact with the electrode extraction layer. In the case of wound type metallized film capacitors, high precision is not required for controlling the position of the film to be wound, so high-speed winding is possible.
Yield is improved and mass productivity can be increased. In addition, for laminated or wound type metallized film capacitors, which required a coating margin on a wide film, a coating margin is no longer required and the entire surface can be coated, so there is no need to carefully control the coating margin position. Coating can be done at high speed, increasing mass productivity. As described above, the present invention makes it possible to improve the yield of metallized film capacitors and increase mass productivity.
It has great industrial and social effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a、bは本発明の第1の実施例による金属化フィ
ルムコンデンサの製造方法における要部工程を示す断面
図、第2図a、bは同斜視図、第3図a、bは本発明の
第2の実施例による積層型の金属化フィルムコンデンサ
の製造方法における要部工程を示す断面図、第4図a、
bは同斜視図、第5図は同実施例に用いる金属化フィル
ムを示す斜視図、第6図a、bおよび第7図a、bはそ
れぞれ本発明の第3の実施例における要部工程を示す断
面図、第8図〜第10図はそれぞれ従来の金属化フィル
ムコンデンサの構成を示す断面図、第11図は従来の積
層型金属化フィルムコンデンサに使用する複合フィルム
の例を示す斜視図である。 1・・・・・・両面金属化フィルム、2・・・・・・合
わせフィルム、3・・・・・・蒸着電極、4・・・・・
・蒸着マージン部、5・・・・・・金属溶射されるフィ
ルム端部、6・・・・・・誘電体膜、7・・・・・・片
面金属化フィルム。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 第4図 第5図 第7図 第8図 第9図 1”71     ’つl Hw 7J10I21
FIGS. 1a and 1b are cross-sectional views showing the main steps in the method for manufacturing a metallized film capacitor according to the first embodiment of the present invention, FIGS. 2a and 2b are perspective views, and FIGS. 3a and 3b are A sectional view showing the main steps in the method for manufacturing a laminated metallized film capacitor according to the second embodiment of the present invention, FIG. 4a,
b is a perspective view of the same, FIG. 5 is a perspective view showing a metallized film used in the same embodiment, and FIGS. 6 a, b and 7 a, b are main steps in the third embodiment of the present invention, respectively. 8 to 10 are sectional views showing the structure of a conventional metallized film capacitor, and FIG. 11 is a perspective view showing an example of a composite film used in a conventional laminated metallized film capacitor. It is. 1... Double-sided metalized film, 2... Laminated film, 3... Vapor deposited electrode, 4...
- Vapor deposition margin part, 5... end of film to be metal sprayed, 6... dielectric film, 7... one side metallized film. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 4 Figure 5 Figure 7 Figure 8 Figure 9

Claims (2)

【特許請求の範囲】[Claims] (1)金属化フィルムとこのフィルムの少なくとも片面
に配設される誘電体膜または非金属化フィルムとを重ね
合せて巻回もしくは積層し、その端部に電極引出し層を
設けることにより素子が構成され、前記誘電体膜または
非金属化フィルムの電極引出し層が形成される部分をエ
ッチングして、前記金属化フィルムの蒸着電極を前記金
属化フィルムの縁辺部に露出させることを特徴とする金
属化フィルムコンデンサの製造方法。
(1) An element is constructed by overlapping and winding or laminating a metallized film and a dielectric film or non-metalized film disposed on at least one side of this film, and providing an electrode lead layer at the end. and etching a portion of the dielectric film or the non-metalized film where the electrode extraction layer is formed to expose the vapor-deposited electrode of the metalized film at the edge of the metalized film. Method of manufacturing film capacitors.
(2)巻回もしくは積層されるフィルムの幅がほぼ同じ
であって、かつ幅方向にフィルムをほとんどずらすこと
なく巻回もしくは積層することを特徴とする特許請求の
範囲第1項記載の金属化フィルムコンデンサの製造方法
(2) The metallization according to claim 1, characterized in that the widths of the films to be wound or laminated are approximately the same, and the films are wound or laminated without substantially shifting the films in the width direction. Method of manufacturing film capacitors.
JP61034648A 1986-02-18 1986-02-18 Manufacture of metallized film capacitor Granted JPS62190828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61034648A JPS62190828A (en) 1986-02-18 1986-02-18 Manufacture of metallized film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61034648A JPS62190828A (en) 1986-02-18 1986-02-18 Manufacture of metallized film capacitor

Publications (2)

Publication Number Publication Date
JPS62190828A true JPS62190828A (en) 1987-08-21
JPH043098B2 JPH043098B2 (en) 1992-01-22

Family

ID=12420259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61034648A Granted JPS62190828A (en) 1986-02-18 1986-02-18 Manufacture of metallized film capacitor

Country Status (1)

Country Link
JP (1) JPS62190828A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01248607A (en) * 1988-03-30 1989-10-04 Matsushita Electric Ind Co Ltd Film capacitor and method and apparatus for manufacturing the same
JPH02116109A (en) * 1988-10-26 1990-04-27 Matsushita Electric Ind Co Ltd Film capacitor and manufacture thereof
JPH02134805A (en) * 1988-11-16 1990-05-23 Matsushita Electric Ind Co Ltd Film capacitor and manufacture of the same
JPH0334512A (en) * 1989-06-30 1991-02-14 Matsushita Electric Ind Co Ltd Manufacture of film capacitor
JPH0334518A (en) * 1989-06-30 1991-02-14 Matsushita Electric Ind Co Ltd Film capacitor and manufacture thereof
JPH0362911A (en) * 1989-07-31 1991-03-19 Matsushita Electric Ind Co Ltd Metallized film capacitor and manufacture thereof
KR20170095962A (en) * 2014-12-17 2017-08-23 카버 싸이언티픽, 아이엔씨. Method for chemical binding of the dielectric to the electrode after their assembly
US10622159B2 (en) 2016-12-02 2020-04-14 Carver Scientific, Inc. Capacitive energy storage device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151853A (en) * 1976-06-14 1977-12-16 Matsushita Electric Ind Co Ltd Method of forming end surface electrodes
JPS6122612A (en) * 1984-04-16 1986-01-31 スペクトラム コントロール インコーポレーテツド Method of treating edge of monolithic capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151853A (en) * 1976-06-14 1977-12-16 Matsushita Electric Ind Co Ltd Method of forming end surface electrodes
JPS6122612A (en) * 1984-04-16 1986-01-31 スペクトラム コントロール インコーポレーテツド Method of treating edge of monolithic capacitor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01248607A (en) * 1988-03-30 1989-10-04 Matsushita Electric Ind Co Ltd Film capacitor and method and apparatus for manufacturing the same
JPH02116109A (en) * 1988-10-26 1990-04-27 Matsushita Electric Ind Co Ltd Film capacitor and manufacture thereof
JPH02134805A (en) * 1988-11-16 1990-05-23 Matsushita Electric Ind Co Ltd Film capacitor and manufacture of the same
JPH0334512A (en) * 1989-06-30 1991-02-14 Matsushita Electric Ind Co Ltd Manufacture of film capacitor
JPH0334518A (en) * 1989-06-30 1991-02-14 Matsushita Electric Ind Co Ltd Film capacitor and manufacture thereof
JPH0362911A (en) * 1989-07-31 1991-03-19 Matsushita Electric Ind Co Ltd Metallized film capacitor and manufacture thereof
KR20170095962A (en) * 2014-12-17 2017-08-23 카버 싸이언티픽, 아이엔씨. Method for chemical binding of the dielectric to the electrode after their assembly
US10622159B2 (en) 2016-12-02 2020-04-14 Carver Scientific, Inc. Capacitive energy storage device
US10903015B2 (en) 2016-12-02 2021-01-26 Carver Scientific, Inc. Capacitive energy storage device

Also Published As

Publication number Publication date
JPH043098B2 (en) 1992-01-22

Similar Documents

Publication Publication Date Title
US3855507A (en) Self heating capacitors
JPS62190828A (en) Manufacture of metallized film capacitor
US4381423A (en) High capacitance bus bar manufacturing technique
JPH06168845A (en) Chip type laminated film capacitor
JPH05314984A (en) Current collector body for battery
JP3092440B2 (en) Manufacturing method of multilayer ceramic electronic component
JPS59172711A (en) Method of producing ceramic laminated capacitor
JPS61287119A (en) Metalized film capacitor
WO2023017556A1 (en) Capacitor and method for manufacturing same
US20230260710A1 (en) Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
JPS5867017A (en) Method of producing metallized film condenser
JPH0232778B2 (en)
JPS59228711A (en) Method of producing porcelain condenser
JP2624449B2 (en) Manufacturing method of capacitor
JPH02222129A (en) Film capacitor and manufacture thereof
JPH0334520A (en) Manufacture of film capacitor
JPS622513A (en) Cr compound part
JPH0379013A (en) Manufacture of film capacitor
JP2872740B2 (en) Manufacturing method of multilayer solid electrolytic capacitor
JP2500866B2 (en) Multilayer film capacitor and manufacturing method thereof
JPS59167008A (en) Film capacitor
JPS6386413A (en) Manufacture of thin film dielectric material for capacitor
JPS62124720A (en) Manufacture of capacitor
JPH0445963B2 (en)
JPS6328022A (en) Film capacitor