JPS6288834A - Vibro-isolator - Google Patents

Vibro-isolator

Info

Publication number
JPS6288834A
JPS6288834A JP60227659A JP22765985A JPS6288834A JP S6288834 A JPS6288834 A JP S6288834A JP 60227659 A JP60227659 A JP 60227659A JP 22765985 A JP22765985 A JP 22765985A JP S6288834 A JPS6288834 A JP S6288834A
Authority
JP
Japan
Prior art keywords
liquid
cross
cylinder
passages
throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60227659A
Other languages
Japanese (ja)
Inventor
Michihiro Orikawa
通洋 折川
Takuya Dan
団 琢也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP60227659A priority Critical patent/JPS6288834A/en
Publication of JPS6288834A publication Critical patent/JPS6288834A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/14Units of the bushing type, i.e. loaded predominantly radially
    • F16F13/1463Units of the bushing type, i.e. loaded predominantly radially characterised by features of passages between working chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Body Structure For Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Vehicle Body Suspensions (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

PURPOSE:To sufficiently restrict increase in a dynamic spring constant within a high-frequency band in a liquid-containing vibro-isolation unit by communicating a plurality of liquid chambers with each other by throttle passages differing in length or cross section and resonating the columns of liquid in the passages at various frequencies. CONSTITUTION:A resilient member 3 chiefly made of rubber or similar resilient mate rial is disposed between an internal cylinder 1 and an external cylinder 2. Said resilient chamber 3 has a cylindrical member 4 on the external face thereof. As one example of the conjunction of the resilient member 3 to the internal cylinder 1 and the external cylinder 2, the internal face of the resilient member 3 is brought in vulcanized contact with the internal cylinder 1 and the external cylinder 2 is fixed by caulking on the external face thereof via an O-ring. Plural pairs of liquids chambers 5 and 6 which are in the side positions with respect to the axial direction of the resilient member 3 and opposted to each other in the diametral direction of on and one plane containing the axis are formed separately in the axial or radial direction. In addition, the liquid chambers 5 and 6 are communicated with each other by throttle passages 7 and 8 differing in at least one factor of cross section and lengths for example, the cross section.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、たとえばエンジンマウント、ザスペンショ
ンプッシュ、キャブマウントなどとして用いることがで
きる液体入り防振装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a liquid-filled vibration isolator that can be used, for example, as an engine mount, a suspension pusher, a cab mount, or the like.

(従来の技術) 従来この種の液体入り防振装置としては、たとえば、同
心配置した内筒および外筒をゴム弾性体によって相互連
結するとともに、このゴム弾性体内に、液体を封入した
二個一対の液体室を直径方向に対抗させて形成し、そし
てこれらの両液体重を一本もしくは複数本の絞り通路に
よって連通させたものがある。
(Prior Art) Conventionally, this type of liquid-filled vibration isolator includes, for example, a pair of concentrically arranged inner and outer cylinders interconnected by a rubber elastic body, and a liquid sealed in the rubber elastic body. Some liquid chambers are formed diametrically opposed to each other, and these two liquid chambers are communicated through one or more restrictive passages.

かかる防振装置は、そこへ伝達されるとくに低周波大振
幅振動に対しては、液体室内の液体が絞り通路を通って
流動するに際し、その絞り通路が液体に及ぼす流動抵抗
によって、液体の運動エネルギーを熱エネルギーに変換
することにて振動の有効なる減衰をもたらすことができ
る。
Such a vibration isolator prevents the motion of the liquid due to the flow resistance exerted on the liquid by the restriction passage when the liquid in the liquid chamber flows through the restriction passage. Converting energy into thermal energy can provide effective damping of vibrations.

(発明が解決しようとする問題点) ところが、このような従来技術にあっては、両液体重の
連通をもたらす、絞り通路の種類が一種類であり、かつ
、その長さJ5よび断面積が常に一定であるため、それ
らを、低周波帯域の振動の十分なる減衰に適合するよう
選択した場合には、高周波帯域中の比較的低い周波数の
振動によって、絞り通路内の液体の慣性力、摩擦力など
に起因する絞り通路の閉塞状態が惹起され、この結果と
して、防振装置の動的ばね定数の急激なる増加がもたら
され、それ以上の高周波振動に対しては、振動の減衰を
ほとんど行い得なくなるという問題があった。
(Problems to be Solved by the Invention) However, in such prior art, there is only one type of throttle passage that brings communication between the two liquid masses, and its length J5 and cross-sectional area are Since they are always constant, relatively low frequency vibrations in the high frequency band will reduce the inertia, friction and A blockage state of the throttle passage is induced due to force, etc., resulting in a rapid increase in the dynamic spring constant of the vibration isolator, which hardly damps vibrations for higher frequency vibrations. The problem was that it could not be done.

この発明は、とくに、高周波小振幅(たとえば±0.0
5mm以下の)振動に対しては、絞り通路内の液体に、
いわゆる液柱共振が生じ、その共振周波数の直前(低周
波側)の周波数帯域では、動的ばね定数の大幅なる低下
がもたらされることに着目してなされたものであり、高
周波帯域での動ばね定数の増加を十分に抑制し得る防振
装置を提供するものである。
This invention is particularly suitable for high frequency and small amplitude (for example ±0.0
For vibrations (less than 5mm), the liquid in the throttle passage
This was done by focusing on the fact that so-called liquid column resonance occurs, and in the frequency band just before the resonance frequency (low frequency side), the dynamic spring constant is significantly reduced. An object of the present invention is to provide a vibration isolating device that can sufficiently suppress an increase in constant.

(問題点を解決するための手段) この発明の防振装置は、内筒と外筒との間に、ゴム、ゴ
ム状弾性材料などを主体とするたとえば、筒状をなす肉
厚の弾性体を配設することにより、この弾性体による内
外筒の相互連結をもたらし、そしてこの弾性体の軸線方
向内側位置に、その軸線を含む一の面内にて直径方向に
対抗するとともに、液体を包含する複数対の液体室を、
軸線方向もしくは半径方向へ離間させて形成し、さらに
、それぞれの対の液体室を、長さおよび断面積の少なく
とも一方、たとえば断面積が相違するそれぞれの絞り通
路によって連通させてなる。
(Means for Solving the Problems) The vibration isolating device of the present invention has a thick elastic body mainly made of rubber, rubber-like elastic material, etc., in the shape of a cylinder, between the inner cylinder and the outer cylinder. By arranging the elastic body, the inner and outer cylinders are interconnected by the elastic body, and at the axially inner position of the elastic body, the elastic body is diametrically opposed in a plane including the axis, and contains a liquid. multiple pairs of liquid chambers,
The liquid chambers are formed to be spaced apart from each other in the axial direction or the radial direction, and each pair of liquid chambers is communicated by respective throttle passages having different at least one of length and cross-sectional area, for example, cross-sectional area.

(作 用) この防振装置において、たとえば、軸線方向へ離間する
二対の液体室を、長さが等しく断面積が相違するそれぞ
れの液体室によって連通させた場合には、とくに、高周
波小振幅振動のそこへの伝達に際し、断面積が小さい絞
り通路内の液体には比較的低い周波数にて、また、断面
積が大きい絞り通路内の液体には、それより高い周波数
にてそれぞれ液柱共振が生じ、そしてかかる液柱共振が
生じるときには、共振点を境にしてその直前の周波数帯
域では、振動振幅が小さいほど動的ばね定数の大幅なる
低減がもたらされ、逆に、その直後の周波数帯域では動
的ばね定数の急激なる増加がもたらされるので、ここで
は、周波数の増加に対し、好ましくは、断面積が小さい
絞り通路内の液体による動的ばね定数の低減がもたらさ
れた後、引き続いて、断面積が大きい通路内の液体によ
る動的ばね定数の低減がもたらされるよう、それぞれの
断面積を選択することにより、小さい通路内の液体によ
る液柱共振後における動的ばね定数の増加傾向を、大き
い通路内の液体による動的ばね定数の減少をもって十分
有効に相殺することができ、この故に、高周波小振幅の
各種の振動に対して動的はね定数の増加を十分有効に抑
制することができる。
(Function) In this vibration isolator, for example, when two pairs of liquid chambers separated in the axial direction are communicated with each other by means of liquid chambers having equal lengths and different cross-sectional areas, high frequency and small amplitude When vibrations are transmitted there, liquid column resonance occurs at a relatively low frequency for the liquid in the throttle passage with a small cross-sectional area, and at a higher frequency for the liquid in the throttle passage with a large cross-sectional area. occurs, and when such liquid column resonance occurs, the smaller the vibration amplitude in the frequency band just before the resonance point, the greater the reduction in the dynamic spring constant; Since the band results in a sharp increase in the dynamic spring constant, here, for an increase in frequency, preferably after a reduction in the dynamic spring constant due to the liquid in the throttle channel with a small cross-sectional area, Subsequently, by choosing the respective cross-sectional areas such that the liquid in the passages with a large cross-sectional area results in a reduction in the dynamic spring constant, the liquid in the passages with a small cross-section increases the dynamic spring constant after liquid column resonance. This tendency can be sufficiently effectively offset by a decrease in the dynamic spring constant caused by the liquid in the large passage, and therefore, the increase in the dynamic spring constant can be sufficiently effectively suppressed against various types of high-frequency, small-amplitude vibrations. can do.

なおこれらのことは、長さだけが相違する絞り通路を設
けた場合、長さおよび断面積の両方が相違する絞り通路
を設けた場合も同様であり、長さが短いほど、また断面
積が、大きいほど、液柱共振の発生周波数が高くなる。
Note that these things are the same when providing throttle passages that differ only in length, or when providing throttle passages that differ in both length and cross-sectional area; the shorter the length, the larger the cross-sectional area. , the higher the frequency at which liquid column resonance occurs.

(実施例) 以下にこの発明を図示例に基づいて説明する。(Example) The present invention will be explained below based on illustrated examples.

第1図はこの発明の一実施例を示す断面図であり、図中
1は内筒を、2はこの内筒1の外周に、たとえば同心配
置した外筒をそれぞれ示し、ここではこれらの内外筒1
,2を、それらの間に配設した弾性体3によって相互連
結する。
FIG. 1 is a cross-sectional view showing one embodiment of the present invention. In the figure, 1 indicates an inner cylinder, and 2 indicates an outer cylinder arranged concentrically around the outer circumference of the inner cylinder 1. Here, these inner and outer cylinders are shown. Cylinder 1
, 2 are interconnected by an elastic body 3 disposed between them.

たとえばゴム、ゴム状弾性材料などを主体とするこの弾
性体3は、その外周面に筒状部材4を有しており、この
弾性体3の内外筒1,2への連結は、これもたとえば、
弾性体3の内周面を内筒1に加硫接着させ、そしてその
外周面に、0リングを介して外f?I2をかしめ固定す
ることにて行うことができる。
For example, this elastic body 3 mainly made of rubber, rubber-like elastic material, etc. has a cylindrical member 4 on its outer peripheral surface, and the connection of this elastic body 3 to the inner and outer cylinders 1 and 2 is also, for example. ,
The inner peripheral surface of the elastic body 3 is vulcanized and adhered to the inner cylinder 1, and an outer f? This can be done by caulking and fixing I2.

またここでは、弾性体3の軸線方向内側位置で、その軸
線を含む一の面内に、直径方向に対抗するとともに、液
体を包含する二対の液体室5.5および6.6を軸線方
向へ離間させて形成する。ここにおけるこれらの液体室
5,6はいずれも、弾性体3に形成した窪み3aと、外
筒2と、筒状部材4とによって区画されてそれらへ充填
された所要粘度の液体を十分液密に維持する。
Here, at an axially inner position of the elastic body 3, two pairs of liquid chambers 5.5 and 6.6 that diametrically oppose each other and contain liquid are axially arranged in a plane that includes the axis of the elastic body 3. Formed in a spaced manner. Both of these liquid chambers 5 and 6 here are partitioned by a recess 3a formed in the elastic body 3, the outer cylinder 2, and the cylindrical member 4, and are sufficiently liquid-tight for the liquid of a desired viscosity filled therein. to be maintained.

そして図示例では、このように構成した二対の液体室の
うち、一方の対をなす液体室5.5を、筒状部材4の外
周面に形成した溝と、外筒内周面とで形成した断面積の
小さい二本の絞り通路7によって相互に連通させ、他方
の対をなす液体室6゜6を、同様にして形成した断面積
の大きい二本の絞り通路8によって相互に連通させる。
In the illustrated example, one of the two pairs of liquid chambers configured in this way, the liquid chamber 5.5, is formed by a groove formed on the outer circumferential surface of the cylindrical member 4 and an inner circumferential surface of the outer cylinder. They are made to communicate with each other by two formed throttle passages 7 with a small cross-sectional area, and the other pair of liquid chambers 6゜6 are communicated with each other by two similarly formed throttle passages 8 with a large cross-sectional area. .

第2図はこの発明の他の実施例を示す断面図であり、こ
の例は、それぞれの絞り通路を弾性体3の内周側に形成
することにより、各絞り通路の長さを短くしたものであ
る。
FIG. 2 is a sectional view showing another embodiment of the present invention, in which the length of each throttle passage is shortened by forming each throttle passage on the inner peripheral side of the elastic body 3. It is.

この例の弾性体3は、その軸線方向の中央部分で、その
内周面に、通路画成筒9を有しており、ここでは、この
通路画成筒9の内周面と、内筒1の外周面とで断面積の
異なる環状の絞り通路10゜11をそれぞれ形成し、こ
れらの絞り通路10.11を、通路画成筒9に設けた貫
通孔を介してそれぞれの対の液体室5,5および6,6
に同口させることにより、多対の液体室の相互の連通を
もたらす。
The elastic body 3 in this example has a passage-defining cylinder 9 on its inner circumferential surface at its central portion in the axial direction. Annular throttle passages 10 and 11 having different cross-sectional areas are formed on the outer peripheral surface of the tube 1, and these throttle passages 10 and 11 are connected to each pair of liquid chambers through through holes provided in the passage defining cylinder 9. 5,5 and 6,6
By having the same opening, multiple pairs of liquid chambers are brought into communication with each other.

このように構成してなる防振装置において、高周波帯域
(たとえば45〜500Hz)の小振幅振動(たとえば
±o、osn+m >が、たとえば外筒2に伝達された
場合には、断面積の小さい絞り通路7゜10内の液体に
、比較的低い周波数での液柱共振が生じその共振周波数
の直前の周波数帯域にては、動的ばね定数ひいては絶対
ばねの顕著なる減少が、また、共振周波数の直後の周波
数帯域にては、絶対ばねの急激なる増加がもたらされる
。なおここで、振動周波数が一層高くなった場合には、
絶対ばねの低下がもたらされ、このとき絶対ばねは、絞
り通路7.10の閉塞時のそれと同一となる。
In the vibration isolating device configured in this way, when small amplitude vibrations (for example, ±o, osn+m) in a high frequency band (for example, 45 to 500 Hz) are transmitted to, for example, the outer cylinder 2, an aperture with a small cross-sectional area is used. Liquid column resonance occurs in the liquid in the passage 7.10 at a relatively low frequency, and in the frequency band just before the resonance frequency, there is a significant decrease in the dynamic spring constant and thus in the absolute spring, and also at the resonance frequency. In the immediately following frequency band, a sharp increase in the absolute spring is brought about.If the vibration frequency becomes even higher here,
A lowering of the absolute spring is effected, which is now the same as that when the throttle channel 7.10 is closed.

この一方において、通路7,10の液体の液柱共振周波
数にては、断面積の大きい絞り通路8,11内の液体は
いまだに液柱共振を生じな(へので、通常は、その周波
数およびその周波数の前後の周波数帯域の撮動に対して
は、絞り通路8.11を通る液体流動が可能である。
On the other hand, at the liquid column resonance frequency of the liquid in the passages 7 and 10, the liquid in the throttle passages 8 and 11, which have large cross-sectional areas, still does not cause liquid column resonance. For imaging of frequency bands around the frequency, a liquid flow through the restriction passage 8.11 is possible.

またここで、絞り通路8.71内の液体は、通路7.1
0内の液体の液柱共振周波数より高い振動周波数にて液
柱共振を生じ、このことによってもまた、その共振周波
数を境にして絶対ばねの大幅なる減少および急激なる増
加がそれぞれもたらされる。
Also here, the liquid in the throttle passage 8.71 is transferred to the passage 7.1.
A liquid column resonance occurs at a vibration frequency higher than the liquid column resonance frequency of the liquid in zero, which also results in a large decrease and a sharp increase, respectively, in the absolute spring past that resonance frequency.

従って、絞り通路7と8または10と11を設けた防振
装置において、通路7,10内の液体に起因する絶対ば
ねの急激なる増加が生じる周波数帯域で、通路8.11
内の液体に起因する絶対ばねの大なる低下がもたらされ
るよう、両絞り通路7.8および10.11の長さおよ
び断面積を選択した場合には、絶対ばねの一方の増加を
他方の低下によって相殺することができ、防振装置の絶
対ばねを各種の周波数に対して十分低く押えることがで
き、内筒1もしくは外筒2に伝達された振動を、その他
方側に対して有効に絶縁することができる。
Therefore, in a vibration isolator provided with throttle passages 7 and 8 or 10 and 11, in a frequency band where a sudden increase in the absolute spring due to the liquid in passages 7 and 10 occurs, passages 8 and 11
If the lengths and cross-sectional areas of both throttle passages 7.8 and 10.11 are chosen so that a large reduction in the absolute spring due to the liquid in the The absolute spring of the vibration isolator can be held down sufficiently low for various frequencies, and the vibration transmitted to the inner cylinder 1 or outer cylinder 2 can be effectively isolated from the other side. can do.

すなわち、このように構成した防振装置によれば、周波
数変化に対するその絶対ばねの変化は、第3図でグラフ
に実線で示すようになる。なおここで、図に破線で示す
曲線は、絞り通路7,10内の液体に基づく絶対ばねの
変化を示し、この曲線によれば、絶対ばねは、通路7,
10内の液体の共振周波数Aの直前の周波数帯域では大
きく低下し、その直後の周波数帯域では急激に増加する
に対し、図に一点鎖線で示す絞り通路8.11内の液体
に基づく絶対ばねの変化によれば、そこの液体の共振周
波数Bの直前の周波数帯域、いいかえれば共振周波数A
の直後の帯域において大幅に低下するので、この周波数
帯域では、これらの両組対ばね曲線の平均曲線となる防
振装置の絶対ばねを十分小さく抑えることができ、この
結果として、防振装置は、この周波数帯域においても撮
動絶縁機能を有効に発揮することができる。
That is, according to the vibration isolating device configured in this way, the change in the absolute spring with respect to the frequency change is as shown by the solid line in the graph in FIG. Here, the curve shown by a broken line in the figure shows the change in the absolute spring based on the liquid in the throttle passages 7, 10, and according to this curve, the absolute spring is
In the frequency band immediately before the resonant frequency A of the liquid in 10, it decreases greatly, and in the frequency band immediately after that, it increases sharply, whereas the absolute spring based on the liquid in the throttle passage 8.11 shown by the dashed line in the figure According to the change, the frequency band immediately before the resonant frequency B of the liquid, in other words, the resonant frequency A
In this frequency band, the absolute spring of the vibration isolator, which is the average curve of both sets of pair spring curves, can be kept sufficiently small, and as a result, the vibration isolator , it is possible to effectively exhibit the imaging insulation function even in this frequency band.

また図の一点鎖線によれば、共振周波数Aより低い周波
数帯域では、絶対ばねが十分低い値となるので、この部
分の絶対ばねが、防振装置の絶対ばねの大幅なる増加を
もたらすおそれは全くない。
Furthermore, according to the dashed line in the figure, in the frequency band lower than the resonance frequency A, the absolute spring has a sufficiently low value, so there is no possibility that the absolute spring in this part will cause a significant increase in the absolute spring of the vibration isolator. do not have.

第4図はこの発明の他の実施例を示す断面図であり、対
をなすそれぞれの液体室5,5および6゜6を、弾性体
3の軸線を含む一の面内にて半径方向へ離間させて形成
したものである。
FIG. 4 is a cross-sectional view showing another embodiment of the present invention, in which the paired liquid chambers 5, 5 and 6°6 are arranged in a radial direction within a plane including the axis of the elastic body 3. They are formed at a distance.

内周面を内筒1に、これもたとえば加硫接着されるこの
例の弾性体3は、その半径方向内側から順次に、窪み3
aと、筒状部材4a上にかしめ固定されて液体室5.5
の区画に寄与する区画筒12と、この区画筒12に摩擦
掛合させた取付筒13と、取付筒13の外周面に接着さ
れて通路画成筒14とともに、液体室6,6用の窪み3
bを形成する弾性体部分3Cとを具える。
The elastic body 3 of this example, whose inner circumferential surface is also vulcanized and bonded to the inner cylinder 1, has depressions 3 sequentially formed from the inside in the radial direction.
a, and a liquid chamber 5.5 which is caulked and fixed onto the cylindrical member 4a.
A partitioning tube 12 that contributes to the partitioning, a mounting tube 13 frictionally engaged with the partitioning tube 12, a passage-defining tube 14 bonded to the outer peripheral surface of the mounting tube 13, and a recess 3 for the liquid chambers 6, 6.
and an elastic body portion 3C forming b.

このような弾性体3に対する外筒2の取り付けは、第1
.2図に示したところと同様に、弾性体3の外周に位置
するその筒状部材4b上に外筒2をかしめ固定すること
により行われる。
The attachment of the outer cylinder 2 to the elastic body 3 is performed in the first
.. This is done by caulking and fixing the outer cylinder 2 onto the cylindrical member 4b located on the outer periphery of the elastic body 3, in the same way as shown in FIG.

そしてまたこの例では、液体室5.5の連通をもたらす
絞り通路15を、第1図で述べたと同様にして筒状部材
4aと、区画筒12とで形成し、そして液体室6.6の
連通をもたらす絞り通路16を、第2図で述べたと同様
にして取付筒13と、通路画成筒14とで形成し、これ
らの絞り通路15.16を、断面積を等しくする一方、
通路16の長さが通路15のそれよも長いものとする。
Also in this example, the throttle passage 15 that brings the liquid chamber 5.5 into communication is formed by the cylindrical member 4a and the partition tube 12 in the same manner as described in FIG. The throttle passage 16 that provides communication is formed by the mounting tube 13 and the passage defining tube 14 in the same manner as described in FIG.
It is assumed that the length of the passage 16 is longer than that of the passage 15.

この防振装置によれば、絞り通路1cI内の液体の液柱
共振が、絞り通路16内の液体のそれよりも低い周波数
にて発生するので、絞り通路15.16の長さの比を、
絞り通路15.16内の液体に起因する絶対ばねのピー
ク値が、それぞれ、第5図の破線および一点鎖線と同一
もしくはそれらに近似したものとなるように選択するこ
とにより、防振装置の絶対ばねを、高周波振動に対して
より十分に低減させることができる。従ってこの防振装
置では、高周波撮動を広い周波数帯域にわたって有効に
絶縁することができる。
According to this vibration isolator, since the liquid column resonance of the liquid in the throttle passage 1cI occurs at a lower frequency than that of the liquid in the throttle passage 16, the ratio of the lengths of the throttle passage 15.16 is
By selecting such that the peak values of the absolute spring due to the liquid in the throttle passages 15 and 16 are the same as or close to the dashed line and the dashed-dotted line in FIG. 5, respectively, the absolute The spring can be more effectively damped against high frequency vibrations. Therefore, with this vibration isolator, high frequency imaging can be effectively isolated over a wide frequency band.

なお、ここにおいて、それぞれの絞り通路15゜16内
にお【プる液柱共振は、断面積および長さの少なくとも
一方を相違させることにより、断面積が大きいものほど
、また長さが短いものほど発生周波数が高くなるので、
所要の共振周波数との間遠の下で、第4図に示す絞り通
路16を、外筒2の内周に形成すること、絞り通路15
を内筒1の外周に形成すること、ざらには、絞り通路1
6を外周2の内周に、そして絞り通路15を内筒1の外
周にそれぞれ形成するとも′可能である。
In this case, the liquid column resonance in each of the throttle passages 15 and 16 is caused by making at least one of the cross-sectional area and length different, so that the larger the cross-sectional area, the shorter the length. As the frequency increases,
Forming the throttle passage 16 shown in FIG. 4 on the inner circumference of the outer cylinder 2 at a distance from the required resonance frequency;
is formed on the outer periphery of the inner cylinder 1, roughly speaking, the throttle passage 1
It is also possible to form the throttle passage 6 on the inner periphery of the outer periphery 2 and the throttle passage 15 on the outer periphery of the inner cylinder 1.

以上この発明を図示例に基づいて説明したが、液体室の
対を三対以上形成すること、それぞれの絞り通路の、断
面積および長さの両方を変化させることも可能である。
Although the present invention has been described above based on the illustrated examples, it is also possible to form three or more pairs of liquid chambers and to change both the cross-sectional area and length of each throttle passage.

(発明の効果) 従って、この発明によれば、複数対の液体室を、長さお
よび断面積の少なくとも一方が相違するそれぞれの絞り
通路によって連通させてそれぞれの絞り通路内の液体を
、異なる周波数にて液柱共振させることにより、とくに
JjXWit幅の高周波撮動に対し、防振装置の動的ば
ね定数、ひいては絶対ばねを、広い周波数帯域にわたっ
て十分低く抑えることができる。
(Effects of the Invention) Therefore, according to the present invention, a plurality of pairs of liquid chambers are communicated by respective throttle passages having different lengths and cross-sectional areas, and the liquid in each throttle passage is controlled to flow at different frequencies. By causing the liquid column to resonate at , the dynamic spring constant of the vibration isolator, and ultimately the absolute spring, can be kept sufficiently low over a wide frequency band, especially for high frequency imaging with a JjXWit width.

【図面の簡単な説明】[Brief explanation of drawings]

第1.2図はそれぞれこの発明の実施例を示す断面図、 第3図は第1.2図に示す装置の周波数と絶対ばねとの
関係を示すグラフ、 第4図はこの発明の他の実施例を示す断面図、第5図は
第4図に示す装置の周波数と絶対ばねとの関係を示すグ
ラフである。 1・・・内筒      2・・・外筒3・・・弾性体
     5,6・・・液体室7、 8.10. i?
、 75.16・・・絞り通路第1図 第2図 周液数− 第4図 ! E−111厘斤面図
1.2 are cross-sectional views showing embodiments of the present invention, FIG. 3 is a graph showing the relationship between the frequency and absolute spring of the device shown in FIG. 1.2, and FIG. FIG. 5, which is a sectional view showing the embodiment, is a graph showing the relationship between the frequency and the absolute spring of the device shown in FIG. 4. 1... Inner cylinder 2... Outer cylinder 3... Elastic body 5, 6... Liquid chamber 7, 8.10. i?
, 75.16... Throttle passage Figure 1 Figure 2 Circumferential liquid number - Figure 4! E-111 rack surface diagram

Claims (1)

【特許請求の範囲】[Claims] 1、内筒と外筒との間に弾性体を配設し、この弾性体の
軸線方向内側位置に、その軸線を含む一の面内にて直径
方向に対向するとともに、液体を包含する複数対の液体
室を形成し、それぞれの対の液体室を、長さおよび断面
積の少なくとも一方が相違するそれぞれの絞り通路によ
って連通させてなる防振装置。
1. An elastic body is disposed between the inner cylinder and the outer cylinder, and a plurality of elastic bodies are arranged inside the elastic body in the axial direction, diametrically opposed to each other in a plane including the axis, and containing a liquid. A vibration damping device that forms a pair of liquid chambers and communicates each pair of liquid chambers through respective throttle passages that are different in at least one of length and cross-sectional area.
JP60227659A 1985-10-15 1985-10-15 Vibro-isolator Pending JPS6288834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60227659A JPS6288834A (en) 1985-10-15 1985-10-15 Vibro-isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60227659A JPS6288834A (en) 1985-10-15 1985-10-15 Vibro-isolator

Publications (1)

Publication Number Publication Date
JPS6288834A true JPS6288834A (en) 1987-04-23

Family

ID=16864324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60227659A Pending JPS6288834A (en) 1985-10-15 1985-10-15 Vibro-isolator

Country Status (1)

Country Link
JP (1) JPS6288834A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184250A (en) * 1986-02-08 1987-08-12 Marugo Rubber Kogyo Kk Liquid-filled bush
JPH01126451A (en) * 1987-11-06 1989-05-18 Kinugawa Rubber Ind Co Ltd Fluid sealed-in vibration isolator
US4893799A (en) * 1987-01-23 1990-01-16 Kleber Industrie Vibration isolation apparatus
US4896868A (en) * 1988-01-28 1990-01-30 Jean Thelamon Hydraulic antivibratory support sleeve
EP0353700A2 (en) * 1988-08-02 1990-02-07 Bridgestone Corporation Vibration damping device
JPH0246114U (en) * 1988-09-22 1990-03-29
FR2644864A1 (en) * 1989-03-23 1990-09-28 Tokai Rubber Ind Ltd FLUID-FILLED CYLINDRICAL ELASTIC FITTING HAVING TWO ORIFICES WITH DIFFERENT PASSAGE SECTIONS
FR2650356A1 (en) * 1989-07-31 1991-02-01 Hutchinson IMPROVEMENTS MADE TO MAN CHONS HYDRAULIC ANTI-VIBRATOR
DE3936347A1 (en) * 1989-11-02 1991-05-08 Freudenberg Carl Fa HYDRAULICALLY DAMPING SLEEVE RUBBER SPRING
JPH03125046A (en) * 1989-10-05 1991-05-28 Carl Freudenberg:Fa Hydraulic cushion type cylindrical rubber seat
FR2655113A1 (en) * 1989-11-29 1991-05-31 Nissan Motor ELASTOMER DAMPING DEVICE FILLED WITH A FLUID.
US5221077A (en) * 1989-05-15 1993-06-22 Bridgestone Corporation Vibration isolating apparatus
EP0971153A1 (en) * 1998-06-30 2000-01-12 Draftex Industries Limited Movement-damping arrangements
JP2016089994A (en) * 2014-11-07 2016-05-23 トヨタ自動車株式会社 Liquid-sealed vibration control device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184250A (en) * 1986-02-08 1987-08-12 Marugo Rubber Kogyo Kk Liquid-filled bush
US4893799A (en) * 1987-01-23 1990-01-16 Kleber Industrie Vibration isolation apparatus
JPH01126451A (en) * 1987-11-06 1989-05-18 Kinugawa Rubber Ind Co Ltd Fluid sealed-in vibration isolator
US4896868A (en) * 1988-01-28 1990-01-30 Jean Thelamon Hydraulic antivibratory support sleeve
EP0353700A2 (en) * 1988-08-02 1990-02-07 Bridgestone Corporation Vibration damping device
JPH0246114U (en) * 1988-09-22 1990-03-29
US5060918A (en) * 1989-03-23 1991-10-29 Tokai Rubber Industries, Ltd. Fluid-filled cylindrical elastic connector having two orifice passages with different cross sectional areas
FR2644864A1 (en) * 1989-03-23 1990-09-28 Tokai Rubber Ind Ltd FLUID-FILLED CYLINDRICAL ELASTIC FITTING HAVING TWO ORIFICES WITH DIFFERENT PASSAGE SECTIONS
US5221077A (en) * 1989-05-15 1993-06-22 Bridgestone Corporation Vibration isolating apparatus
US5088702A (en) * 1989-07-31 1992-02-18 Hutchinson Hydraulic antivibratory sleeves
FR2650356A1 (en) * 1989-07-31 1991-02-01 Hutchinson IMPROVEMENTS MADE TO MAN CHONS HYDRAULIC ANTI-VIBRATOR
JPH03125046A (en) * 1989-10-05 1991-05-28 Carl Freudenberg:Fa Hydraulic cushion type cylindrical rubber seat
US5178376A (en) * 1989-10-05 1993-01-12 Firma Carl Freudenberg Hydraulically damped rubber cartridge spring
DE3936347A1 (en) * 1989-11-02 1991-05-08 Freudenberg Carl Fa HYDRAULICALLY DAMPING SLEEVE RUBBER SPRING
FR2655113A1 (en) * 1989-11-29 1991-05-31 Nissan Motor ELASTOMER DAMPING DEVICE FILLED WITH A FLUID.
EP0971153A1 (en) * 1998-06-30 2000-01-12 Draftex Industries Limited Movement-damping arrangements
JP2016089994A (en) * 2014-11-07 2016-05-23 トヨタ自動車株式会社 Liquid-sealed vibration control device

Similar Documents

Publication Publication Date Title
EP0386735B1 (en) Upper support for shock absorber in a suspension system
US4749173A (en) Fluid-filled resilient bushing having damping means within fluid chambers
US4739962A (en) Vibration isolator
CA2012843C (en) Rubber bushing
US4786036A (en) Resilient bushing structure filled with viscous fluid
US4749174A (en) Fluid-filled resilient bushing having damping means within fluid chambers
US4838529A (en) Liquid-filled vibration isolating devices
JPS6288834A (en) Vibro-isolator
US5188346A (en) Fluid-filled elastic mount having two pressure-receiving chambers communicating with equilibrium chamber through respective orifice passages
JPS6361536B2 (en)
JPH01234635A (en) Bush type fixture
US4971300A (en) Motor mount having improved hydraulic damping
US4802658A (en) Vibration isolating apparatus
JPH03199735A (en) Vibro-isolating device
JPH01126451A (en) Fluid sealed-in vibration isolator
JPS62188832A (en) Body mount of vehicle
JPS62261730A (en) Vibration damping device
JPH01164831A (en) Fluid-filled type cylinder type mount
JP3764534B2 (en) Liquid filled vibration isolator
JPH11141595A (en) Vibration control device
JPS61197836A (en) Vibration preventing device
JPH0735841B2 (en) Anti-vibration device
JPH0434018B2 (en)
JP2528935B2 (en) Liquid filled bush
JPH0689808B2 (en) Anti-vibration device