JPS6288512A - Power source apparatus for electric discharge machining - Google Patents

Power source apparatus for electric discharge machining

Info

Publication number
JPS6288512A
JPS6288512A JP22881285A JP22881285A JPS6288512A JP S6288512 A JPS6288512 A JP S6288512A JP 22881285 A JP22881285 A JP 22881285A JP 22881285 A JP22881285 A JP 22881285A JP S6288512 A JPS6288512 A JP S6288512A
Authority
JP
Japan
Prior art keywords
machining
voltage
power supply
working
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22881285A
Other languages
Japanese (ja)
Inventor
Kazuo Tsurumoto
鶴本 和夫
Yasushi Endo
遠藤 靖士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22881285A priority Critical patent/JPS6288512A/en
Publication of JPS6288512A publication Critical patent/JPS6288512A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To reduce power loss and permit the working with fine surface roughness and high efficiency by arranging switching elements onto a working electrode side and a workpiece side and connecting the diodes in the direction for absorbing the working electric current. CONSTITUTION:When switching elements 5a and 5b are closed, a dc voltage is applied into the working gap between a working electrode 1 and a workpiece 2 from a dc constant voltage source 3, and electric discharge in the working gap is started. When, the switching elements 5a and 5b are opened, the voltage Vl is induced by the energy stored in a floating inductance 4. When this voltage Vl exceeds the power source voltage E, diodes 7a and 7b conduct, and a working electric current is regenerated on the power source side through the diodes 7a and 7b. Since the above-described energy is regenerated onto the power source side except the energy consumed in the working gap, electric power loss can be reduced. further, the pulse width of the working electric current can be reduced, and the work with a little electric discharge energy is permitted, the surface roughness of the worked surface can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、微小加工間隙を介し相対して配設された加
工M極と被加工体間に電圧を印加して放電加工する放電
加工用電源装置の改良に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applied to electric discharge machining, which performs electric discharge machining by applying a voltage between a machining M pole and a workpiece that are arranged opposite to each other through a micromachining gap. This invention relates to improvements to power supply devices.

〔従来の技術〕[Conventional technology]

第4図は従来この種の装置の回路図を示す。図において
、(1)は加工電極、(2)は加工i1S極(1)と加
工間隙を介し相対して配設された被加工体、(3)は被
加工体(2)の加工の為に用いられる直流定電圧電源、
(4)は直流定電圧電源(3)から加工間隙までのリー
ド線の浮遊インダクタンス、(5)はスイッチング素子
、(6)はダイオード、00)は抵抗器である。
FIG. 4 shows a circuit diagram of a conventional device of this type. In the figure, (1) is the machining electrode, (2) is the workpiece placed opposite the machining i1S pole (1) across the machining gap, and (3) is for machining the workpiece (2). DC constant voltage power supply used for
(4) is the floating inductance of the lead wire from the DC constant voltage power source (3) to the processing gap, (5) is the switching element, (6) is the diode, and 00 is the resistor.

次に動作について説明する。今、スイッチング素子(5
)が閉じる(ONする)と、直流定電圧電源(3)から
加工電極(1)と被加工体(2)の加工間隙に直流電圧
が印加され、加工間隙の絶縁が破壊すると放電が開始さ
れ加工電流がほぼ直線的に上昇する。
Next, the operation will be explained. Now, the switching element (5
) closes (turns on), a DC voltage is applied from the DC constant voltage power supply (3) to the machining gap between the machining electrode (1) and the workpiece (2), and when the insulation in the machining gap breaks down, electric discharge starts. The machining current increases almost linearly.

次いて、スイ・ソチンゲ素子(5)を開く (OFFず
ろ)と、ダイオード(6)と抵抗器0■を通して加工電
流を流すようにして、加工間隙と抵抗器(10)でスイ
ッチング素子(5)が開いた(OFFI、た)瞬間に浮
遊インダクタンス(4)Iζ蓄えられたエネルギーを消
費し、その結果加工電流は指数関数的に減少し放電が終
了して加工間隙;ま絶縁を回復する。この時のスイ、ソ
チング素子のタイミングと加工間隙の電圧波形及び電流
波形を第5図(a) 、 (bl 、 (c)にそれぞ
れ示す。而して、スイッチング素子(5)が開いた(O
FFした)瞬間に浮がインダクタンス(4)に蓄えられ
ているエネルギーをJl’f抗器OIで消費することに
よって加工Tsmを減少させることができろ。また、回
路構成も簡単であるという利点があった。
Next, the switching element (5) is opened (OFF position), and the machining current is passed through the diode (6) and the resistor (10), and the switching element (5) is connected to the machining gap and the resistor (10). At the moment when the floating inductance (OFFI) opens (OFFI), the stored energy is consumed by the stray inductance (4) Iζ, and as a result, the machining current decreases exponentially, the discharge ends, and the machining gap and insulation are restored. The timing of the switching element (5) and the voltage waveform and current waveform of the machining gap at this time are shown in Fig. 5 (a), (bl, and c), respectively.Then, the switching element (5) opened (O
It is possible to reduce the machining Tsm by consuming the energy stored in the float inductance (4) in the Jl'f resistor OI at the moment of FF. Another advantage was that the circuit configuration was simple.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

黙しながら、従来の装置ではスイッチング素子(5)が
開いた(OFFt、た)瞬間に浮遊インダクタンス(4
)に蓄えられているエネルギーを大部分抵抗器00)で
消費させろことによって、電力損失が生じる。しかも、
その電力損失はジュール熱となって、装置内の半導体素
子に悪影響を与えるとともに、これを抑制するために場
合によっては冷却装置が必要となり、抵抗器00)も大
きなものが必要となることも相まって装置の小型化がき
わめて困難であるという問題点があった。また、スイッ
チング素子(5) f)<開<  (OFFjy)時に
(E+Vl−Vg)という電圧(Eば電源電圧、Vlは
スイッチング素子(5)が開いた(OFFj、た)瞬間
に浮遊インダクタンス(4)に発生する電圧、vgは加
工間隙の電圧)がスイッチング素子に加わる為にスイッ
チング素子(5)の耐圧をこれより十分大きくしなけれ
ばならないなどの問題があった。
However, in conventional devices, the moment the switching element (5) opens (OFFt), the stray inductance (4
) dissipates most of the energy stored in resistor 00), resulting in power loss. Moreover,
The power loss becomes Joule heat, which has a negative effect on the semiconductor elements in the device, and in some cases a cooling device is required to suppress this, and a large resistor 00) is also required. There was a problem in that it was extremely difficult to miniaturize the device. In addition, when the switching element (5) f) < open < (OFFjy), the voltage (E + Vl - Vg) (E is the power supply voltage, Vl is the stray inductance (4 ), where vg is the voltage of the machining gap) is applied to the switching element, so there was a problem that the withstand voltage of the switching element (5) had to be made sufficiently larger than this.

この発明は上記のような問題点を解消するためになされ
たもので、電力損失を少なくして高効率化できるととも
に、高速加工ができ、加工面の面粗度が細い効率の良い
加工ができ、装置の小型化を可能にした放電加工用電源
装置を得ることを目的をする。
This invention was made to solve the above-mentioned problems.In addition to reducing power loss and increasing efficiency, it also enables high-speed machining and enables efficient machining with a thin surface roughness. The object of the present invention is to obtain a power supply device for electrical discharge machining that enables miniaturization of the device.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る放電加工用電源装置は抵抗器を廃し、加
工電極側と被加工体側の各々に直流定常圧電源からのパ
ルスri流を供給するために、加工m極側と被加工体側
の各々に同一動作を繰り返すスイッチング素子を配する
とともに、加工電極側と被加工体側の各々に直流定電圧
電源側へ加工電流を吸収する方向にダイオードを接続し
たものである。
The electric discharge machining power supply device according to the present invention eliminates the resistor and supplies pulse RI current from the DC steady voltage power source to the machining electrode side and the workpiece side, respectively. A switching element that repeats the same operation is disposed in the machine, and diodes are connected to the machining electrode side and the workpiece side in the direction of absorbing the machining current to the DC constant voltage power supply side.

〔作用〕[Effect]

この発明における加工電流は、スイッチング素子が開く
時に浮遊インダクタンスに蓄積されたエネルギーを直流
定電圧電源側に帰還させることにより、加工電流の立ち
下りを急峻にてきパルス幅が短くなって11i電エネル
ギーは小さくてすみ、加工面の面粗度の向上が可能とな
る。また、加工電流のパルス幅が短くできるので、放電
繰り返し周波数を高くすることができ、加工速度の増大
が可能となる。
The machining current in this invention is produced by feeding back the energy accumulated in the floating inductance to the DC constant voltage power supply when the switching element opens, so that the machining current falls sharply and the pulse width becomes short, and the 11i electrical energy is reduced. It is small, and it is possible to improve the surface roughness of the machined surface. Furthermore, since the pulse width of the machining current can be shortened, the discharge repetition frequency can be increased, making it possible to increase the machining speed.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第1
図において、(1)は加工電極、(2)は加工電極fi
lと加工間隙を介し相対して配設された被加工体、(3
)は被加工体(2)の加工の為に用いられる直流定電圧
電源、(4)は直流定電源(3)から加工間隙までのリ
ード線の浮遊インダクタンス、(5a) 、 (5b)
はスイッチング素子、(6al 、 (6b) 、 (
7al 、(7b)はダイオードである。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (1) is the processing electrode, (2) is the processing electrode fi
A workpiece (3
) is the DC constant voltage power supply used for machining the workpiece (2), (4) is the stray inductance of the lead wire from the DC constant power supply (3) to the machining gap, (5a), (5b)
are switching elements, (6al, (6b), (
7al and (7b) are diodes.

次に動作について説明する。今、スイッチング素子(5
a) 、 (5b)が閉じろ(ON)と、直流定電圧電
源(3)から加工電極(1)と被加工体(2)の加工間
隙に直流電圧が印加され、加工間隙に放電が開始される
と加工電流がほぼ直線的に上昇する。次いで、スイッチ
ング素子(5a) 、 (5b)を開く (OFFする
)と、浮遊インダクタンス(4)に蓄えられたエネルギ
ーにより、浮遊インダクタンス(4)には図示の方向に
電圧Vl  (=Ldi/dt)が誘起され、この電圧
VlがTi源電圧Eを越えればダイオード(7al 、
 (7b)が導通しこれを通して電源側に加工電流が回
生される。スイッチング素子(5a) 、 (5h)が
開いた(OFFI、た)瞬間に浮遊インダクタンスに蓄
えられたエネルギー(KLI”)は加工間隙で消費され
ろとともに、残りのエネルギーが電源側に回生され、加
工電流は傾き−(E+Vg)/L、で(Eは電源電圧、
Vgは加工間隙の電圧、Lは浮遊インダクタンス)直線
的に減少し加工間隙の放電は終了して加工間隙は絶縁を
回復する。この時のスイッチング素子(5a) 、 (
5b)のタイミングと加工間隙の電圧波形と電流波形を
第2図(a) 、 (bl 。
Next, the operation will be explained. Now, the switching element (5
When a) and (5b) are closed (ON), a DC voltage is applied from the DC constant voltage power source (3) to the machining gap between the machining electrode (1) and the workpiece (2), and electric discharge is started in the machining gap. Then, the machining current increases almost linearly. Next, when the switching elements (5a) and (5b) are opened (turned OFF), a voltage Vl (=Ldi/dt) is applied to the floating inductance (4) in the direction shown in the figure due to the energy stored in the floating inductance (4). is induced, and if this voltage Vl exceeds the Ti source voltage E, the diode (7al,
(7b) becomes conductive and the machining current is regenerated to the power supply side through this. The energy (KLI") stored in the stray inductance at the moment when the switching elements (5a) and (5h) are opened (OFFI) is consumed in the machining gap, and the remaining energy is regenerated to the power supply side and the machining is completed. The current has a slope of -(E+Vg)/L, where E is the power supply voltage and
(Vg is the voltage in the machining gap, L is the floating inductance), it decreases linearly, the discharge in the machining gap ends, and the insulation in the machining gap is restored. At this time, the switching element (5a), (
Figures 2(a) and (bl) show the timing and machining gap voltage and current waveforms in 5b).

(e)に示す。而してスイッチング素子(5a) 、 
(5blが開いた(OFFI、た)瞬間に浮遊インダク
タンス(4)に蓄えられたエネルギーは加工間隙で消費
されろエネルギーを除いて電源側に回生されるので、電
力損失が少なく、また加工電流の立下りの傾きを電源電
圧Eによって急峻にできるので、加工電流のパルス幅t
pを短くすることができ、小さな放電エネルギーでの放
電加工が可能となり、加工面の面粗度を補足することが
できる。しかも、放電繰り返し周波数を高(することも
できるので、加工速度を大きくできる。
Shown in (e). Therefore, the switching element (5a),
(The energy stored in the floating inductance (4) at the moment when 5bl opens (OFFI) is regenerated to the power supply side except for the energy consumed in the machining gap, so power loss is small and the machining current is reduced. Since the slope of the fall can be made steeper by the power supply voltage E, the pulse width t of the machining current
p can be shortened, electric discharge machining can be performed with small electric discharge energy, and the surface roughness of the machined surface can be supplemented. Moreover, since the discharge repetition frequency can be increased, the machining speed can be increased.

また、スイッチング素子(5a) 、 (5b)が開い
ている(OFFI、ている)時にvt−Vgという電圧
(Vlはスイッチング素子(5a) 、 (5b)が開
いた(OFFI、た)瞬間に浮遊インダクタンスに発生
する電圧、Vlは加工間隙の電圧)がスイッチング素子
(5a) 、 (5blに加わるが従来の装置よりも低
い耐圧のスイッチング素子を使用することができろ。
Also, when the switching elements (5a) and (5b) are open (OFFI), a voltage of vt-Vg (Vl is floating at the moment when the switching elements (5a) and (5b) are open (OFFI)). Although the voltage generated in the inductance (Vl is the voltage in the machining gap) is added to the switching elements (5a) and (5bl), it is possible to use switching elements with a lower withstand voltage than the conventional device.

なお、−上記実施例で(よ、スイッチング素子が開く瞬
間に回路の浮遊インダクタンス(4)に蓄えられたエネ
ルギーを直接電源側に回生ずるようにしたものを示した
が、−担コンデンサに蓄え、この電圧上昇分を電源側に
返すことによって間接的に回生しても、上記実施例と同
様の効果を1りられる。
In addition, - in the above embodiment, the energy stored in the stray inductance (4) of the circuit was directly regenerated to the power supply side at the moment the switching element opens, but - the energy stored in the carrier capacitor, Even if this voltage increase is returned to the power source for indirect regeneration, the same effect as in the above embodiment can be obtained.

第3図にその実施例を示す。すなわち図において、(8
a) 、 (8b) 、 f9)はダイオード、(]1
)はコンデンサ、(12)は千ワークコイルである。
An example is shown in FIG. That is, in the figure, (8
a), (8b), f9) are diodes, (]1
) is a capacitor, and (12) is a thousand work coil.

この実施例では浮遊インダクタンス(4)に蓄えられた
エネルギーがコンデンサ(11)に−担蓄えられ、電圧
上昇分(コンデンサ電圧V c −E )がダイオード
(9)及びヂョークコイル(12)を介して直流定電圧
電源(3)に回生される。
In this embodiment, the energy stored in the stray inductance (4) is stored in the capacitor (11), and the voltage increase (capacitor voltage V c -E) is converted into DC via the diode (9) and the choke coil (12). It is regenerated to the constant voltage power supply (3).

〔発明の効果〕〔Effect of the invention〕

以上にように、この発明によればスイッチング素子が開
(瞬間に浮遊インダクタンスに蓄えられるエネルギーを
電源側に回生ずるようにしたので、電力損失が少なく、
高速加工と加工面の面粗度が細い加工の効率の良い加工
ができる。またスイッチング素子の耐圧も低くでき、発
熱体である抵抗器と、それにともなう冷却装置も必要と
しないので装置を小型化できるという大きな効果がある
As described above, according to the present invention, when the switching element is opened, the energy stored in the stray inductance is regenerated to the power supply side, resulting in less power loss and
Enables high-speed machining and efficient machining of thin machined surfaces. Furthermore, the withstand voltage of the switching element can be lowered, and a resistor, which is a heat generating element, and an accompanying cooling device are not required, so there is a great effect that the device can be made smaller.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す回路図、第2図は本
発明の一実施例のスイッチング素子のタイミング図と加
工間隙の電圧及び電流の波形図、第3図は本発明の他の
実施例の回路図、第4図は従来装置の回路図、第5図は
従来装置のスイ・フチング素子のタイミング図と加工間
隙の電圧及び電流の波形図である。 (1)は加工電極、(2)は被加工体、(3)は直流定
電圧電源、(5a)は第1のスイッチング素子、(5b
)は第2のスイッチング素子、(6a)は第1の整流器
、(6h)は第2の整流器である。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a circuit diagram showing an embodiment of the present invention, FIG. 2 is a timing diagram of a switching element according to an embodiment of the present invention, and waveform diagrams of voltage and current in the machining gap. FIG. 4 is a circuit diagram of another embodiment, FIG. 4 is a circuit diagram of a conventional device, and FIG. 5 is a timing diagram of a switching element of the conventional device and a waveform diagram of voltage and current in the machining gap. (1) is a processing electrode, (2) is a workpiece, (3) is a DC constant voltage power supply, (5a) is a first switching element, (5b)
) is the second switching element, (6a) is the first rectifier, and (6h) is the second rectifier. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 微小な加工間隙を維持しながら相対して配置された加工
電極と被加工体(以下、これらを極と総称する)間に間
けつ的なパルス放電を発生させながら放電加工する放電
加工機において、出力電圧が一定に制御される直流定電
圧電源、該電源の正端子から加工間隙の一方の極との間
に挿入された第1のスイッチング素子、該電源の負端子
と前記加工間隙の該一方の極との間に順方向に挿入され
た第1の整流器、該電源の負端子と前記加工間隙の他方
の極との間に挿入された第2のスイッチング素子、該電
源の正端子と前記加工間隙の該他方の極との間に逆方向
に挿入された第2の整流器を備え、前記第1のスイッチ
ング素子と第2のスイッチング素子は同一のオン・オフ
制御信号を与えられ、同時にオン・オフをくり返すよう
制御されることを特徴とする放電加工用電源装置。
In an electric discharge machine that performs electric discharge machining while generating intermittent pulsed discharge between a machining electrode and a workpiece (hereinafter collectively referred to as poles) that are placed opposite each other while maintaining a small machining gap, A DC constant voltage power supply whose output voltage is controlled to be constant, a first switching element inserted between the positive terminal of the power supply and one pole of the machining gap, and the negative terminal of the power supply and the one pole of the machining gap. a first rectifier inserted in the forward direction between the pole of the power supply, a second switching element inserted between the negative terminal of the power supply and the other pole of the processing gap; A second rectifier is inserted between the other pole of the processing gap in an opposite direction, and the first switching element and the second switching element are given the same on/off control signal and are turned on at the same time. - A power supply device for electrical discharge machining that is controlled to repeatedly turn off.
JP22881285A 1985-10-16 1985-10-16 Power source apparatus for electric discharge machining Pending JPS6288512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22881285A JPS6288512A (en) 1985-10-16 1985-10-16 Power source apparatus for electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22881285A JPS6288512A (en) 1985-10-16 1985-10-16 Power source apparatus for electric discharge machining

Publications (1)

Publication Number Publication Date
JPS6288512A true JPS6288512A (en) 1987-04-23

Family

ID=16882245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22881285A Pending JPS6288512A (en) 1985-10-16 1985-10-16 Power source apparatus for electric discharge machining

Country Status (1)

Country Link
JP (1) JPS6288512A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5083001A (en) * 1989-08-08 1992-01-21 Mitsubishi Denki K.K. Waveform control device for electrical discharge machining apparatus
JPH0569229A (en) * 1991-05-21 1993-03-23 Mitsubishi Electric Corp Power supply for electric discharge machining
US5329088A (en) * 1992-03-06 1994-07-12 Mitsubishi Denki Kabushiki Kaisha Electrical discharge power supply circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5083001A (en) * 1989-08-08 1992-01-21 Mitsubishi Denki K.K. Waveform control device for electrical discharge machining apparatus
JPH0569229A (en) * 1991-05-21 1993-03-23 Mitsubishi Electric Corp Power supply for electric discharge machining
US5329088A (en) * 1992-03-06 1994-07-12 Mitsubishi Denki Kabushiki Kaisha Electrical discharge power supply circuit

Similar Documents

Publication Publication Date Title
US5995385A (en) RCC-type switching power supply
US4766281A (en) Pulse generator spark-erosive metal working
US3921035A (en) Solid state switching circuit
JPS62166772A (en) Forward converter used for changing electric source
JPS614622A (en) Pulse generator for electrical discharge machining
JPH0355251B2 (en)
JPS6288512A (en) Power source apparatus for electric discharge machining
JP2652392B2 (en) EDM power supply
JPS61142964A (en) Synchronous power rectifier
GB1182652A (en) Improvements in Power Converter Employing Integrated Magnetics
US3448300A (en) Firing circuit for solid state controllable valves in high di/dt applications
JPS61274814A (en) Electric discharge machining power supply
JPH01268451A (en) Overvoltage suppressing circuit for semiconductor device
JPH0221693B2 (en)
JPS6066417U (en) Wire cut electric discharge machining power supply device
US3329866A (en) Electrical discharge machining power supply apparatus and method
SU1295489A1 (en) Device for reducing d.c.ripples at rectifier output
JP3881090B2 (en) Pulse generator
JPH048165B2 (en)
SU644007A1 (en) Inverter protection device
SU1517121A1 (en) Pulser
JPS61264700A (en) Power source unit
SU1001356A1 (en) Thypistor control device
JPS60180720A (en) Discharge machining power supply
JPH06276724A (en) Gate drive circuit