JPS6282265A - Secondary intake air supply device for internal combustion engine - Google Patents

Secondary intake air supply device for internal combustion engine

Info

Publication number
JPS6282265A
JPS6282265A JP22217185A JP22217185A JPS6282265A JP S6282265 A JPS6282265 A JP S6282265A JP 22217185 A JP22217185 A JP 22217185A JP 22217185 A JP22217185 A JP 22217185A JP S6282265 A JPS6282265 A JP S6282265A
Authority
JP
Japan
Prior art keywords
intake
current value
intake air
air supply
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22217185A
Other languages
Japanese (ja)
Inventor
Yoshitaka Hibino
日比野 義貴
Takeshi Fukuzawa
福沢 毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP22217185A priority Critical patent/JPS6282265A/en
Priority to GB8623933A priority patent/GB2181572B/en
Priority to US06/915,471 priority patent/US4715349A/en
Priority to DE19863634015 priority patent/DE3634015A1/en
Publication of JPS6282265A publication Critical patent/JPS6282265A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To control an air-fuel ratio accurately so as to allow an engine to run stably at a time of idling and the like by restricting the quantity of secondary air flow passing through a secondary intake air supply passage when the engine runs under a low quantity of intake air. CONSTITUTION:In a control device 20, if an engine speed and absolute pressure in an intake pipe are lower than specified values based on information from both of a crank angle sensor 11 and an absolute pressure sensor 10, the quantity of intake air is judged to be low allowing a solenoid 17a to be de-energized so as to close an electric closing valve 17. Accordingly, as secondary intake air is supplied to a manifold 4 by way of only a throttle 18, the quantity of the secondary intake air is 1/10 of the quantity of air, which can flow in through a secondary intake air supply passage 8 when the electric closing valve 17 is opened, with a solenoid valve 9 opened. The current value to be applied to a solenoid valve 9a in order to open the solenoid 9, will be the current value which is ten times as much as the reference current value required for the medium and high quantity of intake air, with a correction made in accordance with the the output from an oxygen concentration sensor 14.

Description

【発明の詳細な説明】 失意±1 本発明は内燃エンジンの吸気2次空気供給装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intake secondary air supply device for an internal combustion engine.

背」Uえガ 内燃エンジンの排気ガス浄化、燃費改善等を目的として
排気ガス中の酸素濃度を検出し、この検出結果に応じて
エンジンへの供給混合気の空燃比を目標空燃比にフィー
ドバック制御する吸気2次空気供給装置が知られている
。この吸気2次空気供給装置として気化器絞り弁下流に
連通する吸気2次空気供給通路にソレノイドへの供給電
流値に応じた開度を得るリニア型の電磁弁を設けて吸気
2次空気供給通路の流路断面積を酸素濃度検出結果に応
じて連続的に変化せしめる装置が特開昭55−1199
41号公報に示されている。
Detects the oxygen concentration in the exhaust gas for the purpose of purifying the exhaust gas of internal combustion engines and improving fuel efficiency, and feedback controls the air-fuel ratio of the air-fuel mixture supplied to the engine to the target air-fuel ratio according to the detection results. An intake secondary air supply device is known. As this intake secondary air supply device, a linear solenoid valve that obtains an opening degree according to the supply current value to the solenoid is installed in the intake secondary air supply passage communicating with the downstream side of the carburetor throttle valve. A device for continuously changing the cross-sectional area of the flow path according to the oxygen concentration detection result was disclosed in Japanese Patent Application Laid-Open No. 55-1199.
It is shown in Publication No. 41.

かかる吸気2次空気供給装置においては、エンジンのア
イドル時等の低エンジン回転数でかつ低吸気管内負圧状
態には絞り弁を通過する吸気量が少なく空燃比を調整す
るために必要な吸気2次空気量も少なくなるので供給電
流値が大なるほど開度が大きくなるリニア型の電磁弁の
場合、電磁弁への供給電流値が小さくなる。しかしなが
ら、リニア型の電磁弁は供給電流値に対して開度が完全
に比例している訳ではなく供給電流値が小さい領域では
電磁弁の単位電流値当りの開度変化が小さくなるので、
特に、供給電流値をCPU等においてディジタル的に搾
出する場合には供給電流値の分解能が一定であるとエン
ジンの低吸気量時には2次空気供給量にばらつきが生じ
て空燃比制御精度が悪化するという問題点があった。
In such an intake secondary air supply system, when the engine speed is low and the intake pipe has a low negative pressure, such as when the engine is idling, the amount of intake air passing through the throttle valve is small and the amount of intake air 2 necessary to adjust the air-fuel ratio is small. In the case of a linear solenoid valve in which the opening degree increases as the supply current value increases, the supply current value to the solenoid valve decreases because the amount of air also decreases. However, the opening degree of linear solenoid valves is not completely proportional to the supply current value, and in the region where the supply current value is small, the change in opening degree per unit current value of the solenoid valve becomes small.
In particular, when the supply current value is extracted digitally by a CPU, etc., if the resolution of the supply current value is constant, there will be variations in the secondary air supply amount when the engine intake air amount is low, and the accuracy of air-fuel ratio control will deteriorate. There was a problem with that.

1豆五11 そこで、本発明の目的は、エンジンの低吸気量時の空燃
比制御精度の向上を図ることができるリニア型の電磁弁
を用いた吸気2次空気供給装置を提供することである。
Therefore, an object of the present invention is to provide an intake secondary air supply device using a linear electromagnetic valve that can improve the accuracy of air-fuel ratio control when the intake air amount of an engine is low. .

本発明の吸気2次空気供給装置はエンジンの低吸気量時
に吸気2次空気供給通路を流れる2次空気吊を制限する
制限手段を有づることを特徴としている。
The intake secondary air supply device of the present invention is characterized by having a restriction means for restricting the flow of secondary air flowing through the intake secondary air supply passage when the intake air amount of the engine is low.

夫−JLJ 以下、本発明の実施例を図面を参照しつつ説明する。Husband - JLJ Embodiments of the present invention will be described below with reference to the drawings.

第1図に示した本発明の一実施例たる車載内燃エンジン
の吸気2次空気供給装置においては、吸入空気が大気吸
入口1からエアクリーナ2、気化器3、そして吸気マニ
ホールド4を介してエンジン5に供給される。気化器3
には絞り弁6が設けられ、絞り弁6の上流にはベンチュ
リ7が形成されている。
In the intake secondary air supply system for an on-vehicle internal combustion engine, which is an embodiment of the present invention shown in FIG. is supplied to vaporizer 3
A throttle valve 6 is provided, and a venturi 7 is formed upstream of the throttle valve 6.

吸気マニホールド4とエアクリーナ2の空気吐出口近傍
とは吸気2次空気供給通路8によって連通されている。
The intake manifold 4 and the vicinity of the air discharge port of the air cleaner 2 are communicated through an intake secondary air supply passage 8.

吸気2次空気供給通路8にはリニア型電磁弁9が設けら
れている。電磁弁9の開度はそのソレノイド9aに供給
される電流値に応じて変化する。また電磁弁9の配設位
置より上流には電磁開閉弁17及び絞り18が並列に設
けられている。電fa IFfl閉弁17はそのソレノ
イド17aの通電にJ:り開弁する。
A linear electromagnetic valve 9 is provided in the intake secondary air supply passage 8 . The opening degree of the solenoid valve 9 changes depending on the current value supplied to the solenoid 9a. Further, an electromagnetic on-off valve 17 and a throttle 18 are provided in parallel upstream from the location where the electromagnetic valve 9 is provided. The electric fa/IFfl closing valve 17 opens when the solenoid 17a is energized.

一方、10は吸気マニホールド4に設けられ吸気マニホ
ールド4内の絶対圧に応じたレベルの出力を発生ずる絶
対圧センサ、11はエンジン5のクランクシャフト(図
示せず)の回転に応じてパルスを発生するクランク角セ
ンナ、12はエンジン5の冷却水温に応じたレベルの出
力を発生する冷却水温センサ、14はエンジン5の排気
マニホールド15に設けられ排気ガス中の酸素濃度に応
じた出力を発生する酸素濃度センサである。酸素濃度セ
ンサ14の配設位置より下流の排気マニホールド15に
は排気ガス中の有害成分の低減を促進させるために触媒
コンバータ33が設けられている。リニア型の電磁弁9
、絶対圧センサ10゜クランク角センサ11、水温セン
サ12、酸素濃度センサ14及び電磁開閉弁17は制御
回路20に接続されている。制御回路20には更に車両
の速度に応じたレベルの出力を発生する車速センサ16
が接続されている。
On the other hand, 10 is an absolute pressure sensor installed in the intake manifold 4 and generates an output at a level corresponding to the absolute pressure inside the intake manifold 4, and 11 generates a pulse in response to the rotation of the crankshaft (not shown) of the engine 5. 12 is a cooling water temperature sensor that generates an output at a level corresponding to the cooling water temperature of the engine 5; 14 is an oxygen sensor installed in the exhaust manifold 15 of the engine 5 and generates an output according to the oxygen concentration in the exhaust gas. It is a concentration sensor. A catalytic converter 33 is provided in the exhaust manifold 15 downstream of the oxygen concentration sensor 14 in order to promote reduction of harmful components in the exhaust gas. Linear type solenoid valve 9
, an absolute pressure sensor 10°, a crank angle sensor 11, a water temperature sensor 12, an oxygen concentration sensor 14, and an electromagnetic on-off valve 17 are connected to a control circuit 20. The control circuit 20 further includes a vehicle speed sensor 16 that generates an output at a level corresponding to the speed of the vehicle.
is connected.

制御回路20は第2図に示寸ように絶対圧センサ10、
水温ヒン(J12、酸素濃度センサ14及び車速センサ
16の各出力レベルを変換するレベル変換回路21と、
レベル変換回路21を経た各センサ出力の1つを選択的
に出力するマルチブレフナ22と、このマルチプレクサ
22から出力される信号をディジタル信号に変換するA
/1〕変換器23と、クランク角センサ11の出力信号
を波形整形する波形整形回路24と、波形整形回路24
からパルスとして出力されるTDC信号の発生間隔を計
測するカウンタ25と、電磁弁9を駆動する駆動回路2
8aと、電磁弁17を駆動する駆動回路28bと、プロ
グラムに従ってディジタル演算を行なうCPU(中央演
算回路)29と、各種の処理プログラム及びデータが予
め書き込まれたROM30と、RAM31とからなって
いる。
The control circuit 20 includes an absolute pressure sensor 10, as shown in FIG.
a level conversion circuit 21 that converts each output level of the water temperature sensor (J12), the oxygen concentration sensor 14, and the vehicle speed sensor 16;
A multiplexer 22 that selectively outputs one of the sensor outputs that have passed through the level conversion circuit 21, and A that converts the signal output from the multiplexer 22 into a digital signal.
/1] A converter 23, a waveform shaping circuit 24 that shapes the output signal of the crank angle sensor 11, and a waveform shaping circuit 24.
A counter 25 that measures the generation interval of the TDC signal output as a pulse from the drive circuit 2 that drives the solenoid valve 9.
8a, a drive circuit 28b that drives the electromagnetic valve 17, a CPU (central processing circuit) 29 that performs digital calculations according to programs, a ROM 30 in which various processing programs and data are written in advance, and a RAM 31.

電磁弁9のソレノイド9aは駆動回路28aの駆動トラ
ンジスタ及び電流検出用抵抗(共に図示せず)に直列に
接続されてその直列回路の両端間に電源電圧が供給され
る。マルチプレクサ22、A/D変換器23、カウンタ
25、駆動回路28a。
The solenoid 9a of the electromagnetic valve 9 is connected in series with a drive transistor and a current detection resistor (both not shown) of a drive circuit 28a, and a power supply voltage is supplied across the series circuit. Multiplexer 22, A/D converter 23, counter 25, and drive circuit 28a.

28bSCPU29、ROM30及びRAM31は入出
力バス32によって互いに接続されている。
28b SCPU 29, ROM 30 and RAM 31 are connected to each other by an input/output bus 32.

かかる構成においては、A/D変換器23から吸気マニ
ホールド4内の絶対圧、冷却水温、排気ガス中の酸素濃
度及び車速の情報が択一的に、またカウンタ25からエ
ンジン回転数を表わす情報がCPIJ29に入出力バス
32を介して各々供給される。CPU29は後述の如く
所定周期T1(例えば、5m5ec)毎に内部割込信号
を発生するようにされており、割込信号に応じて電磁弁
9のソレノイド9aへの供給電流値DOU’Tをデータ
として算出し、その算出した供給電流値DouTを駆動
回路28aに供給する。駆動回路28aはソレノイド9
aに流れる電流値が供給電流値D01JTになるように
ソレノイド9aに流れる電流値を閉ループ制御する。ま
たその内部割込信号とは別に所定周期毎、又はエンジン
回転に同期して電磁開閉弁17を開弁するか否かを判別
し、開弁ずべきと判別した場合には駆動回路28bに対
して開弁駆動指令を発生して電磁開閉弁17を開弁せし
める。
In this configuration, the A/D converter 23 selectively provides information on the absolute pressure in the intake manifold 4, the cooling water temperature, the oxygen concentration in the exhaust gas, and the vehicle speed, and the counter 25 provides information representing the engine speed. The signals are respectively supplied to the CPIJ 29 via the input/output bus 32. As described later, the CPU 29 is configured to generate an internal interrupt signal every predetermined period T1 (for example, 5 m5ec), and in response to the interrupt signal, data is supplied to the current value DOU'T to be supplied to the solenoid 9a of the solenoid valve 9. The calculated supply current value DouT is supplied to the drive circuit 28a. The drive circuit 28a is the solenoid 9
The current value flowing through the solenoid 9a is controlled in a closed loop so that the current value flowing through the solenoid 9a becomes the supply current value D01JT. In addition to the internal interrupt signal, it is determined whether or not the electromagnetic on-off valve 17 should be opened at predetermined intervals or in synchronization with engine rotation, and when it is determined that the valve should be opened, the drive circuit 28b is A valve opening drive command is generated to open the electromagnetic on-off valve 17.

次に、かかる本発明による吸気2次空気供給装置の動作
を第3図及び第4図に示したCPLJ29の動作フロー
図に従って詳細に説明する。
Next, the operation of the intake secondary air supply device according to the present invention will be explained in detail according to the operation flowchart of the CPLJ 29 shown in FIGS. 3 and 4.

CPU29においては、第3図に示すように先ず、エン
ジン回転数Neが100 Or、Ll、より小か否かが
判別される(ステップ41)。Neく1000 r、p
、m、ならば、吸気管内絶対圧PBAが400 mm1
1gより小か否かが判別される(ステップ42)、Ne
≧1000 r、p、m、、又はPBA≧400 ml
1lhならば、低吸気量時ではないとされて吸気量判別
フラグFoに“1”がセットされ(ステップ43)、駆
動回路28bに対して開弁駆動指令が発生される(ステ
ップ44)。駆動回路28bは開弁駆動指令に応じてソ
レノイド17aに通電することにより電磁量m弁17を
開弁駆動する。
As shown in FIG. 3, the CPU 29 first determines whether the engine speed Ne is smaller than 100 Or, Ll (step 41). Neku1000 r, p
, m, then the intake pipe absolute pressure PBA is 400 mm1
It is determined whether Ne is smaller than 1g (step 42).
≧1000 r, p, m, or PBA≧400 ml
1lh, it is determined that the intake air amount is not low, and the intake air amount determination flag Fo is set to "1" (step 43), and a valve opening drive command is issued to the drive circuit 28b (step 44). The drive circuit 28b drives the electromagnetic quantity m valve 17 to open by energizing the solenoid 17a in response to the valve opening drive command.

一方、Ne<1000r、p、m、でか”)Pa A 
<40Q mm11gならば、低吸気量時であるとされ
てフラグFoに“0″がセットされ(ステップ45)、
駆動回路28bに対して開弁駆動指令の発生が停止され
る(ステップ46)。
On the other hand, Ne<1000r, p, m, big") Pa A
If <40Q mm11g, it is determined that the intake air amount is low, and the flag Fo is set to "0" (step 45).
Generation of the valve opening drive command to the drive circuit 28b is stopped (step 46).

また割込信号の発生毎に第4図に示ずように車両の運転
状態(エンジンの運転状態を含む)が空燃比フィードバ
ック(F/B)制御条件を充足しているか否かが判別さ
れる(ステップ51)。
Furthermore, each time an interrupt signal is generated, it is determined whether the vehicle operating state (including the engine operating state) satisfies the air-fuel ratio feedback (F/B) control conditions, as shown in FIG. (Step 51).

この判別は吸気マニホールド内絶対圧、冷却水温、車速
及びエンジン回転数から決定され、例えば、低車速時及
び低冷却水温時には空燃比フィードバック制御条件が充
足されていないとされる。ここで、空燃比フィードバッ
ク制御条件を充足しないと判別されたならば、空燃比フ
ィードバック制御を停止すべく供給電流値DOUTが“
0″とされ、る(ステップ52)。一方、空燃比フィー
ドバック制御条件を充足したと判別されたならば、電磁
弁9への供給電流値の基準電流値Da A S Eが設
定される(ステップ53)。ROM30には第5図に示
すように吸気マニホールド内絶対圧P[3Aとエンジン
回転数Neとから定まる基準電流値DBASEがD8A
 s Eデータマツプとして予め書ぎ込まれているので
、CPU29は絶対圧PBAとエンジン回転数Neとを
読み込み、読み込んだ各位に対応する基準電流値De 
A s EをDaAsεデータマツプから検索する。基
準電流値DBASEの設定後、吸気迅判別フラグFaが
“0″に等しいか否かが判別されくステップ54)、F
This determination is made based on the absolute pressure in the intake manifold, the cooling water temperature, the vehicle speed, and the engine rotational speed. For example, it is determined that the air-fuel ratio feedback control conditions are not satisfied at low vehicle speeds and low cooling water temperatures. Here, if it is determined that the air-fuel ratio feedback control conditions are not satisfied, the supply current value DOUT is changed to “
0'' (step 52). On the other hand, if it is determined that the air-fuel ratio feedback control conditions are satisfied, a reference current value DaASE of the current value supplied to the solenoid valve 9 is set (step 52). 53).As shown in FIG. 5, the reference current value DBASE determined from the intake manifold absolute pressure P[3A and the engine speed Ne is stored in the ROM 30 as D8A.
s E Data map is written in advance, so the CPU 29 reads the absolute pressure PBA and engine speed Ne, and sets the reference current value De corresponding to each read value.
Search A s E from the DaAsε data map. After setting the reference current value DBASE, it is determined whether the intake quickness determination flag Fa is equal to "0" or not.
.

=0ならば、基準電流値D8ASEに10が乗算される
(ステップ55)。次に、CPU29の内部タイマカウ
ンタA(図示せず)の計数時間が所定時間Δt1だけ経
過したか否かが判別される(ステップ56)。所定時間
Δ1+は吸気2次空気を供給してからその結果が排気ガ
ス中の酸素濃度の変化として酸素濃度センサ14によっ
て検出されるまでの応答遅れ時間に相当する。このタイ
ムカウンタAがリセットされて計数を開始した時点から
所定時間Δt1が経過したならば、タイムカウンタAが
リセットされかつ初期値から計数が開始される(ステッ
プ57)。すなわち、ステップ57の実行によりタイム
カウンタAが初期値より計数を開始した後、所定時間Δ
t1が経過したか否かの判別がステップ56において行
なわれているのである。こうしてタイムカウンタAによ
る所定時間Δt ’Iの計数が開始されると、酸素濃度
の情報から酸素濃度センサ14の出力レベルL。
If =0, the reference current value D8ASE is multiplied by 10 (step 55). Next, it is determined whether the count time of the internal timer counter A (not shown) of the CPU 29 has elapsed by a predetermined time Δt1 (step 56). The predetermined time Δ1+ corresponds to a response delay time from when the intake secondary air is supplied until the result is detected by the oxygen concentration sensor 14 as a change in the oxygen concentration in the exhaust gas. When a predetermined time Δt1 has elapsed since the time counter A was reset and started counting, the time counter A is reset and counting starts from the initial value (step 57). That is, after the time counter A starts counting from the initial value by executing step 57, the predetermined time Δ
It is determined in step 56 whether or not t1 has elapsed. When the time counter A starts counting the predetermined time Δt'I in this way, the output level L of the oxygen concentration sensor 14 is determined based on the oxygen concentration information.

2が目標空燃比に対応する基準レベルL rerより犬
であるか否かが判別される(ステップ58)。
2 is a dog based on the reference level Lrer corresponding to the target air-fuel ratio (step 58).

すなわち、エンジン5への供給混合気の空燃比が目標空
燃比よりリーンであるか否かが判別されるのである。L
’o 2 > L re4ならば、空燃比が目標空燃比
よりリーンであるので減算値ILが算出される(ステッ
プ59)。減算値■【−は定数に1、エンジン回転数N
e及び絶対圧PEAを互いに乗算(KI −Ne−PB
A)することにより得られ、エンジン5の吸入空気量に
依存するようになっている。減算値ILの算出後、この
ルーチンの実行によって既に算出されている補正値Io
uvIfiRAM31の記憶位置a1から読み出され、
読み出された補正値10U丁から減算値ILが差し引か
れてその算出値が新たな補正値10UTとされかつRA
M31の記憶位置a1に書き込まれる(ステップ60)
。一方、ステップ58においてり。
That is, it is determined whether the air-fuel ratio of the air-fuel mixture supplied to the engine 5 is leaner than the target air-fuel ratio. L
If 'o2>Lre4, the air-fuel ratio is leaner than the target air-fuel ratio, so a subtraction value IL is calculated (step 59). Subtraction value ■ [- is 1 for constant, engine speed N
e and absolute pressure PEA are multiplied together (KI - Ne - PB
A), and it depends on the intake air amount of the engine 5. After calculating the subtraction value IL, the correction value Io that has already been calculated by executing this routine
Read from storage location a1 of uvIfiRAM31,
The subtraction value IL is subtracted from the read correction value 10U, and the calculated value is set as the new correction value 10UT, and the RA
Written to storage location a1 of M31 (step 60)
. Meanwhile, in step 58,

2≦l refならば、空燃比が目標空燃比よりリッチ
であるので加算値■Rが算出される(ステップ61)。
If 2≦l ref, the air-fuel ratio is richer than the target air-fuel ratio, so an additional value ■R is calculated (step 61).

加算値IRは定数に2  (≠に1)、エンジン回転数
NO及び絶対圧P8Aを互いに乗算(K2  ・Ne−
PBA)することにより得られ、エンジン5の吸入空気
Rに依存するようになっている。加算値IRの搾出後、
本ルーチンの実行によって既に算出されている補正値1
ourlfiRAM31の記憶位@atから読み出され
、読み出された補正値Iourに加算値■ρが加鈴され
その算出値が新たな補正値1OUTとされかつRAM3
1の記憶位置a1に書き込まれる(ステップ62)。こ
うして補正値10LJTがステップ60又は62におい
て算出されると、その補正値1ouTとステップ53又
は55において設定された基準電流値DBASEとが加
算されてその加算結果が供給電流値DOLJTとされ(
ステップ63)、駆動回路28aに対して供給電流値D
ourが出力される(ステップ64)。
The additional value IR is calculated by multiplying the constant by 2 (≠ by 1), the engine speed NO and the absolute pressure P8A (K2 ・Ne−
PBA), and depends on the intake air R of the engine 5. After extracting the additional value IR,
Correction value 1 already calculated by executing this routine
It is read from the memory location @at of ourfiRAM31, the added value ■ρ is added to the readout correction value Iour, and the calculated value is set as the new correction value 1OUT, and is stored in RAM3.
1 storage location a1 (step 62). When the correction value 10LJT is calculated in step 60 or 62, the correction value 1outT is added to the reference current value DBASE set in step 53 or 55, and the addition result is set as the supply current value DOLJT (
Step 63), the supply current value D to the drive circuit 28a
our is output (step 64).

駆動回路28aは電磁弁9のソレノイド9aに流れる電
流値を電流検出用抵抗によって検出してその検出電流値
と供給電流値DOLJTとを比較し、比較結果に応じて
駆動トランジスタをオンオフすることによりソレノイド
9aに電流を供給する。
The drive circuit 28a detects the current value flowing through the solenoid 9a of the solenoid valve 9 using a current detection resistor, compares the detected current value with the supplied current value DOLJT, and turns on and off the drive transistor according to the comparison result to control the solenoid. A current is supplied to 9a.

よって、ソレノイド9aには供給電流値DOLJTの電
流が流れ、第6図に示すように電磁弁9のソレノイド9
aに流れる電流値に比例した吊の吸気2次空気が吸気マ
ニホールド4内に供給されるのである。
Therefore, a current of the supply current value DOLJT flows through the solenoid 9a, and the solenoid 9 of the solenoid valve 9 flows as shown in FIG.
A suspended amount of secondary intake air is supplied into the intake manifold 4 in proportion to the current value flowing through the intake manifold 4.

かかる本発明による吸気2次空気供給装置においては、
エンジン中高吸気量時には電磁開閉弁17が開弁じ、ス
テップ53において設定された基準電流値D8ASEを
酸素濃度センサ14の出力レベルに応じて補正すること
により供給電流値DOUTが決定される。エンジン低吸
気量時には電m間閉弁17が開弁し、ステップ53にお
いて設定された基準電流値DeAsEを10倍した値を
基準電流値DBASEとして酸素濃度センサ14の出力
レベルに応じて補正することにより供給電流値DOUT
が決定される。駆動回路28aにょつて電磁弁9のソレ
ノイド9aに電流値DOLJTの電流が供給され、電磁
弁9は電流値DOLJTに応じた開度で開弁し、エンジ
ン低吸気m時には絞り18を介してのみ2次空気が吸気
マニホールド4内に供給されるので電磁弁9の開度で電
磁開閉弁17の開弁時に吸気2次空気供給通路8を流れ
る得る空気mの1/10の2次空気量となる。
In the intake secondary air supply device according to the present invention,
When the intake air amount is medium to high in the engine, the electromagnetic on-off valve 17 is opened, and the supply current value DOUT is determined by correcting the reference current value D8ASE set in step 53 according to the output level of the oxygen concentration sensor 14. When the engine intake air amount is low, the electric current closing valve 17 is opened, and a value obtained by multiplying the reference current value DeAsE set in step 53 by 10 is set as a reference current value DBASE and corrected according to the output level of the oxygen concentration sensor 14. Supply current value DOUT
is determined. A current having a current value DOLJT is supplied to the solenoid 9a of the solenoid valve 9 by the drive circuit 28a, and the solenoid valve 9 opens at an opening degree corresponding to the current value DOLJT. Since the secondary air is supplied into the intake manifold 4, the amount of secondary air becomes 1/10 of the air m that can flow through the intake secondary air supply passage 8 when the electromagnetic on-off valve 17 is opened depending on the opening degree of the electromagnetic valve 9. .

なお、タイムカウンタAがステップ57においてリセッ
トされて初期値からの計数が開始された後、所定時間Δ
[Iが経過していないとステップ56において判別され
たならば、直ちにステップ63が実行され、この場合、
前回までの本ルーチンの実行によって得られた補正値l
0LJTが読み出される。
Note that after the time counter A is reset in step 57 and starts counting from the initial value, a predetermined time Δ
[If it is determined in step 56 that I has not elapsed, step 63 is immediately executed; in this case,
Correction value l obtained by executing this routine up to the previous time
0LJT is read.

1更立1浬 以上の如く、本発明の吸気2次空気供給装置においては
、エンジンの低吸気量時に吸気2次空気供給通路を流れ
る2次空気量を制限する制限手段が設けられているので
エンジンの低吸気徂時にもリニア型電磁弁のリニアリテ
ィの良好な特性部分を用いて2次空気口を正確に制御す
ることができる。よって、エンジンの低吸気量時の空燃
比制御精度の悪化が防止され、アイドル運転時等の運転
状態の安定化を図ることができるのである。
1. As described above, the intake secondary air supply device of the present invention is provided with a restriction means for restricting the amount of secondary air flowing through the intake secondary air supply passage when the intake air amount of the engine is low. Even when the intake air of the engine is low, the secondary air port can be accurately controlled using the linear solenoid valve's excellent linearity characteristic. Therefore, deterioration of the accuracy of air-fuel ratio control when the engine has a low intake air amount is prevented, and it is possible to stabilize the operating state during idling or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す概略図、第2図は第1図
の装置中の制御回路の具体的構成を示すブロック図、第
3図及び第4図はCPUの動作を示ずフロー図、第5図
はROMに書ぎ込まれたデータマツプを示す図、第6図
は電磁弁への供給電流餡と吸気2次空気供給量との関係
を示す図である。 主要部分の符号の説明 2・・・・・・エアクリーナ 3・・・・・・気化器 4・・・・・・吸気マニホールド 6・・・・・・絞り弁 7・・・・・・ベンチュリ 8・・・・・・吸気2次空気供給通路 9・・・・・・リニア型電磁弁 10・・・・・・絶対圧センサ 11・・・・・・クランク角センサ 12・・・・・・冷W水温センサ 14・・・・・・酸素濃度センサ 15・・・・・・排気マニホールド 17・・・・・・電磁間開弁 18・・・・・・絞り 33・・・・・・触媒コンバータ 出願人   本田技研工業株式会社 代理人   弁理士  膝村元彦 第5図 第6図 供給W駕
Fig. 1 is a schematic diagram showing an embodiment of the present invention, Fig. 2 is a block diagram showing a specific configuration of the control circuit in the device shown in Fig. 1, and Figs. 3 and 4 do not show the operation of the CPU. FIG. 5 is a diagram showing a data map written in the ROM, and FIG. 6 is a diagram showing the relationship between the current supplied to the solenoid valve and the intake secondary air supply amount. Explanation of symbols of main parts 2... Air cleaner 3... Carburetor 4... Intake manifold 6... Throttle valve 7... Venturi 8 ......Intake secondary air supply passage 9...Linear type solenoid valve 10...Absolute pressure sensor 11...Crank angle sensor 12... Cold W water temperature sensor 14... Oxygen concentration sensor 15... Exhaust manifold 17... Solenoid opening valve 18... Throttle 33... Catalyst Converter Applicant Honda Motor Co., Ltd. Agent Patent Attorney Motohiko Kneemura Figure 5 Figure 6 Supply W

Claims (2)

【特許請求の範囲】[Claims] (1)内燃エンジンの気化器絞り弁下流の吸気管内に連
通する吸気2次空気供給通路と、該吸気2次空気供給通
路に設けられ供給される電流値に応じた開度を得て前記
吸気2次空気供給通路の流路断面積を連続的に変化せし
める電磁弁と、該電磁弁に供給する基準電流値をエンジ
ン排気成分濃度に応じて補正して供給電流値を決定する
制御手段と、該制御手段によって決定された供給電流値
の電流を前記電磁弁に供給する電流供給手段と、エンジ
ンの低吸気量時に前記吸気2次空気供給通路を流れる2
次空気量を制限する制限手段とを含むことを特徴とする
吸気2次空気供給装置。
(1) An intake secondary air supply passage communicating with the intake pipe downstream of the carburetor throttle valve of an internal combustion engine, and an opening degree corresponding to the current value provided in the intake secondary air supply passage to obtain the intake air. a solenoid valve that continuously changes the cross-sectional area of the secondary air supply passage; a control means that determines the supply current value by correcting a reference current value supplied to the solenoid valve according to the concentration of engine exhaust components; current supply means for supplying a current having a supply current value determined by the control means to the electromagnetic valve;
An intake secondary air supply device, comprising: a restriction means for restricting the amount of secondary air.
(2)前記制限手段は前記吸気2次空気供給通路に設け
られエンジン低吸気量時に閉弁する開閉弁と、該開閉弁
と並列に前記吸気2次空気供給通路に設けられた絞りと
からなることを特徴とする特許請求の範囲第1項記載の
吸気2次空気供給装置。
(2) The restricting means includes an on-off valve that is provided in the secondary intake air supply passage and closes when the engine intake air amount is low, and a throttle that is provided in the secondary intake air supply passage in parallel with the on-off valve. An intake secondary air supply device according to claim 1, characterized in that:
JP22217185A 1985-10-05 1985-10-05 Secondary intake air supply device for internal combustion engine Pending JPS6282265A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP22217185A JPS6282265A (en) 1985-10-05 1985-10-05 Secondary intake air supply device for internal combustion engine
GB8623933A GB2181572B (en) 1985-10-05 1986-10-06 Air intake side secondary air supply system for an internal combustion engine with an improved operation under a small intake air amount
US06/915,471 US4715349A (en) 1985-10-05 1986-10-06 Air intake side secondary air supply system for an internal combustion engine with an improved operation under a small intake air amount
DE19863634015 DE3634015A1 (en) 1985-10-05 1986-10-06 AIR SUCTION SIDE AIR SUPPLY DEVICE FOR AN INTERNAL COMBUSTION ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22217185A JPS6282265A (en) 1985-10-05 1985-10-05 Secondary intake air supply device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS6282265A true JPS6282265A (en) 1987-04-15

Family

ID=16778286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22217185A Pending JPS6282265A (en) 1985-10-05 1985-10-05 Secondary intake air supply device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS6282265A (en)

Similar Documents

Publication Publication Date Title
JPS62170744A (en) Air-fuel ratio control method for internal combustion engine on vehicle
US4690121A (en) Air intake side secondary air supply system for an internal combustion engine with a duty ratio control operation
US4763265A (en) Air intake side secondary air supply system for an internal combustion engine with an improved duty ratio control operation
US4705011A (en) Air intake side secondary air supply system for an internal combustion engine with an improved operation for a large amount of the secondary air
JPS6282265A (en) Secondary intake air supply device for internal combustion engine
JPS61187570A (en) Intake secondary air feeder of internal-combustion engine
US4715349A (en) Air intake side secondary air supply system for an internal combustion engine with an improved operation under a small intake air amount
JPS623159A (en) Intake secondary air supply device for internal-combustion engine
US4705012A (en) Air intake side secondary air supply system for an internal combustion engine with a duty ratio control operation
JPS62265442A (en) Air-fuel ratio controlling method for internal combustion engine
JPS62162748A (en) Air-fuel ratio control for internal-combustion engine
JPS62126261A (en) Supply device for intake secondary air in internal combustion engine
JP2726257B2 (en) Air-fuel ratio control method for internal combustion engine
JPS58104342A (en) Air-fuel ratio controlling method for internal- combustion engine
JPS61237858A (en) Control device for air-fuel ratio in internal-combustion engine
JP2655639B2 (en) Air-fuel ratio control method for internal combustion engine
JPS62248861A (en) Secondary intake air feeding device for internal combustion engine
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0436258B2 (en)
JPS6285158A (en) Intake secondary-air supply device for internal combustion engine
JPS61187569A (en) Intake secondary air feeder of internal-combustion engine
JPS62288338A (en) Air-fuel ratio control method for internal combustion engine
JPH066929B2 (en) Air-fuel ratio controller for in-vehicle internal combustion engine
JPH0735740B2 (en) Air-fuel ratio controller for internal combustion engine
JPS623160A (en) Intake secondary air supply device for vehicle-mount internal-combustion engine