JPS6280298A - Anode used in electrochemical treatment at low ph and high current density - Google Patents

Anode used in electrochemical treatment at low ph and high current density

Info

Publication number
JPS6280298A
JPS6280298A JP61210829A JP21082986A JPS6280298A JP S6280298 A JPS6280298 A JP S6280298A JP 61210829 A JP61210829 A JP 61210829A JP 21082986 A JP21082986 A JP 21082986A JP S6280298 A JPS6280298 A JP S6280298A
Authority
JP
Japan
Prior art keywords
anode
coating
microinches
platinum
outer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61210829A
Other languages
Japanese (ja)
Other versions
JPH0735597B2 (en
Inventor
マーク・ジエイ・ジユージツク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Catalysts LLC
Original Assignee
Engelhard Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Engelhard Corp filed Critical Engelhard Corp
Publication of JPS6280298A publication Critical patent/JPS6280298A/en
Publication of JPH0735597B2 publication Critical patent/JPH0735597B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemically Coating (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

An anode for use in electroforming copper foil is formed by depositing a multilayer coating on a substrate of a film forming metal. At least one interior layer consists essentially of substantially pore free platinum which is applied electrolytically to a thickness of at least about 5 micrometers (about 200 microinches), and then densified by heat treating in an oxygen containing atmosphere at from 600 to 775 DEG C. At least one of the exterior layers consists essentially of at least 97% iridium oxide and up to about 3% rhodium oxide, which is applied by thermal decomposition of thermally decomposable platinum group metal compounds in an oxygen containing atmosphere at a temperature of not more than about 600 DEG C.

Description

【発明の詳細な説明】 電気的に製造された銅箔は近代的な゛「「子装置の根幹
をなしている。集積回路製品の数が増加するにつれて、
必要とされる箔の量はそれに対応して増大しているが、
現在得られる最も寸度安定性の良い陽極でも最適な箔の
製造に必要とされる条件に耐えることはできないので、
これらの箔を製造する速度には限度がある。本発明の陽
極は、従来公知の陽極を迅速に破壊するような高い酸濃
度、電流密度及び温度に耐えるので、過酷な条件下にお
いて高速度、低価格で高純度の細孔のない銅箔を製造す
るのに特に適している。特に本発明の陽極は、詳細点に
関しては非常に鋭敏ではあるが、適切に実施する場合に
は極端に頑丈で耐久性のある陽極を与える三つの工程に
よりつくられる。
DETAILED DESCRIPTION OF THE INVENTION Electrically manufactured copper foil forms the backbone of modern "child devices. As the number of integrated circuit products increases,
Although the amount of foil required has increased correspondingly,
Even the most dimensionally stable anodes available today cannot withstand the conditions required for optimal foil production.
There are limits to the speed at which these foils can be manufactured. The anode of the present invention withstands high acid concentrations, current densities, and temperatures that rapidly destroy conventionally known anodes, allowing the production of high-purity, pore-free copper foils at high speeds and at low cost under harsh conditions. Particularly suitable for manufacturing. In particular, the anode of the present invention is made by a three step process which, although very sensitive in terms of detail, provides an extremely robust and durable anode when properly implemented.

本発明方法の第一の工程においては、完全にスケールを
除去し、脱脂して清浄にしたデバイス用金屈基質の上に
白金を電着させる。少なくとも約150マイクロインチ
ないし最高約400マイクロインチの厚さで白金を被覆
することが重要であり、この厚さは好ましくは少なくと
も約225マイクロインチ、最も好ましくは少なくとも
約250マイクロインチである。
In the first step of the method of the invention, platinum is electrodeposited onto a completely descaled, degreased and clean device substrate. It is important to coat the platinum to a thickness of at least about 150 microinches and up to about 400 microinches, preferably at least about 225 microinches, and most preferably at least about 250 microinches.

本発明方法の第二の工程は「緻密化」と呼ばれる熱処理
を含んでおり、これは本発明の陽極を得るには不可欠で
ある。「緻密化」工程において白金で被覆された陽極を
空気中で加熱し、800〜775°Cの温度に加熱し、
約1/4〜2時間この温度に保持するか、または電着被
膜の中の応力が弛緩し、電着工程で得られた細孔が閉ざ
されるまでこの温度に保つ。
The second step of the method of the invention involves a heat treatment called "densification", which is essential to obtain the anode of the invention. In the "densification" step, the platinum-coated anode is heated in air to a temperature of 800-775 °C,
The temperature is maintained for about 1/4 to 2 hours, or until the stress in the electrodeposited film is relaxed and the pores obtained from the electrodeposition process are closed.

本発明の最後の工程は「緻密化」された白金被覆基質に
熱分解可能なイリジウム及びロジウムの化合物を被覆し
た後空気中で加熱してこの化合物を分解させ酸化物にす
ることにより、実質的に少すくトモ約97% 0) I
rO2及び最高約3%ノRh2[13から成る触媒酸化
物外部被膜を被覆する。本発明においては、高温(例え
ば約690℃)を使用すると生成物の耐久性は遥かに悪
くなるから、分解を約600℃以下で行うことが重要で
あることが見出だされた。熱分解可能な化合物の被Ff
fffiはイリジウムが少なくとも約15 yr2/g
 (金属の重量に関して計算して)、好ましくは20 
rrr27g、、より好ましくは25 ra2/g充填
ごれるのに十分な量でなければならない。
The final step of the invention is to coat a ``densified'' platinum-coated substrate with a thermally decomposable compound of iridium and rhodium, and then heat it in air to decompose the compound into an oxide. Approximately 97% 0) I
A catalytic oxide outer coating consisting of rO2 and up to about 3% Rh2 [13] is applied. In the present invention, it has been found that it is important to carry out the decomposition below about 600° C., since the use of higher temperatures (eg, about 690° C.) makes the product much less durable. Ff of thermally decomposable compounds
fffi is at least about 15 yr2/g of iridium
(calculated with respect to the weight of the metal), preferably 20
The amount should be sufficient to fill 27 g rrr, more preferably 25 ra2/g.

被膜を被覆する基質は任意公知のフィルム生成可能金属
であることができ、この金属は被覆されていない時陽極
を挿入する電解質の中で接着性をもった保護酸化フィル
ムをつくることにより迅速に不動態化する。典型的な基
質は管、棒、シート、網、膨張した金属または特殊な用
途に対する他の特殊な形をしたチタン、タンタル、バナ
ジン、タングステン、アルミニウム、ジルコニウム、ニ
オブ及びモリブデンである。′電気的に製造された銅箔
をつくる場合、円筒、或いはマンドレルまたはドラムの
形に合った円筒の部分の形で陽極を使用し、電気的に製
造された箔が均一の厚さを有し陰極のドラムから容易に
取外せるようにすることが特に好適である。多くの場合
陽極の芯は銅、或いは他の電気伝導性の高い金属、例え
ばアルミニウムまたは高電気伝導性の鉄合金にチタンの
ようなフィルム生成可能金属の外層を装着したものであ
る。
The coating substrate can be any known film-forming metal that, when uncoated, rapidly decomposes by forming an adhesive protective oxide film in the electrolyte into which the anode is inserted. Be dynamic. Typical substrates are titanium, tantalum, vanadium, tungsten, aluminum, zirconium, niobium and molybdenum in tubes, rods, sheets, mesh, expanded metal or other special shapes for special applications. 'When making electrically produced copper foils, the anode is used in the form of a cylinder or a section of a cylinder that fits the shape of a mandrel or drum so that the electrically produced foil has a uniform thickness. It is particularly advantageous if the cathode can be easily removed from the drum. The anode core is often copper or other highly electrically conductive metal, such as aluminum or a highly electrically conductive iron alloy, with an outer layer of a film-forming metal such as titanium.

電解質層を被覆する前に基質を清浄にし、酸化アルミニ
ウムの粒子を空気ジェット中で噴射するような方法でス
ケールを除去した後、化学的に清浄化し脱脂する。通常
脱脂した直後に陽極を被覆するが、陽極を貯蔵すること
ができ脱脂と被覆との間に数装置いても悪影響はない。
Before applying the electrolyte layer, the substrate is cleaned and descaled by methods such as spraying particles of aluminum oxide in an air jet, followed by chemical cleaning and degreasing. Usually, the anode is coated immediately after degreasing, but the anode can be stored and there are no adverse effects if several devices are present between degreasing and coating.

白金の電解質被覆は通常の寸度安定性をもった対抗電極
に対し基質を水性白金電鍍浴に浸清し、少なくとも15
0、好ましくは225、さらに好ましくは250マイク
ロインチの白金が被覆されるまで、1平方フィート当り
約7〜約70アンペアの電流を基質に流して行なうこと
ができる。任意の通常の白金電鍍浴を使用することがで
きる。典型的にはこのような浴はアンミン、ニトリドま
たはヒドロキシ錯体のような白金化合物並びに種々の公
知の添加剤、例えば光沢化剤、沈積したフィルムの靭性
を改善し不純物を除去する助剤、及び浴の電気伝導性を
改善する添加剤を含む水性分散物、水溶液または混合物
である。典型的な白金化合物にはH2PtCl6、 K
2Pt(OHh 、 H2Pt(NO2)2S04及び
ジアンミンジニトロ白金(II)が含まれる。白金電鍍
浴に対する有用な組成物はエフ・ローウェンハイム(F
、 Lowenheim)著、「モーダン・エレクトロ
ブレーティング(Mordern Electropl
ating)J第3版、1874年、355〜357頁
、及びエフ・ローウェンハイム著、マグロ−拳ヒル(M
cGraw Hill)社1978年発行、エレクトロ
ブレーティング1298〜299頁に記・成されている
。白金の電鍍浴をつくりまたこれを補給するために調合
された濃縮物は市阪されている。高品質の白金層を得る
ためには浴の温度を好ましくは約150〜約200″′
F(85〜930C)に保たなければならない。
Platinum electrolyte coatings are applied to conventional dimensionally stable counter electrodes by immersing the substrate in an aqueous platinum electroplating bath for at least 15 min.
A current of about 7 to about 70 amperes per square foot can be applied to the substrate until 0, preferably 225, and more preferably 250 microinches of platinum are coated. Any conventional platinum electroplating bath can be used. Typically such baths contain platinum compounds such as ammines, nitrides or hydroxy complexes as well as various known additives such as brighteners, auxiliaries to improve the toughness of the deposited film and remove impurities, and baths. is an aqueous dispersion, solution or mixture containing additives that improve the electrical conductivity of Typical platinum compounds include H2PtCl6, K
2Pt(OHh), H2Pt(NO2)2S04 and diammine dinitroplatinum(II). Useful compositions for platinum electroplating baths are described by F. Lowenheim (F.
, Lowenheim), ``Modern Electroblating''
ing) J 3rd edition, 1874, pp. 355-357, and McGraw-Fist Hill (M.
cGraw Hill), published in 1978, Electroblating, pages 1298-299. Concentrates prepared to create and replenish platinum electroplating baths are sold in Ichisaka. To obtain a high quality platinum layer, the temperature of the bath is preferably between about 150 and about 200''.
Must be kept at 85-930C.

白金の被膜が所望の厚さに達したら、陽極を浴から取り
出し、r緻密化」と呼ばれる熱処理を行い、被膜及びそ
の中に含まれる細孔の応力を緩和させることができる。
Once the platinum coating has reached the desired thickness, the anode can be removed from the bath and subjected to a heat treatment called densification to relieve stress in the coating and the pores contained within it.

もし「緻密化」工程を省略するか或いはこれが適切に行
われなかった場合には、未成熟な不動態化が行われるた
めに生成した陽極は耐久性が悪くなる。熱的な緻密化は
白金で被覆した陽極を空気、窒素、ヘリウム、真空また
は便宜的な雰囲気中で約550〜850℃に浸漬した白
金フィルムの性質によって約150〜約時間加熱するこ
とにより行なうことができる。熱的な緻密化工程は被膜
を目で観察し、細孔が閉じており被膜が極めて高度な反
射性をもっていることが認められた時に完了する。
If the "densification" step is omitted or not performed properly, the resulting anode will have poor durability due to immature passivation. Thermal densification is accomplished by heating the platinum-coated anode in air, nitrogen, helium, vacuum, or any convenient atmosphere to about 550-850° C. depending on the nature of the platinum film, for about 150 to about 150 minutes. I can do it. The thermal densification process is complete when the coating is visually observed and the pores are closed and the coating is highly reflective.

熱的緻密化が完了した後、陽極を冷却し酸素を含む雰囲
気中でイリジウムを含有する化合物を熱分解し酸化イリ
ジウムの外層を被覆する。使用できるイリジウム化合物
の中にはへキサクロロイリジウム酸、(NH4)2Ir
C16、rrc14及び樹脂酸イリジウム、並びに他の
ハロゲン含有化合物が含まれる。典型的にはこれらの化
合物を任意の通常の坦体、例えばインブタノール及び他
の脂肪族アルコール中に分散した後、任意の通常の方法
、例えば浸漬、刷毛塗りまたは噴霧により基質に被覆す
る。大部分の場合(金属として計算して)約0.5〜約
3.0g/l112.好ましくは1〜2g/112のイ
リジウムが基質に被覆されるのに十分な量のイリジウム
を含む坦体を被覆し、次いでこれを約400〜約550
°C1好ましくは450〜約500°Cの温度で焼成し
、坦体を追出しイリジウム化合物を酸化物に変える。(
金属として計算して)全部で少なくとも約15g/m2
、好ましくは少なくとも約20g/112、さらに好ま
しくは少なくとも約25g/l112のイリジウムが被
覆されるまでこの方法を繰返す。熱分解工程の温度は極
めて重要である。下記実施例に示すように、イリジウム
化合物の分解に約600℃以上の分解温度を使用すると
、得られた陽極の耐久性が著しく悪くなるが、600℃
以下、好ましくは約400〜約550℃、さらに好まし
くは450〜500°Cでイリジウム化合物を分解する
と得られた陽極は驚く程耐久性があり、汁通従来法の陽
極を短期間で駄目にする約85℃以上の温度の浴中にお
いて酸素を発生させた場合でも長寿命を示す。
After thermal densification is completed, the anode is cooled and the iridium-containing compound is thermally decomposed in an oxygen-containing atmosphere to coat the anode with an outer layer of iridium oxide. Among the iridium compounds that can be used are hexachloroiridic acid, (NH4)2Ir
Included are C16, rrc14 and iridium resinates, as well as other halogen-containing compounds. These compounds are typically dispersed in any conventional carrier, such as inbutanol and other aliphatic alcohols, and then applied to a substrate by any conventional method, such as dipping, brushing or spraying. In most cases (calculated as metal) from about 0.5 to about 3.0 g/l112. Preferably, 1 to 2 g/112 of iridium is coated on a support containing sufficient iridium to coat the substrate, and then this is applied at a concentration of about 400 to about 550
C.1, preferably at a temperature of 450 to about 500.degree. C., to drive off the carrier and convert the iridium compound to an oxide. (
total of at least approximately 15 g/m2 (calculated as metal)
The process is repeated until at least about 20 g/112, more preferably at least about 25 g/l112 of iridium is coated. The temperature of the pyrolysis step is extremely important. As shown in the examples below, if a decomposition temperature of about 600°C or higher is used to decompose an iridium compound, the durability of the resulting anode will be significantly deteriorated.
The anode obtained by decomposing the iridium compound at a temperature below, preferably about 400 to about 550°C, more preferably 450 to 500°C, is surprisingly durable, and can quickly destroy the anode of the conventional method. It exhibits a long life even when oxygen is generated in a bath at a temperature of about 85° C. or higher.

多くの場合酸化イリジウムフィルム中に最高約3zのR
h2O3を含ませ接着を促進することが有利である。こ
れは任意の通常のロジウム化合物をイリジウム含有被覆
組成物中に含ませることにより達成できる。樹脂酸ロジ
ウムが特に便利である。
R of up to about 3z is often present in iridium oxide films.
It is advantageous to include h2O3 to promote adhesion. This can be accomplished by including any conventional rhodium compound in the iridium-containing coating composition. Rhodium resinates are particularly useful.

適当な銅の化合物、例えば硫酸銅、塩化銅及び他の可溶
性白金化合物を含むpH約−2〜3の浴中に本発明の陽
極を浸漬し、ステンレス鋼または他の腐食耐性をもった
合金を対抗電極として用い、陽極1平方フィート当り約
400〜約2.000アンペア(4,300〜21,0
00  アンペア10’ )の電流を浴中に流し陽極に
酸素を発生させて、本発明の陽極を用い銅の箔を電気的
に製造することができる。極めて驚くべきことには、本
発明の陽極は85℃以上最高約90℃の浴温度で使用し
ても高度の耐久性を示す。また驚くべきことには本発明
の陽極は1平方フィート当り約500ないし最高約3,
000アンペア(5,400〜32,000アンペア/
rn2)の電流密度で操作しても、なお約100〜約2
50g/Jl!の硫酸濃度で使用するのに適している。
The anode of the present invention is immersed in a bath containing a suitable copper compound, such as copper sulfate, copper chloride, and other soluble platinum compounds, at a pH of about -2 to 3, and is made of stainless steel or other corrosion-resistant alloy. Used as a counterelectrode, the anode has a current of about 400 to about 2,000 amperes (4,300 to 21,00 amps) per square foot of anode.
Copper foils can be electrically produced using the anode of the present invention by passing a current of 100 amperes (10') into the bath and generating oxygen at the anode. Quite surprisingly, the anodes of the present invention exhibit a high degree of durability when used at bath temperatures above 85°C up to about 90°C. It is also surprising that the anodes of the present invention have an anode of from about 500 to up to about 3 per square foot.
000 amperes (5,400~32,000 amperes/
Even when operating at a current density of
50g/Jl! Suitable for use at sulfuric acid concentrations of

このような条件下において従来法の陽極は、本発明の陽
極を使用しない限り、或いは本発明の陽極に似ているが
本発明に厳密に従ってつくられたものではない陽極を使
用した場合でも、急速に劣化する。このような過酷な条
件下において、より効率的に迅速且つ経済的に箔の製造
を行い得るから、このような条件を使用できることは銅
箔の製造業者にとって非常に望ましいことである。従っ
て本発明の陽極は高純度で細孔のない電解銅箔のフィル
ムの高速でエネルギー的に効率の良い製造に適した条件
下で使用できるという、長く望まれてはいたが満たされ
ることのなかった要求を満足させるものである0本発明
の陽極はまた多孔性の箔が望まれている用途、並びに電
池、電気製造及び電気合成のような酸素の発生を含む用
途に極めて適している。
Under these conditions, conventional anodes will fail rapidly, unless the anode of the present invention is used, or even if an anode similar to the present anode is used but not made in strict accordance with the present invention. deteriorates to. The ability to use these harsh conditions is highly desirable to copper foil manufacturers because they allow foils to be manufactured more efficiently, quickly, and economically under these harsh conditions. Accordingly, there is a long-held but unmet need that the anodes of the present invention can be used under conditions suitable for the rapid and energy-efficient production of high-purity, pore-free electrolytic copper foil films. The anode of the present invention, which satisfies the above requirements, is also highly suitable for applications where porous foils are desired, and applications involving oxygen generation, such as batteries, electrical manufacturing, and electrosynthesis.

実施例1 本実施例は本発明の陽極の製造を例示する。寸法が4 
X8 Xo、062インチのチタンの基質のスケールを
落し、情節化処理を行い脱脂した後、厚さ250マイク
ロインチの厚さに白金を被覆した。次に白金の被膜を空
気中で690℃に374時間加熱して緻密化する。冷却
後、ヘキサクロロイリジウム酸と樹脂酸ロジウムとをブ
タノール中に分散した溶液を用いて基質に塗布して約9
8%のrro 2及び2zのRh2O3から成る被膜を
被覆した後、450℃において空気中で焼成し、被膜が
1m2当り15g  (金属として)のイリジウムを含
むに至るまでこの方法を繰返す、 pH約O1電流密度
約188OASF (20,00OA/112) 、約
60℃において銅箔の電気製造に使用する場合、4,0
00時間後も2.83ボルトの実質的に一定な過電圧で
陽極を操作することができた。
Example 1 This example illustrates the production of an anode of the present invention. Dimensions are 4
The X8 Xo, 0.62 inch titanium substrate was descaled, tempered, degreased, and coated with platinum to a thickness of 250 microinches. The platinum coating is then heated in air to 690° C. for 374 hours to densify it. After cooling, a solution of hexachloroiridic acid and rhodium resinate dispersed in butanol is applied to the substrate for approximately 90 minutes.
After coating a coating consisting of 8% rro 2 and 2z Rh2O3, it is calcined in air at 450° C. and the process is repeated until the coating contains 15 g (as metal) of iridium per m2, pH approximately O1. Current density of about 188OASF (20,00OA/112), 4,0 when used in copper foil electrical manufacturing at about 60℃
After 00 hours, the anode could still be operated with a substantially constant overvoltage of 2.83 volts.

実施例2 実施例1を繰返したが、酸化イリジウム(第3の工程)
は690℃でつくった。実施例1と同様な条件(pHO
、電流密度1860、温度60℃)で使用した場合、陽
極は620時間後には使用できなくなった。
Example 2 Example 1 was repeated but with iridium oxide (third step)
was made at 690°C. Conditions similar to Example 1 (pHO
, current density 1860, temperature 60° C.), the anode became unusable after 620 hours.

Claims (1)

【特許請求の範囲】 1、多層被膜を有するフィルム生成可能な金属の基質か
ら実質的に成る酸素発生用の陽極において、該被膜の少
なくとも一つの内側の層は少なくとも約200マイクロ
インチの厚さに電気鍍金された後酸素を含む雰囲気中に
おいて600〜775℃において加熱処理されて緻密化
された実質的に細孔のない白金から実質的に成り、該被
膜の少なくとも一つの外側の層は少なくとも約97%の
酸化イリジウムと最高約3%の酸化ロジウムとから実質
的に成り、該外側の層は温度約600℃以下において酸
素を含む雰囲気中で熱分解可能な白金族金属を熱分解さ
せて被覆されたものであることを特徴とする陽極。 2、該外側の層は約400〜約550℃において熱分解
させてつくられる特許請求の範囲第1項記載の陽極。 3、該内側の層は少なくとも約225マイクロインチの
厚さを有する特許請求の範囲第1項記載の陽極。 4、該内側の層は少なくとも約250マイクロインチの
厚さを有する特許請求の範囲第1項記載の陽極。 5、該外側の層は約450〜約500℃において熱分解
させてつくられる特許請求の範囲第4項記載の陽極。 6、100g/l以上の硫酸を含む水性浴中において、
少なくとも約500アンペア/平方フィートの電流密度
、温度85℃以上において特許請求の範囲第1〜5項記
載の陽極を使用して銅箔を電気的に製造する方法。
Claims: 1. An anode for oxygen evolution consisting essentially of a film-formable metal matrix having a multilayer coating, wherein at least one inner layer of the coating is at least about 200 microinches thick. The at least one outer layer of the coating consists essentially of substantially pore-free platinum that has been electroplated and then heat treated at 600 DEG to 775 DEG C. in an oxygen-containing atmosphere to densify it, the at least one outer layer of the coating having at least about consisting essentially of 97% iridium oxide and up to about 3% rhodium oxide; An anode characterized by being made of 2. The anode of claim 1, wherein said outer layer is formed by pyrolysis at about 400 DEG to about 550 DEG C. 3. The anode of claim 1, wherein said inner layer has a thickness of at least about 225 microinches. 4. The anode of claim 1, wherein said inner layer has a thickness of at least about 250 microinches. 5. The anode of claim 4, wherein said outer layer is formed by pyrolysis at about 450 to about 500C. 6. In an aqueous bath containing 100 g/l or more of sulfuric acid,
A method of electrically manufacturing copper foil using the anode of claims 1-5 at a current density of at least about 500 amperes per square foot and a temperature of 85°C or above.
JP61210829A 1985-09-13 1986-09-09 Anode used for electrochemical treatment at low pH and high current density Expired - Lifetime JPH0735597B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US77591185A 1985-09-13 1985-09-13
US775911 1985-09-13

Publications (2)

Publication Number Publication Date
JPS6280298A true JPS6280298A (en) 1987-04-13
JPH0735597B2 JPH0735597B2 (en) 1995-04-19

Family

ID=25105919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61210829A Expired - Lifetime JPH0735597B2 (en) 1985-09-13 1986-09-09 Anode used for electrochemical treatment at low pH and high current density

Country Status (5)

Country Link
EP (1) EP0215649B1 (en)
JP (1) JPH0735597B2 (en)
AT (1) ATE60374T1 (en)
CA (1) CA1305447C (en)
DE (1) DE3677108D1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3124848B2 (en) * 1992-11-11 2001-01-15 ペルメレック電極株式会社 Manufacturing method of metal foil by electrolysis
TWI490371B (en) * 2009-07-28 2015-07-01 Industrie De Nora Spa Electrode for electrolytic applications

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203810A (en) * 1970-03-25 1980-05-20 Imi Marston Limited Electrolytic process employing electrodes having coatings which comprise platinum
CH563464A5 (en) * 1970-09-02 1975-06-30 Engelhard Min & Chem Electrolytic anode
JPS5647597A (en) * 1979-09-25 1981-04-30 Nippon Steel Corp Insoluble electrode for electroplating and preparation thereof
GB2060701B (en) * 1979-10-12 1983-06-08 Diamond Shamrock Corp Electrode coating with platinum- group metal catalyst and semiconducting polymer
JPS56147057A (en) * 1980-04-15 1981-11-14 Ngk Spark Plug Co Ltd Production of oxygen sensor
CA1225066A (en) * 1980-08-18 1987-08-04 Jean M. Hinden Electrode with surface film of oxide of valve metal incorporating platinum group metal or oxide
US4331528A (en) * 1980-10-06 1982-05-25 Diamond Shamrock Corporation Coated metal electrode with improved barrier layer
JPS58171589A (en) * 1982-03-31 1983-10-08 Ishifuku Kinzoku Kogyo Kk Electrode for electrolysis and its manufacture
GB8316778D0 (en) * 1983-06-21 1983-07-27 Ici Plc Cathode

Also Published As

Publication number Publication date
ATE60374T1 (en) 1991-02-15
EP0215649A1 (en) 1987-03-25
JPH0735597B2 (en) 1995-04-19
DE3677108D1 (en) 1991-02-28
EP0215649B1 (en) 1991-01-23
CA1305447C (en) 1992-07-21

Similar Documents

Publication Publication Date Title
US6071570A (en) Electrodes of improved service life
US6251254B1 (en) Electrode for chromium plating
US6217729B1 (en) Anode formulation and methods of manufacture
US6527939B1 (en) Method of producing copper foil with an anode having multiple coating layers
US5059297A (en) Durable electrode for use in electrolysis and process for producing the same
US4008144A (en) Method for manufacturing of electrode having porous ceramic substrate coated with electrodeposited lead dioxide and the electrode manufactured by said method
JPH02200790A (en) Electrode for electrolysis
US3461058A (en) Method of producing a composite electrode
USRE28820E (en) Method of making an electrode having a coating containing a platinum metal oxide thereon
US5665218A (en) Method of producing an oxygen generating electrode
JP2019119930A (en) Chlorine generating electrode
US4913973A (en) Platinum-containing multilayer anode coating for low pH, high current density electrochemical process anodes
US4437948A (en) Copper plating procedure
JPH02190491A (en) Electrolytic electrode
US4067783A (en) Gold electroplating process
US3497426A (en) Manufacture of electrode
JPS6280298A (en) Anode used in electrochemical treatment at low ph and high current density
FI56402C (en) FOERFARANDE FOER FRAMSTAELLNING AV EN ANOD AVSEDD ATT ANVAENDAS I ELEKTROLYTISKA PROCESSER
EP0359876A1 (en) Oxygen-generating electrode and method for the preparation thereof
EP0475914A2 (en) Anode for chromium plating and processes for producing and using the same
JPH08225977A (en) Electrode for electrolysis and its production
JPH0499294A (en) Oxygen generating anode and its production
US4285798A (en) Method of producing an electrode
JP3868513B2 (en) Electrode for seawater electrolysis and method for producing the same
JPH0417689A (en) Electrode for electrolyzing water and production thereof