JPS6280205A - Production of fine metallic powder - Google Patents

Production of fine metallic powder

Info

Publication number
JPS6280205A
JPS6280205A JP60218605A JP21860585A JPS6280205A JP S6280205 A JPS6280205 A JP S6280205A JP 60218605 A JP60218605 A JP 60218605A JP 21860585 A JP21860585 A JP 21860585A JP S6280205 A JPS6280205 A JP S6280205A
Authority
JP
Japan
Prior art keywords
powder
melted
metallic
metal powder
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60218605A
Other languages
Japanese (ja)
Inventor
Nobuyasu Kawai
河合 伸泰
Yoshitomo Sato
佐藤 義智
Toshihisa Suemitsu
末光 利久
Misao Nagano
永野 操
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP60218605A priority Critical patent/JPS6280205A/en
Publication of JPS6280205A publication Critical patent/JPS6280205A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a clean pulverous and spherical metallic powder having uniform structure by rotating a metallic bar to be melted at an adequate and high circumferential speed in an inert gaseous atmosphere and applying a plasma arc to the top end thereof, thereby melting and splashing the metal. CONSTITUTION:The inside of a vacuum chamber 5 of an apparatus 1 for producing metallic powder is evacuated through a discharge pipe 6 and the inert gaseous atmosphere of Ar, etc., is maintained therein. The metallic bar 3 to be melted such as Ti is rotated at a high circumferential speed of 9,000-11,000m/min in the vacuum chamber 5 in the above-mentioned state. The plasma arc is applied from a plasma torch 4 to the top end of such metallic bar 3 under the high-speed rotation. The above-mentioned metallic bar 3 is thereby melted and splashed from the top end thereof to form the pulverous metallic powder of Ti, etc. having about 1 aspect ratio and <50mum average grain size. Such powder is housed into a powder recovering vessel 7.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は金属微粉末の製造方法に関し、殊に高速高周波
モータを用いたプラズマ回転電極法によって、Ti、Z
r、Ta等の如き高融点活性全屈或はそれらの合金等か
ら清浄な微粉末を製造する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing fine metal powder, and in particular, the production of Ti, Z, and
The present invention relates to a method for producing clean fine powder from high melting point active compounds such as R, Ta, etc. or their alloys.

[従来の技術] Ti、Zr、Ta等の様な活性金属及びそれらの合金等
の金属微粉末は、それ自体の焼結性が良好であるから、
粉末冶金製品製造用原料として好適なものであることが
知られている。即ち一層の微粉化が望まれているのであ
る。また一方熱間強度向上等の為に用いられるセラミッ
ク繊維と金属粉末との複合材料(例えばTi合金粉末を
含む繊維強化金属)等においては、できる限りi#i維
径に近い前記金属微粉末を用いることが、緻密化及び均
−分散化等を推進するうえで好ましいこととされている
[Prior Art] Fine metal powders such as active metals such as Ti, Zr, Ta, etc. and their alloys have good sinterability by themselves.
It is known to be suitable as a raw material for producing powder metallurgy products. In other words, further pulverization is desired. On the other hand, in composite materials of ceramic fibers and metal powders (for example, fiber-reinforced metals containing Ti alloy powder) used to improve hot strength, etc., the fine metal powders are used as close to the i#i fiber diameter as possible. It is considered preferable to use it in order to promote densification, uniform dispersion, etc.

また活性金属殊にチタン合金の粉末冶金材は、溶解材に
比べ以下に列挙する点で優れており、近時注目されてい
る。
Powder metallurgical materials made of active metals, particularly titanium alloys, have been attracting attention in recent years because they are superior to melted materials in the following respects.

(1)任意形状の最終製品が得られる。(1) A final product of arbitrary shape can be obtained.

(2)成形コストの低減が図れる。(2) Molding costs can be reduced.

(3)機械的性質の向上が図れる。(3) Mechanical properties can be improved.

(4)均一なミクロ組織が得られる。(4) A uniform microstructure can be obtained.

前記チタン合金の粉末冶金材は上記の様な特長を有して
いるところから、近年、航空機の機体部品やエンジン部
材の材料として盛んに検討が進められており、一部には
該粉末冶金材を用いたエンジン部材がすでに実用化され
ている。
Because the titanium alloy powder metallurgy material has the above-mentioned features, it has been actively studied in recent years as a material for aircraft body parts and engine parts. Engine parts using this have already been put into practical use.

粉末冶金用のチタン合金粉末として現在工業化されてい
るのは、純チタン粉末とAI−V合金粉末とを混合する
方法と、予め合金化した原料を回転電極法によって粉末
化する方法の2つの方法であるが、航空機部材には疲労
特性等において格別厳しい特性が要求される為、エンジ
ン部材等に適用される粉末冶金材は回転電極法、殊にタ
ングステン(W)汚染の少ないプラズマ回転電極法によ
って製造したものが好ましいとされている。
There are two methods currently being industrialized as titanium alloy powder for powder metallurgy: a method of mixing pure titanium powder and AI-V alloy powder, and a method of powderizing pre-alloyed raw materials using a rotating electrode method. However, since aircraft parts are required to have particularly strict properties such as fatigue properties, powder metallurgy materials applied to engine parts etc. are manufactured using the rotating electrode method, especially the plasma rotating electrode method with less tungsten (W) contamination. It is said that manufactured products are preferable.

第2図は回転電極法(Rotating  Elect
rodeProcess : REP)を示す概略説明
図であり、この方法はチタン合金を電極Aとし、該電極
を高速(約15.00Orpm )で回転させながら、
不活性ガス雰囲気中で非消耗タングステン電極Bとの間
にアークを発生せしめ、アーク熱でチタン合金電極を溶
解させながら遠心力で飛散させることによってチタン合
金粉末を得るものである。生成金属粉末の粒度は、回転
電極(チタン合金電極A)の直径や回転速度を変えるこ
とによって任意に変化させることができる。但し該回転
電極法は、カソード(陰極B)にタングステンを使用し
ている為該電極の一部が溶融消耗し、これがチタン合金
粉末中に混入してチタン合金材の材料強度特性を低下さ
せるという難点がある。
Figure 2 shows the rotating electrode method.
This method uses a titanium alloy as electrode A, and while rotating the electrode at high speed (about 15.00 rpm),
A titanium alloy powder is obtained by generating an arc between the titanium alloy electrode and the non-consumable tungsten electrode B in an inert gas atmosphere, and dissolving the titanium alloy electrode by the arc heat and scattering it by centrifugal force. The particle size of the produced metal powder can be arbitrarily changed by changing the diameter and rotation speed of the rotating electrode (titanium alloy electrode A). However, since the rotating electrode method uses tungsten for the cathode (cathode B), a portion of the electrode is melted and consumed, which is mixed into the titanium alloy powder and reduces the material strength characteristics of the titanium alloy material. There are some difficulties.

上記回転電極法の欠点を改良した方法として、プラズマ
アークを熱源とするプラズマアーク回転電極法(Pla
sma Rotating  Electrode  
Procss :PREP)が開発された。第3図は該
プラズマアーク回転電極法を示す概略説明図であり、こ
の方法は、水冷タングステンカソードと水冷銅ノズルの
間にヘリウムガス(又はアルゴンガス)を流し、ヘリウ
ムプラズマアークを熱源としてチタン合金等を溶融し、
前記回転電極法と同様にして金属微粉末を製造するもの
である。
As a method that improves the drawbacks of the above-mentioned rotating electrode method, the plasma arc rotating electrode method (PLA) uses a plasma arc as a heat source.
sma Rotating Electrode
Procss:PREP) was developed. FIG. 3 is a schematic explanatory diagram showing the plasma arc rotating electrode method. This method involves flowing helium gas (or argon gas) between a water-cooled tungsten cathode and a water-cooled copper nozzle, and using the helium plasma arc as a heat source. Melt etc.
Fine metal powder is produced in the same manner as the rotating electrode method.

[発明が解決しようとする問題点] 例えば航空機エンジン部材においては前述の如く厳しい
疲労寿命特性が要求されるが、粉末冶金材の疲労寿命は
粉末冶金材中の介在物や外部からの異種金属の混入によ
って著しい悪影響を受け、更には成形体のミクロ組織に
よっても寿命の短縮化を来たし、航空機エンジン部材に
とって致命的な欠陥となる。
[Problems to be solved by the invention] For example, aircraft engine parts are required to have severe fatigue life characteristics as mentioned above, but the fatigue life of powder metallurgy materials is limited by inclusions in the powder metallurgy materials and dissimilar metals from the outside. The contamination will have a significant adverse effect, and furthermore, the microstructure of the molded product will shorten its lifespan, resulting in a fatal defect for aircraft engine components.

介在物や異種金属の混入は管理上の問題であり、原料の
選択や粉末の取扱い等をクリーンルーム内で行なうこと
により解決できる。一方ミクロ組織と疲労寿命特性の関
係については、例えばTi−6AI−4V合金(Tiに
6%AI 、4%Vを含有させた合金)の場合にはα相
結晶の7スペクト化(結晶の短軸と長−の長さの比)が
1に近いほど疲労寿命特性が良好になることが確認され
ている。この様なアスペクト比が1に近いミクamaは
、粉末製造時の急冷速度が大きいほど可能となる。
The contamination of inclusions and dissimilar metals is a management problem that can be solved by selecting raw materials and handling powder in a clean room. On the other hand, regarding the relationship between the microstructure and fatigue life characteristics, for example, in the case of Ti-6AI-4V alloy (an alloy containing 6% AI and 4% V in Ti), the α phase crystal has seven spectra (the crystal is shortened). It has been confirmed that the closer the ratio (axis to length) is to 1, the better the fatigue life characteristics become. Such micro-ama with an aspect ratio close to 1 becomes possible as the quenching rate during powder production increases.

ミクロ組織の細かさを表わす指標として2次樹技状結晶
間距離(Dendrite  arm  spacin
g :以下り、A、S、と略称する)が知られている。
As an index expressing the fineness of the microstructure, the distance between secondary dendritic crystals (Dendrite arm spacin
g: Hereinafter abbreviated as A and S) are known.

第4図は、D、A、Sと粉末粒径との関係を示すグラフ
である。第4図には粉末製造時の不活性ガス雰囲気がA
rの場合を示しているが、いずれにしても回転電極法で
金属粉末を製造した場合には、細かい金属粉末はどり、
A、S、値は小さく、従ってミクロ組織は細かくなる傾
向を示しており、例えば金属粉末の粒径が100gmか
ら50#Lmとなるとミクロ組織は約30%小さくなる
と言われている。一般にり、A、S、が小さくなると7
スペクト比も小さくなる傾向があり、この様な意味から
も航空機エンジン部材等の疲労寿命を向上させる為には
金属粉末の粒度をできるだけ細かくするのが望ましい。
FIG. 4 is a graph showing the relationship between D, A, S and powder particle size. Figure 4 shows the inert gas atmosphere during powder production.
The case of r is shown, but in any case, when metal powder is manufactured by the rotating electrode method, fine metal powder scatters,
The A, S values are small, and therefore the microstructure tends to become finer. For example, it is said that when the particle size of metal powder increases from 100 gm to 50 #Lm, the microstructure becomes smaller by about 30%. Generally speaking, when A and S become smaller, 7
The spectral ratio also tends to become smaller, and from this point of view as well, it is desirable to make the particle size of the metal powder as fine as possible in order to improve the fatigue life of aircraft engine parts and the like.

回転電極法による金属粉末製造方法に関する公知技術は
下記第1表に示す通りである。
Known techniques for producing metal powder using the rotating electrode method are shown in Table 1 below.

第   1   表 ※I Metal Powdor Report、(1
984September)P、527 ※2 粉体粉末冶金協会9機械部品小委員会(1985
,2,27,) ※3 白木金属学会 昭和59年春期講演大会(198
4,4,3,) 上記第1表から明らかな様に、公知の方法で製造される
金属粉末の粒径(平均粒径)は70pm以上であるのが
現状である。
Table 1 *I Metal Powder Report, (1
984 September) P, 527 *2 Powder Metallurgy Association 9 Machinery Parts Subcommittee (1985
, 2, 27,) *3 Shiraki Institute of Metals 1981 Spring Lecture Conference (198
4, 4, 3,) As is clear from Table 1 above, the particle size (average particle size) of metal powder produced by known methods is currently 70 pm or more.

本発明は上記現状に鑑みなされたものであって、粉末冶
金製品の疲労寿命特性を更に向上すべく、平均粒径50
ルm未満の金属微粉末を製造することのできる方法を提
供しようとするものである。
The present invention was made in view of the above-mentioned current situation, and aims to further improve the fatigue life characteristics of powder metallurgy products.
It is an object of the present invention to provide a method capable of producing fine metal powder with a particle size of less than m.

[問題点を解決する為の手段] 本発明は、不活性ガス雰囲気中で被溶解金属棒を高速回
転させつつその先端にプラズマアークを適用し、前記被
溶解金属棒をその先端から溶融飛散させて金属微粉末を
得る方法において、被溶解金属棒を9,000〜11,
000m/win (7)周速度で高速回転させる点に
要旨を有するものである。
[Means for solving the problem] The present invention applies a plasma arc to the tip of a metal rod to be melted while rotating it at high speed in an inert gas atmosphere, so that the metal rod to be melted is melted and scattered from the tip. In this method, the metal rod to be melted is heated to 9,000 to 11,000 yen.
000m/win (7) The main point is to rotate at high speed at a circumferential speed.

[作用] 本発明者らは回転電極法について種々検討した結果、金
属粉末の原料となる消耗電極の大きさく径)及び該電極
の回転数で決まる周速度が金属粉末の平均粒径と強い相
関関係をもっていることを見出した0例えばTi−6A
I−4V合金を消耗電極として用い、回転電極法による
周速度と、得られた金属粉末の粒径との関係を求めた。
[Function] As a result of various studies on the rotating electrode method, the present inventors found that the circumferential speed, which is determined by the size and diameter of the consumable electrode that is the raw material for the metal powder and the rotation speed of the electrode, has a strong correlation with the average particle size of the metal powder. For example, Ti-6A
Using an I-4V alloy as a consumable electrode, the relationship between the peripheral speed by the rotating electrode method and the particle size of the obtained metal powder was determined.

第5図は、本発明に従って構成される金属粉末製造装置
l(第1図参照)を用いて操業した結果得られたもので
あり、周速度(m/i+in)をX軸、平均粒径(pm
)をY軸とした場合には下記の(1)式の関係が成立す
る。
FIG. 5 shows the results obtained by operating the metal powder manufacturing apparatus 1 (see FIG. 1) constructed according to the present invention, with the circumferential speed (m/i+in) on the X axis and the average particle size ( pm
) is set as the Y axis, the following relationship (1) holds true.

log Y = −0,815log X+4.922
  m  (1)」;記(1)式の結果に従って考慮し
、周速度を成る一定の範囲に特定することによって目標
とする平均粒径(50JLm未満)が得られるものと判
断した。
log Y = -0,815log X+4.922
m (1)''; Considering the results of equation (1), it was determined that the target average particle size (less than 50 JLm) could be obtained by specifying the circumferential velocity within a certain range.

第5図は第1図に示した金属粉末製造装置1で操業した
結果を示すものであり、従って金属粉末製造装置1の構
成を明確にする必要がある。
FIG. 5 shows the results of operating the metal powder manufacturing apparatus 1 shown in FIG. 1, and therefore it is necessary to clarify the configuration of the metal powder manufacturing apparatus 1.

金属粉末製造袋R1(第1図)の各要素について列挙す
ると下記の通りである。
Each element of the metal powder manufacturing bag R1 (FIG. 1) is listed below.

く熱源〉 熱源としては電気アーク、プラズマアーク等が一般に知
られている。既述した様に電気アークを熱源として用い
た場合には、非消耗電極にWを使用している為、Wが一
部欠落し或いは溶損して生成粉末中に混入してしまう恐
れがある。
Heat source> Electric arc, plasma arc, etc. are generally known as heat sources. As described above, when an electric arc is used as a heat source, since W is used for the non-consumable electrode, there is a risk that some W may be missing or melted and mixed into the produced powder.

従って本発明の製造装N1ではプラズマアークを熱源と
して用いたプラズマアーク回転電極法を採用している。
Therefore, the manufacturing apparatus N1 of the present invention employs a plasma arc rotating electrode method using a plasma arc as a heat source.

このことによってW汚染の問題がなく、清浄な金属粉末
を得ることができる。この他熱源としては電子ビーム(
E、B、)を採用する方式もあるが、真空で用いる電子
ビーム溶解はTf−6AI−4V合金の様に揮発性のA
I等を含む場合にはAtの濃度偏析が生じる恐れがある
為好ましくない。
This eliminates the problem of W contamination and makes it possible to obtain clean metal powder. Other heat sources include electron beams (
There is a method that uses volatile A, B, etc., but electron beam melting in a vacuum uses volatile A, such as Tf-6AI-4V alloy.
If it contains I or the like, it is not preferable because there is a risk of concentration segregation of At.

く高速モータ2〉 第5図から明らかな様に平均粒径50pm未満の金属粉
末を得る為には、周速度9,000m/win以上にす
る必要がある。従って消耗電極の径を32〜50■■φ
であるとした場合、最大回転数がgo、oo。
High-speed motor 2> As is clear from FIG. 5, in order to obtain metal powder with an average particle size of less than 50 pm, it is necessary to increase the peripheral speed to 9,000 m/win or more. Therefore, the diameter of the consumable electrode should be set to 32~50■■φ
If so, the maximum rotation speed is go, oo.

rpm程度の高速モータ2を採用する必要がある。It is necessary to employ a high-speed motor 2 of approximately rpm.

本発明では上記条件を満足する高速モータ2を採用した
。尚回転数の制御は電圧の可変制御により行なう0周速
度が11,000m/winを超えると電極径を大きく
するか、又はモータの回転数や電力をアップさせる必要
があり、いずれの場合も回転駆動用モータには極めて高
い能力が要求されるため、大変高価なものとなり現実的
ではない、従って本発明においては周速度の上限を11
,000■/sinとした。
The present invention employs a high-speed motor 2 that satisfies the above conditions. The rotation speed is controlled by variable voltage control. If the zero peripheral speed exceeds 11,000 m/win, it is necessary to increase the electrode diameter or increase the motor rotation speed or power. In either case, the rotation speed The drive motor is required to have extremely high performance, making it extremely expensive and impractical.Therefore, in the present invention, the upper limit of the peripheral speed is set to 11.
,000■/sin.

く電極〉 偏心回転による弊害を防止する為、各電極の加工精度は
重要な項目であり、旋盤精密加工の他、スェージング加
工、パフ研磨等によって加工精度を上げる必要がある場
合も生じる。
Electrode> In order to prevent the harmful effects of eccentric rotation, the processing accuracy of each electrode is an important item, and in addition to lathe precision processing, there are cases where it is necessary to improve processing accuracy by swaging processing, puff polishing, etc.

(a)活性金属電極(消耗電極3) 本発明では、消耗電極3はチャンバー5内に組み込む方
式を採用した。その他第2図に示した様なチャンバー外
挿方式でもよいが、該方式では超高速回転の為の磁性流
体を用いる様な特別な軸受けが必要となる。
(a) Active Metal Electrode (Consumable Electrode 3) In the present invention, the consumable electrode 3 is incorporated into the chamber 5. Alternatively, a chamber extrapolation method as shown in FIG. 2 may be used, but this method requires a special bearing that uses magnetic fluid for ultra-high speed rotation.

(b)非消耗電極(プラズマトーチ4)溶解が円滑に行
なわれる様、上下、左右に動く方式を採用した。
(b) Non-consumable electrode (plasma torch 4) A method of moving vertically and horizontally was adopted to ensure smooth melting.

く真空チャンバー5〉 掃除しやすい様に内面#300でパフ研磨仕上げを行な
っている。一般的には真空時のチャンバー変形防止の為
チャンバー内には補強棒が設けられるが、これは生成金
属粉末の回収やチャンバー内清掃の際には支障となる。
Vacuum chamber 5〉 The inner surface is #300 and has a puff-polished finish for easy cleaning. Generally, a reinforcing rod is provided inside the chamber to prevent the chamber from deforming when vacuum is applied, but this becomes a hindrance when recovering the produced metal powder and cleaning the inside of the chamber.

特に粉末金属の種類を変えた場合は混粉防止の為に清掃
を徹底的に実施する必要があるので、補強棒のないチャ
ンバーを採用するのが望ましい0本発明では真空溶解チ
ャンバーの様な両側面円錐形の真空チャンバ−5を採用
しており、チャンバー内の補強棒又はそれに類似するも
のは全く存在しない、尚第1図中の符号7は粉末回収容
器である。
In particular, when changing the type of powder metal, it is necessary to thoroughly clean it to prevent powder mixing, so it is preferable to use a chamber without reinforcing rods. A conical vacuum chamber 5 is employed, and there are no reinforcing rods or anything similar within the chamber. Reference numeral 7 in FIG. 1 is a powder collection container.

く操業〉 チャンバー5内の真空雰囲気は油圧式回転ポンプによっ
て排気管6からチャンバー5内の気体(主に空気)を排
出することにより、10−3Torrの真空度が約30
公租度の吸引で達成できるように構成される。その後排
気管6をガス導入管として兼用し、アルゴンガスをチャ
ンバー5内に導入して約1気圧の状態で操業する。この
際には生成金属粉末の酸化が問題となる為、系内を高真
空に保つ他、導入されるアルゴンガス中の酸素濃度を極
力低くする必要がある。
Operation> The vacuum atmosphere inside the chamber 5 is maintained at a vacuum degree of 10-3 Torr by discharging the gas (mainly air) inside the chamber 5 from the exhaust pipe 6 using a hydraulic rotary pump.
Constructed in such a way that it can be achieved with aspiration of fairness. Thereafter, the exhaust pipe 6 is also used as a gas introduction pipe, and argon gas is introduced into the chamber 5 to operate at about 1 atmosphere. At this time, oxidation of the produced metal powder becomes a problem, so in addition to keeping the system in a high vacuum, it is necessary to keep the oxygen concentration in the argon gas introduced as low as possible.

[実施例] 第1図に示した装置lを用いてチタン合金粉末の製造を
行なった。アルゴンガスで置換した(1気圧下) チャ
フ/<  5内で、Ti−6AI−4V合金の消耗電極
3 (50,4m■す)を60,000rp■ (周速
度9,500m/腸in)で回転させ、該電極3とプラ
ズマアーク電極4との間に約500AX20Vの電力を
供給し、金属微粉末の製造・回収を行なった。
[Example] Titanium alloy powder was manufactured using the apparatus 1 shown in FIG. The Ti-6AI-4V alloy consumable electrode 3 (50,4 m) was heated at 60,000 rpm (circumferential speed 9,500 m/in) within a chaff/< 5, purged with argon gas (under 1 atm). While rotating, power of about 500 AX 20 V was supplied between the electrode 3 and the plasma arc electrode 4, and fine metal powder was produced and recovered.

その結果、平均粒径が47gmで酸素量が0.15%の
清浄な金属粉末を得ることができた。
As a result, clean metal powder with an average particle size of 47 gm and an oxygen content of 0.15% could be obtained.

[発明の効果] 本発明は以上の様に構成されるが、要は各要素を厳選し
た製造装置を用い、プラズマアーク回転電極法を応用す
ると共に周速度を特定することによって平均粒径50#
Lm未満の金属微粉末を製造することができ、その結果
下記の様な利益を得ることができる。
[Effects of the Invention] The present invention is constructed as described above, but the key point is that the average grain size is 50# by using a manufacturing device with carefully selected elements, applying the plasma arc rotating electrode method, and specifying the circumferential speed.
It is possible to produce metal fine powder with a particle size of less than Lm, and as a result, the following benefits can be obtained.

(1)微粉化によって粉末冶金製品の焼結性の向上が図
れる。
(1) The sinterability of powder metallurgy products can be improved by pulverization.

(2)急速冷却が達成され、製品組織の均一微細化に伴
なう材料時性の向上が図れる。
(2) Rapid cooling is achieved, and material stability can be improved as the product structure becomes more uniform and finer.

(3)活性金属を粉末冶金用及び溶射用材料として使用
する場合、溶射の出来具合は粉末粒子が微細な程また球
状である程緻密性、接着性1表面平滑性等の点において
優れたものとなることが知られており、こうした観点か
らしても本発明により製造される金属微粉末は粉末冶金
用及び溶射用材料として非常に優れたものと言える。
(3) When active metals are used as materials for powder metallurgy and thermal spraying, the finer the powder particles or the more spherical the particles, the better the quality of the thermal spraying in terms of density, adhesion, surface smoothness, etc. It is known that, from this point of view, the metal fine powder produced by the present invention can be said to be extremely excellent as a material for powder metallurgy and thermal spraying.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するに当たり使用される金属粉末
製造装置を例示する概略説明図、第2図は回転電極法の
概略説明図、第3図はプラズマアーク回転電極法の概略
説明図、第4図はり。 A、Sと粉末粒径との関係を示すグラフ、第5図は周速
度と金属粉末粒径との関係を示すグラフである。 l・・・金属粉末製造装置 2・・・高速モータ   3・・・消耗′電極4・・・
プラズマトーチ 5・・・真空チャンバー6・・・排気
FIG. 1 is a schematic explanatory diagram illustrating a metal powder manufacturing apparatus used in carrying out the present invention, FIG. 2 is a schematic explanatory diagram of the rotating electrode method, and FIG. 3 is a schematic explanatory diagram of the plasma arc rotating electrode method. Figure 4: Beam. A graph showing the relationship between A and S and the powder particle size, and FIG. 5 is a graph showing the relationship between the peripheral speed and the metal powder particle size. l...Metal powder manufacturing equipment 2...High speed motor 3...Consumable electrode 4...
Plasma torch 5...Vacuum chamber 6...Exhaust pipe

Claims (1)

【特許請求の範囲】 不活性ガス雰囲気中で被溶解金属棒を高速回転させつつ
その先端にプラズマアークを適用し、前記被溶解金属棒
をその先端から溶融飛散させて金属微粉末を得る方法に
おいて、 被溶解金属棒を9,000〜11,000m/minの
周速度で高速回転させることを特徴とする金属微粉末の
製造方法。
[Claims] A method for obtaining fine metal powder by applying a plasma arc to the tip of a metal rod to be melted while rotating it at high speed in an inert gas atmosphere, and melting and scattering the metal rod from the tip. A method for producing fine metal powder, which comprises rotating a metal rod to be melted at high speed at a circumferential speed of 9,000 to 11,000 m/min.
JP60218605A 1985-10-01 1985-10-01 Production of fine metallic powder Pending JPS6280205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60218605A JPS6280205A (en) 1985-10-01 1985-10-01 Production of fine metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60218605A JPS6280205A (en) 1985-10-01 1985-10-01 Production of fine metallic powder

Publications (1)

Publication Number Publication Date
JPS6280205A true JPS6280205A (en) 1987-04-13

Family

ID=16722574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60218605A Pending JPS6280205A (en) 1985-10-01 1985-10-01 Production of fine metallic powder

Country Status (1)

Country Link
JP (1) JPS6280205A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156003A (en) * 1988-12-07 1990-06-15 Nippon Steel Weld Prod & Eng Co Ltd Manufacture of alloy powder containing titanium-aluminum intermetallic compound
JP2003001389A (en) * 2001-06-15 2003-01-07 Showa Denko Kk Manufacturing method for hydrogen absorbing alloy
CN102528064A (en) * 2012-02-23 2012-07-04 姚振梅 Equipment and technology for preparing metal powder
CN109014228A (en) * 2018-10-09 2018-12-18 陕西科技大学 A method of copper alloy powder is prepared based on plasma rotating electrode
CN112453418A (en) * 2021-01-28 2021-03-09 西安赛隆金属材料有限责任公司 Plasma arc generating device, powder making equipment and using method thereof
WO2024000919A1 (en) * 2022-07-01 2024-01-04 南京尚吉增材制造研究院有限公司 Preparation method and system for titanium or titanium alloy powder having high degree of sphericity and low oxygen increment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156003A (en) * 1988-12-07 1990-06-15 Nippon Steel Weld Prod & Eng Co Ltd Manufacture of alloy powder containing titanium-aluminum intermetallic compound
JP2003001389A (en) * 2001-06-15 2003-01-07 Showa Denko Kk Manufacturing method for hydrogen absorbing alloy
JP4712228B2 (en) * 2001-06-15 2011-06-29 昭和電工株式会社 Method for producing hydrogen storage alloy
CN102528064A (en) * 2012-02-23 2012-07-04 姚振梅 Equipment and technology for preparing metal powder
CN109014228A (en) * 2018-10-09 2018-12-18 陕西科技大学 A method of copper alloy powder is prepared based on plasma rotating electrode
CN112453418A (en) * 2021-01-28 2021-03-09 西安赛隆金属材料有限责任公司 Plasma arc generating device, powder making equipment and using method thereof
WO2024000919A1 (en) * 2022-07-01 2024-01-04 南京尚吉增材制造研究院有限公司 Preparation method and system for titanium or titanium alloy powder having high degree of sphericity and low oxygen increment

Similar Documents

Publication Publication Date Title
KR102639133B1 (en) Process for producing spheroidized powder from feedstock materials
Chou et al. Fibre-reinforced metal-matrix composites
El-Eskandarany Mechanical alloying: nanotechnology, materials science and powder metallurgy
CA1269549A (en) Production of mechanically alloyed powder
Savage et al. Production of rapidly solidified metals and alloys
EP0088578B1 (en) Production of mechanically alloyed powder
El-Eskandarany Mechanical Alloying: Energy Storage, Protective Coatings, and Medical Applications
JPS6242705B2 (en)
TWI221101B (en) Method for producing alloy powder by dual self-fusion rotary electrodes
JPS58197206A (en) Production of powder of high grade metal or its alloy
JP2021532267A (en) Cost-effective powder manufacturing method
Neikov et al. Mechanical alloying
Bodkin et al. Centrifugal shot casting: a new atomization process for the preparation of high-purity alloy powders
CN108031854A (en) A kind of method of modifying at the metal dust interface for 3D printing
CN101927351A (en) Method for preparing high temperature alloy GH 4169 metal globule by utilizing auxiliary plasma rotation electrode
CN109014228A (en) A method of copper alloy powder is prepared based on plasma rotating electrode
US20050150759A1 (en) Powder and coating formation method and apparatus
Zoz et al. Improve Ag-SnO~ 2 Electrical Contact Material Produced by Mechanical Alloying
US4482375A (en) Laser melt spin atomized metal powder and process
JPS6280205A (en) Production of fine metallic powder
EP0282604A1 (en) Apparatus for producing powder and process for its production
Yamaoglu et al. Consolidation of Al-nanoSiC composites by spark plasma sintering
US20080241350A1 (en) Method for fabricating a medical component from a material having a high carbide phase
JPH0331405A (en) Method and apparatus for producing metallic powder
JP2008189995A (en) Method for producing oxide particle dispersion strengthened alloy by casting