JPH0331405A - Method and apparatus for producing metallic powder - Google Patents

Method and apparatus for producing metallic powder

Info

Publication number
JPH0331405A
JPH0331405A JP16765989A JP16765989A JPH0331405A JP H0331405 A JPH0331405 A JP H0331405A JP 16765989 A JP16765989 A JP 16765989A JP 16765989 A JP16765989 A JP 16765989A JP H0331405 A JPH0331405 A JP H0331405A
Authority
JP
Japan
Prior art keywords
raw material
material rod
chamber
induction coil
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16765989A
Other languages
Japanese (ja)
Inventor
Norio Ekusa
紀男 江草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP16765989A priority Critical patent/JPH0331405A/en
Publication of JPH0331405A publication Critical patent/JPH0331405A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce high-quality metallic powder in a high yield by supplying a metallic raw material rod from above the vacuum chamber of a melting furnace, successively melting the front end of the rod by an induction coil and dropping the melt onto a rotary disk, thereby splashing and solidifying the melt. CONSTITUTION:The atmosphere and pressure in the vacuum chamber 3 of the melting furnace are adjusted to an adequate state according to the kind of the metal to be melted and the raw material rod 1 is supplied by delivery rollers 10 from above the chamber. The front end of this raw material rod 1 is successively melted by the induction coil. The molten metal falls successively in the form of drops onto the water- cooled disk 7 rotating at a fixed speed and in splashed, pulverized and solidified by the centrifugal force of the disk 7, by which the metallic powder 9 is obtd. The self-inductance of the coil 2 detected by a power source 6 is converted to a signal by a signal converting processor 12. The signal is fed back to the power source 11 which controls the speed of the rollers 10 by a power factor in such a manner that the self-inductance of the coil 2 maintains always a set value. The powder of metals, such as Ti, Zr and Ta, or the alloy thereof is produced in this way under optimum conditions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、チタン、ジルコニウム等の純金属やこれ等
の金属を基とする合金の原料棒を溶解して粉末化する金
属粉末の製造方法とこの方法の実施に用いる装置に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] This invention provides a method for producing metal powder by melting and powdering raw material rods of pure metals such as titanium and zirconium or alloys based on these metals. and the apparatus used to carry out the method.

〔従来の技術〕[Conventional technology]

チタン、ジルコニウム等の金属或いはこれ等の金属がベ
ースとなる合金の粉末を作る方法としては、例えば社団
法人チタニウム協会線「チタニウム・ジルコニウムJ 
VoL31 、Nα2のP98〜102に示されるよう
に、(1)回転電極法(REP、PREP ) 、(2
)回転デスク法(C3C)、(3)電子ビームを熱源と
する粉末製造法(EBRD)がある。
As a method for producing powder of metals such as titanium and zirconium, or alloys based on these metals, for example, the Titanium Association's ``Titanium/Zirconium J
As shown in P98 to 102 of VoL31 and Nα2, (1) rotating electrode method (REP, PREP), (2
) rotating desk method (C3C), and (3) powder manufacturing method using an electron beam as a heat source (EBRD).

(1)のREP%PREP法は、共に不活性ガス雰囲気
中で非消耗タングステン電極とチタン電極間にアークを
生じさせることによりチタン電極を溶解し、溶けたチタ
ンを遠心力で飛散させてチタン粉末を得る。なお、これ
等の方法のうち、移行型プラズマアークを熱源とするP
REP法は、タングステン粒子による汚染防止を目的と
して雰囲気中に少量のヘリウムガスを導入している。
In the REP%PREP method (1), the titanium electrode is melted by creating an arc between the non-consumable tungsten electrode and the titanium electrode in an inert gas atmosphere, and the molten titanium is scattered by centrifugal force to form titanium powder. get. Of these methods, P
In the REP method, a small amount of helium gas is introduced into the atmosphere for the purpose of preventing contamination by tungsten particles.

(2)のC3C法は、チタン消耗電極と水冷した回転る
つぼ間でアークを発生し、電極端をアーク熱で溶かす。
In the C3C method (2), an arc is generated between a titanium consumable electrode and a water-cooled rotating crucible, and the electrode end is melted by the arc heat.

そしてるつぼ内に落下した溶滴を回転しているるつぼの
遠心力で飛散させてチタンの粉末を製造する。
The droplets that have fallen into the crucible are then scattered by the centrifugal force of the rotating crucible, producing titanium powder.

また、(3)のEBRD法は、原料インゴットの表面を
電子ビームで溶解し、溶滴を回転するるつぼの遠心力で
飛散させてチタン粉末を作る。
In the EBRD method (3), titanium powder is produced by melting the surface of a raw material ingot with an electron beam and scattering droplets using the centrifugal force of a rotating crucible.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の各方法のうち、(])のPREP法PR
EP法は、不活性雰囲気下での溶解であるので、蒸発性
合金元素を含有する合金粉末の製造には適するが、純金
属については、高真空による脱ガス精錬が望めないため
高純度粉末が得られない。
Among the conventional methods described above, the PREP method PR of (])
Since the EP method involves melting under an inert atmosphere, it is suitable for producing alloy powders containing vaporizable alloying elements, but for pure metals, high-purity powders cannot be produced as degassing refining using high vacuum cannot be expected. I can't get it.

また、熱源にアークを用いる(2)のC8C法、電子ビ
ームを用いる(3)のEBRD法は、高真空雰囲気が必
要であり、従って、純金属の脱ガス精錬には向くが、蒸
発性合金元素を含む合金粉末は、合金元素の蒸発による
粉末の組成変化、材料の歩留低下を招くため製造し難い
In addition, the C8C method (2), which uses an arc as a heat source, and the EBRD method (3), which uses an electron beam, require a high vacuum atmosphere, and are therefore suitable for degassing refining of pure metals, but Alloy powder containing elements is difficult to manufacture because evaporation of alloying elements causes changes in powder composition and decreases in material yield.

このようなことから、従来は、純金属、合金について各
々それに適した方法を選択せざるを得なかったが、これ
では設備投資、製品コストの面で不利になる。
For this reason, in the past, it was necessary to select a method suitable for each pure metal or alloy, but this is disadvantageous in terms of equipment investment and product cost.

そこで、この発明は、金属の種類による方法の実施規制
を無くすことを課題としている。
Therefore, the object of this invention is to eliminate the restrictions on implementation of the method depending on the type of metal.

〔課題を解決するための手段〕[Means to solve the problem]

上記の問題点を無くすため、この発明の方法においては
、真空チャンバ内に誘導コイルを有し、コイル直下に水
冷銅の回転円板を有する溶解炉を用いる。そして、その
炉の中にチャンバ上方から原料棒を吊り下げて供給し、
誘導コイルの内側に非接触に進入させたその原料棒を誘
導電流で先端から順次熔融し、溶けた金属を回転円板上
に滴下させることにより、飛散、凝固させて所望の金属
粉末を得る。この方法によれば、対象金属、即ち、チタ
ン、ジルコニウム、タンタル、ニオブ、モリブデン、バ
ナジウム、タングステン或いはこれ等の金属を基とする
合金のいずれについても最適条件での粉末製造が行える
In order to eliminate the above-mentioned problems, the method of the present invention uses a melting furnace having an induction coil in a vacuum chamber and a water-cooled copper rotating disk directly below the coil. Then, a raw material rod is suspended and fed into the furnace from above the chamber,
The raw material rod is introduced into the induction coil without contact and is melted sequentially from the tip by an induced current, and the molten metal is dropped onto a rotating disk where it is scattered and solidified to obtain the desired metal powder. According to this method, powder can be produced under optimal conditions for any of the target metals, ie, titanium, zirconium, tantalum, niobium, molybdenum, vanadium, tungsten, or alloys based on these metals.

なお、原料棒の溶解速度は、回転円板の回転速度を一定
と考えると粉末の品質安定化の面で一定しているのが望
ましい、このため、この発明の装置は、上記誘導加熱炉
のほかに原料棒の送り出し手段と、誘導コイルの自己イ
ンダクタンスを信号化してフィードバックし、この信号
をもとに原料棒の送り出し速度を制御する手段を備える
構成にしておく。
Furthermore, considering that the rotational speed of the rotating disk is constant, it is desirable that the melting speed of the raw material rod be constant in terms of stabilizing the quality of the powder. In addition, it is configured to include means for feeding out the raw material rod, and means for converting the self-inductance of the induction coil into a signal and feeding it back, and controlling the feeding speed of the raw material rod based on this signal.

〔作用〕[Effect]

この発明の方法及び装置は、チャンバ内での誘導加熱溶
解であるので、溶解雰囲気の設定が自由である。そのた
め、純金属の溶解時には、チャンバ内を高真空(好まし
くは10−6〜10−2torr)にして脱ガス精錬効
果を高め、一方、合金の溶解時にはチャンバ内を不活性
雰囲気にして(圧力は1O−Itorr〜10気圧程度
がよい)合金元素の蒸発を抑制することができる。また
、合金の溶解時に不活性ガスの導入と真空排気を併用し
て合金元素の蒸発を抑えながらある程度の脱ガス精錬効
果を同時に得ることもできる(この場合のチャンバ内圧
力は10〜2〜1Qtorr程度が好ましい)。
Since the method and apparatus of the present invention perform induction heating melting within a chamber, the melting atmosphere can be set freely. Therefore, when melting pure metals, the inside of the chamber is set to a high vacuum (preferably 10-6 to 10-2 torr) to enhance the degassing refining effect, while when melting alloys, the inside of the chamber is set to an inert atmosphere (the pressure is It is possible to suppress the evaporation of the alloying elements (approximately 10-Itorr to 10 atmospheres is preferable). In addition, it is also possible to suppress the evaporation of alloying elements and obtain a certain degassing refining effect at the same time by simultaneously introducing an inert gas and evacuation when melting the alloy (in this case, the chamber internal pressure is 10 to 2 to 1 Qtorr). degree is preferred).

しかも、真空雰囲気中で行う脱ガス精錬は、溶融金属が
滴状になって落下していくことによりガスの抜は出しが
容易になるため、非常に効率良く行われる。
Furthermore, degassing refining performed in a vacuum atmosphere is performed very efficiently because the molten metal falls in the form of droplets, making it easy to remove gas.

なお、上記制御手段があると、原料棒の送り出し速度を
誘導コイルの自己インピーダンスが一定に維持されるよ
うにコントロールでき、これにより溶解速度が一定する
ため、粒径、組成のより安定した粉末を得ることができ
る。
In addition, with the above control means, the feeding speed of the raw material rod can be controlled so that the self-impedance of the induction coil is maintained constant, and as a result, the dissolution rate is constant, so powder with more stable particle size and composition can be produced. Obtainable.

〔実施例〕〔Example〕

添付図面に基いて、この発明の装置の一具体例を説明す
る。図の1は原料棒、2は誘導コイル、3は真空チャン
バであり、このチャンバには排気ダクト4、不活性ガス
導入ダクト5及び粉末取出しダクト8が設けられている
。6は誘導コイル2の電源、7はコイル2の下方に設置
した水冷銅の回転円板、9は真空チャンバ内で出来上っ
た金属粉末、10は原料棒1を吊り下げた状態にして下
向きにチャンバ内に送り込む送り出しローラである。ま
た、11は10の駆動用電源、12は10の速度制御の
ため信号をフィードバックする信号変換処理器である。
A specific example of the device of the present invention will be explained based on the accompanying drawings. In the figure, 1 is a raw material rod, 2 is an induction coil, and 3 is a vacuum chamber, and this chamber is provided with an exhaust duct 4, an inert gas introduction duct 5, and a powder extraction duct 8. 6 is the power source for the induction coil 2, 7 is a water-cooled copper rotating disk installed below the coil 2, 9 is the metal powder produced in the vacuum chamber, and 10 is the raw material rod 1 suspended downward. This is the feed roller that feeds the material into the chamber. Further, 11 is a power source for driving 10, and 12 is a signal conversion processor that feeds back a signal for speed control of 10.

チャンバ3内の雰囲気及び圧力は、溶解する金属の種類
に応じて適切な状態に調整される。そのチャンバ3内に
送り込まれた原料棒1は、誘導コイル2の内側に進入す
ると誘導電流が流れてジュール熱により端部から自己溶
解していく。また、熔けた金属は滴状になって一定速度
で回転している円+JiT上に順次落下し、これが円板
の遠心力で飛散せしめられて微細化し、かつ凝固して金
属粉末9になる。
The atmosphere and pressure within the chamber 3 are adjusted to appropriate conditions depending on the type of metal to be melted. When the raw material rod 1 fed into the chamber 3 enters the inside of the induction coil 2, an induced current flows therethrough and the raw material rod 1 is self-melted from the end due to Joule heat. Further, the molten metal falls in the form of droplets onto the circle+JiT rotating at a constant speed, is scattered by the centrifugal force of the disk, becomes fine, and solidifies into metal powder 9.

誘導コイル用の電源6は周波数固定のものを用いており
、製造中にこの電源6で検出したコイル2の自己インダ
クタンスを12が信号に変換して電源11にフィードバ
ックし、コイル2の自己インピーダンスが設定値を常に
維持するように力率によるローラ10の速度制御が行わ
れる。
The power supply 6 for the induction coil uses one with a fixed frequency, and the self-inductance of the coil 2 detected by the power supply 6 during manufacturing is converted into a signal by 12 and fed back to the power supply 11, so that the self-impedance of the coil 2 is The speed of the roller 10 is controlled based on the power factor so that the set value is always maintained.

以下に、この発明の方法のより詳細な実施例を記す。Below, more detailed examples of the method of this invention are described.

〔実施例1] 添付図の装置を用いて代表的なチタン合金であるTi−
6Al−4Vを粉末化した。原料棒の溶解に際しては、
真空チャンバ3内を予め10−6〜1O−4torrで
真空引きし、その後、Arガスで置換し、800tor
rとした。
[Example 1] A typical titanium alloy, Ti-
6Al-4V was powdered. When melting the raw material rod,
The inside of the vacuum chamber 3 was evacuated in advance at 10-6 to 1O-4 torr, then replaced with Ar gas, and then evacuated to 800 torr.
It was set as r.

第1表に、溶解前の原料棒と、製造粉末の各合金元素の
平均組成を示す。
Table 1 shows the average composition of each alloying element in the raw material rod before melting and the manufactured powder.

第1表 (単位二重量%) これ等のデータから、この発明の方法は、蒸気圧の高い
合金元素の蒸発防止、成分の偏析防止に有効であること
が判る。
Table 1 (unit duplex weight %) From these data, it can be seen that the method of the present invention is effective in preventing the evaporation of alloying elements with high vapor pressure and in preventing the segregation of components.

〔実施例2〕 添付図の熔解、鋳造装置を使って純チタン2種の粉末製
造を行った。この際の真空チャンバ内圧力は10− ’
 Lorrとした。
[Example 2] Two types of pure titanium powders were manufactured using the melting and casting apparatus shown in the attached diagram. The pressure inside the vacuum chamber at this time is 10-'
It was Lorr.

第2表に溶解前の原料棒と製造粉末の不純物元素の平均
含有値を示す。
Table 2 shows the average content of impurity elements in the raw material rod before melting and the manufactured powder.

第2表 (単位:0、N、Cl;!重量%、他はppIII)こ
の実験結果から、純金属については脱ガス精錬効果を高
めて製造粉末中の不純物を充分に除去し得ることが判る
Table 2 (Units: 0, N, Cl; !wt%, others are ppIII) From this experimental result, it can be seen that for pure metals, impurities in the manufactured powder can be sufficiently removed by increasing the degassing refining effect. .

〔効果〕〔effect〕

以上説明したように、この発明によれば、チャンバ内で
の誘導加熱溶解であり、溶解雰囲気を自由に選択できる
ため、粉末化する金属が純金属、蒸気圧の高い金属元素
等を含む合金のいずれであっても金属の種類に合った雰
囲気条件を選んで高品質の粉末を製造することができる
As explained above, according to the present invention, induction heating melting is performed in a chamber, and the melting atmosphere can be freely selected. In either case, high-quality powder can be produced by selecting atmospheric conditions that match the type of metal.

即ち、純金属の粉末製造時には高真空を用いて溶融金属
の滴下により脱ガスを促進しながら製造粉末の純度を高
め得る。
That is, when producing pure metal powder, a high vacuum can be used to promote degassing by dropping molten metal and improve the purity of the produced powder.

また、合金粉末の製造時には、不活性雰囲気を用いるこ
とにより、合金元素の蒸発を抑制して粉末の組成変化、
材料の歩留低下の問題を無くすことができる。
In addition, when producing alloy powder, by using an inert atmosphere, the evaporation of alloying elements is suppressed and the composition change of the powder is prevented.
The problem of reduced material yield can be eliminated.

加えて、これ等の粉末の製造は同一装置で可能なため、
設備投資の無駄、これによる粉末製品のコスト上昇も無
くなる。従って、耐高温、高強度、高疲労、高信頼性の
要求される自動車や航空機のエンジン弁ばね、コネクテ
ィングロッド、クランクシャフト、タービンブレード、
ファスナーと云った焼結部品の原料粉末の製造に利用す
ると効果的である。
In addition, these powders can be manufactured using the same equipment.
This eliminates wasted capital investment and the resulting increase in the cost of powder products. Therefore, engine valve springs, connecting rods, crankshafts, turbine blades for automobiles and aircraft, which require high temperature resistance, high strength, high fatigue, and high reliability,
It is effective when used in the production of raw material powder for sintered parts such as fasteners.

【図面の簡単な説明】[Brief explanation of drawings]

添付図は、この発明の装置の一例を示す概略図である。 1・・・・・・原料棒、     2・・・・・・誘導
コイル、3・・・・・・真空チャンバ、 4・・・・・
・排気ダクト、5・・・・・・不活性ガス導入ダクト、
6・・・・・・コイル用電源、 7・・・・・・水冷銅
の回転円板、8・・・・・・粉末取り出しダクト、 9・・・・・・金属粉末、    10・・・・・・送
り出しローラ、11・・・・・・ローラ用駆動電源、 12・・・・・・信号変換器。
The attached figure is a schematic diagram showing an example of the device of the present invention. 1... Raw material rod, 2... Induction coil, 3... Vacuum chamber, 4...
・Exhaust duct, 5...Inert gas introduction duct,
6... Coil power source, 7... Water-cooled copper rotating disk, 8... Powder extraction duct, 9... Metal powder, 10... ...Feeding roller, 11...Roller drive power supply, 12...Signal converter.

Claims (4)

【特許請求の範囲】[Claims] (1)チタン、ジルコニウム、タンタル、ニオブ、モリ
ブデン、バナジウム、タングステン或いはこれ等の金属
を基とする合金の粉末の製造方法であって、真空チャン
バ内に誘導コイルを有し、コイル直下に水冷銅の回転円
板を有する溶解炉の中に、チャンバ上方から原料棒を吊
り下げて供給し、誘導コイルの内側に非接触に進入させ
たその原料棒を誘導電流で先端から順次溶融し、溶けた
金属を回転円板上に滴下させることにより、飛散、凝固
させて所望の金属粉末を得ることから成る金属粉末の製
造方法。
(1) A method for producing powder of titanium, zirconium, tantalum, niobium, molybdenum, vanadium, tungsten, or alloys based on these metals, which includes an induction coil in a vacuum chamber and a water-cooled copper tube directly below the coil. A raw material rod is suspended from above the chamber and fed into a melting furnace with a rotating disk.The raw material rod is introduced into the induction coil without contact, and is sequentially melted from the tip using an induced current. A method for producing metal powder, which comprises dropping metal onto a rotating disk, causing it to scatter and solidify to obtain a desired metal powder.
(2)原料棒の送り出し速度を誘導コイルの自己インピ
ーダンスが一定に維持されるように制御する請求項1記
載の金属粉末の製造方法。
(2) The method for producing metal powder according to claim 1, wherein the feeding speed of the raw material rod is controlled so that the self-impedance of the induction coil is maintained constant.
(3)粉末化する金属が脱ガス精錬を要するものである
ときにはチャンバ内圧力を10^−^6〜10^−^2
torrに、蒸発性合金元素を含むものであるときには
チャンバ内を不活性雰囲気にして10^−^1torr
〜10気圧に、蒸発性合金元素を含有し、かつ、ある程
度の脱ガス精錬を要するものであるときには不活性ガス
の導入と真空排気を併用してチャンバ内圧力を10^−
^2〜10torrに各々制御する請求項の1又は2記
載の金属粉末の製造方法。
(3) If the metal to be powdered requires degassing and refining, the pressure inside the chamber should be increased to 10^-^6 to 10^-^2.
torr, if it contains an evaporable alloying element, the inside of the chamber should be set to an inert atmosphere and the temperature should be 10^-^1 torr.
If the chamber contains vaporizable alloying elements and requires some degree of degassing refining, the chamber pressure is reduced to ~10 atm by introducing an inert gas and evacuation.
3. The method for producing metal powder according to claim 1 or 2, wherein the torr is controlled at 2 to 10 torr.
(4)真空チャンバ内に誘導コイルを配置し、コイル直
下に水冷銅の回転円板を配置した誘導加熱溶解炉と、こ
の炉内にチャンバ上方から原料棒を吊り下げて供給し、
誘導コイルの内側に非接触状態に進入させる原料棒送り
出し手段と、誘導コイルの自己インダクタンスを信号化
してフィードバックし、この信号をもとに原料棒の送り
出し速度を制御する手段とを備え、上記原料棒を誘導電
流で先端から順次溶融して溶けた金属を回転円板上に滴
下させ、円板の回転力で飛散させて粉末化するようにし
てある金属粉末の製造装置。
(4) An induction heating melting furnace in which an induction coil is placed in a vacuum chamber and a water-cooled copper rotating disk is placed directly below the coil, and a raw material rod is suspended and supplied from above the chamber into this furnace,
The raw material rod is provided with means for feeding the raw material rod into the inside of the induction coil in a non-contact state, and means for converting the self-inductance of the induction coil into a signal and feeding it back, and controlling the feeding speed of the raw material rod based on this signal. A metal powder manufacturing device that uses an induced current to sequentially melt a rod from the tip, drop the molten metal onto a rotating disk, and use the rotational force of the disk to scatter and turn it into powder.
JP16765989A 1989-06-28 1989-06-28 Method and apparatus for producing metallic powder Pending JPH0331405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16765989A JPH0331405A (en) 1989-06-28 1989-06-28 Method and apparatus for producing metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16765989A JPH0331405A (en) 1989-06-28 1989-06-28 Method and apparatus for producing metallic powder

Publications (1)

Publication Number Publication Date
JPH0331405A true JPH0331405A (en) 1991-02-12

Family

ID=15853855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16765989A Pending JPH0331405A (en) 1989-06-28 1989-06-28 Method and apparatus for producing metallic powder

Country Status (1)

Country Link
JP (1) JPH0331405A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007117940A (en) * 2005-10-31 2007-05-17 Yoshino Kogyosho Co Ltd Jet device of aerosol can
CN103386491A (en) * 2013-04-23 2013-11-13 长沙唯特冶金工程技术有限公司 Process and equipment used for preparing high-purity spherical titanium and titanium alloy powder material
CN107350477A (en) * 2017-08-30 2017-11-17 湖南顶立科技有限公司 A kind of powder preparing unit
CN109047787A (en) * 2018-10-24 2018-12-21 成都先进金属材料产业技术研究院有限公司 The preparation method of hypoxemia low cost spherical titanium and Titanium Powder
JP2019108581A (en) * 2017-12-18 2019-07-04 株式会社大阪真空機器製作所 Rotary disk apparatus for centrifugal atomizer, centrifugal atomizer, and method for producing metal powder
JP2020045556A (en) * 2018-09-20 2020-03-26 烟台奥泰新材料有限公司 Method and device for preparing spherical titanium alloy fine powder based on special centrifugal atomizing disc
CN110935882A (en) * 2019-12-11 2020-03-31 安徽哈特三维科技有限公司 Induction heating device for atomization powder making equipment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007117940A (en) * 2005-10-31 2007-05-17 Yoshino Kogyosho Co Ltd Jet device of aerosol can
JP4671229B2 (en) * 2005-10-31 2011-04-13 株式会社吉野工業所 Aerosol soot injection device
CN103386491A (en) * 2013-04-23 2013-11-13 长沙唯特冶金工程技术有限公司 Process and equipment used for preparing high-purity spherical titanium and titanium alloy powder material
CN107350477A (en) * 2017-08-30 2017-11-17 湖南顶立科技有限公司 A kind of powder preparing unit
JP2019108581A (en) * 2017-12-18 2019-07-04 株式会社大阪真空機器製作所 Rotary disk apparatus for centrifugal atomizer, centrifugal atomizer, and method for producing metal powder
JP2020045556A (en) * 2018-09-20 2020-03-26 烟台奥泰新材料有限公司 Method and device for preparing spherical titanium alloy fine powder based on special centrifugal atomizing disc
CN109047787A (en) * 2018-10-24 2018-12-21 成都先进金属材料产业技术研究院有限公司 The preparation method of hypoxemia low cost spherical titanium and Titanium Powder
CN110935882A (en) * 2019-12-11 2020-03-31 安徽哈特三维科技有限公司 Induction heating device for atomization powder making equipment

Similar Documents

Publication Publication Date Title
EP2701869B1 (en) LOW COST PROCESSING TO PRODUCE SPHERICAL TITANIUM ALLOY POWDER Ti6Al4V
JP5815684B2 (en) Spherical powder and method for producing the same
JP4733908B2 (en) Apparatus and method for refining and casting
US3829538A (en) Control method and apparatus for the production of powder metal
US7300491B2 (en) Method and apparatus for the production of metal powder
CN106964782B (en) Method for preparing spherical niobium alloy powder
JP2006299302A (en) Method for manufacturing long-size ingot of alloy containing active refractory metal by plasma arc melting
JP3054193B2 (en) Induction skull spinning of reactive alloys
US3887667A (en) Method for powder metal production
US6460595B1 (en) Nucleated casting systems and methods comprising the addition of powders to a casting
EP1497061B1 (en) Powder formation method
JP4762409B2 (en) Articles nucleated and cast from clean metal
JPH0331405A (en) Method and apparatus for producing metallic powder
WO1997049837A1 (en) Processing of electroslag refined metal
JP4912002B2 (en) Method for producing aluminum-based alloy preform and method for producing aluminum-based alloy dense body
JPH0332447A (en) Method and apparatus for melting and casting metal
JPS63210206A (en) Apparatus for producing metal powder
JP3125393B2 (en) Casting method of titanium-aluminum alloy casting
Aller et al. Rotating atomization processes of reactive and refractory alloys
JP2550064B2 (en) Method and apparatus for manufacturing alloy ingot
JP4959897B2 (en) Casting apparatus and method with an eccentric source of liquid metal
JP3140025B2 (en) Method for producing particle-dispersed aluminum alloy using high energy density heat source
JPH0641618A (en) Method and device for continuously producing active metal powder
Noesen Consumable electrode melting of reactive metals
JPS6369928A (en) Production of alloy