JPS627660B2 - - Google Patents

Info

Publication number
JPS627660B2
JPS627660B2 JP8112678A JP8112678A JPS627660B2 JP S627660 B2 JPS627660 B2 JP S627660B2 JP 8112678 A JP8112678 A JP 8112678A JP 8112678 A JP8112678 A JP 8112678A JP S627660 B2 JPS627660 B2 JP S627660B2
Authority
JP
Japan
Prior art keywords
anode
thickness
pedestal
molded
cracks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8112678A
Other languages
Japanese (ja)
Other versions
JPS559329A (en
Inventor
Yoshitane Tsuburaya
Akio Shimizu
Yoshio Uetani
Kimitaka Koseki
Shigeo Kumano
Yoshizo Koori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP8112678A priority Critical patent/JPS559329A/en
Publication of JPS559329A publication Critical patent/JPS559329A/en
Publication of JPS627660B2 publication Critical patent/JPS627660B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 この発明は酸化銀電池、酸化マンガン電池など
のボタン型電池に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to button-type batteries such as silver oxide batteries and manganese oxide batteries.

一般にボタン型電池では酸化銀、酸化マンガン
などの陽極活物質を電池内に収納する前に予め円
板状に加圧成形しているが、この加圧成形に際し
て成形陽極の周縁に断面L字状の金属製環状台座
を固着させ、これをそのまま電池内部に収納して
封口時に加わる圧を前記の台座で食い止めて封口
圧に起因する成形陽極の変形ないし崩れを防いで
いる。
Generally, in button-type batteries, an anode active material such as silver oxide or manganese oxide is pressure-formed into a disk shape before being stored in the battery. A metal annular pedestal is fixed, and this is housed inside the battery as it is, and the pressure applied during sealing is stopped by the pedestal, thereby preventing the molded anode from deforming or collapsing due to the sealing pressure.

ところがこのような台座付き成形陽極は、その
製造に当たり通常所定の金型内に環状台座を設け
これに陽極活物質や導電助剤などを充填して上方
から加圧成形し、その後金型内から取り出したと
きに、一般に粉末相互の残留応力によつて成形物
が径方向ないし厚み方向に伸びようとする、いわ
ゆるスプリングバツク現象を引きおこす。
However, when manufacturing such a molded anode with a pedestal, an annular pedestal is usually placed in a predetermined mold, filled with an anode active material, a conductive additive, etc., and then pressure-molded from above. When taken out, the molded product generally tends to stretch in the radial direction or thickness direction due to residual stress between the powders, causing a so-called springback phenomenon.

この場合径方向外方への伸張力は成形と同時に
固着される環状台座で食い止められるとともに台
座が金属であることによるばね応力も働らくた
め、成形陽極の厚みが薄いものでは成形陽極の中
心部が彎曲してこの彎曲部で亀裂ないし割れが生
じたり、あるいは環状台座が離脱してしまうなど
の問題がある。
In this case, the outward stretching force in the radial direction is stopped by the annular pedestal that is fixed at the same time as the molding, and the spring stress due to the pedestal being made of metal acts. There are problems such as the curved portion causing cracks or fractures, or the annular pedestal coming off.

第4図は陽極活物質として酸化第一銀を使用し
たときの台座付き成形陽極における製造個数100
個中上記のような問題が生じてくる個数を不良発
生率として、これと成形陽極の肉厚との関係を示
したものであるが、従来の台座を使用した曲線−
cから理解できるとおり成形陽極の肉厚が1.0mm
以下になると不良発生率が徐々に増大し、この増
大はとくに0.6mm附近で非常に顕著となり、たと
えば0.5mmでは70%の不良発生率に達する。
Figure 4 shows the production number of 100 pieces of a molded anode with a pedestal when ferrous oxide is used as the anode active material.
The number of pieces in which the above-mentioned problem occurs is defined as the defect rate, and the relationship between this and the wall thickness of the molded anode is shown.
As you can understand from c, the thickness of the molded anode is 1.0 mm.
Below that, the defectiveness rate gradually increases, and this increase is particularly noticeable near 0.6mm, reaching a 70% defectiveness rate at 0.5mm, for example.

ところで従来のボタン型電池は一般に1.8mm程
度の成形陽極が用いられているからこの程度の厚
みでは前記の問題はそれほどおこらない。ところ
が近年電池の薄型化に伴なつて成形陽極の厚みも
さらに薄く、たとえば酸化銀電池では不良発生率
が非常に顕著となる0.6mmないし0.5mm以下にすべ
き要請があり、したがつてこの場合に前記の問題
をいかにして解決すべきかが極めて重要な課題と
なる。
By the way, since a conventional button-type battery generally uses a molded anode of about 1.8 mm, the above-mentioned problem does not occur as much at this thickness. However, as batteries have become thinner in recent years, the thickness of the molded anode has also become thinner.For example, in silver oxide batteries, there is a demand for the thickness to be less than 0.6 mm or 0.5 mm, which increases the rate of failure. How to solve the above problem becomes an extremely important issue.

明らかなように亀裂ないし割れが生じた成形陽
極では所期する放電特性が得られなくなるし、成
形後に台座が離脱したのでは電地組立てに支障を
きたしたり台座本来の機能を充分に発揮させにく
くなるからである。
It is obvious that a molded anode with cracks or cracks will not be able to obtain the desired discharge characteristics, and if the pedestal comes off after molding, it will interfere with the assembly of the electrode and it will be difficult for the pedestal to fully perform its original function. Because it will be.

この発明者らは、このような事情に鑑み鋭意検
討の結果、一般に環状台座はステンレスなどの金
属板を材質としこれを断面L字状にしぼり加工す
ることによつてつくられているが、このようにし
てつくられる環状台座は、金属板とするときの冷
間圧延工程およびこの金属板を台座形態に成形す
る工程で内部歪みを生じこの内部歪みによつて硬
度が高くかつ引張り強度ないし伸びの小さい、ば
ね弾性の強いものとなりやすいことから、このば
ね弾性を可及的に弱くする手段として使用する金
属板の厚さを薄くしてみたところ、ある特定の板
厚にされた金属板によれば成形陽極の厚みを薄く
した場合でも亀裂ないし割れの発生や台座の脱離
などの問題を抑制できることが判り、この発明を
完成するに至つた。
In view of these circumstances, the inventors conducted extensive research and found that generally, annular pedestals are made from a metal plate such as stainless steel, and are machined into an L-shaped cross section. The annular pedestal made in this way has internal distortion that occurs during the cold rolling process when forming the metal plate and the process of forming the metal plate into the pedestal form, and this internal distortion results in high hardness and low tensile strength or elongation. Since the spring tends to be small and has strong spring elasticity, we tried reducing the thickness of the metal plate used as a means to weaken this spring elasticity as much as possible. It has been found that even when the thickness of the molded anode is reduced, problems such as the occurrence of cracks or cracks and detachment of the pedestal can be suppressed, leading to the completion of this invention.

以下この発明の一実施例を図面に基づいて説明
する。
An embodiment of the present invention will be described below based on the drawings.

第1図Aはこの発明に係る環状台座の製造に用
いられる金属板1を示し、この金属板1の材質は
各種タイプのステンレス鋼からなり板厚が0.05〜
0.1mmにされている。一方従来の台座製造用金属
板においては、成形陽極の厚みが既述したように
1.8mm程度であつたために機械的強度を充分に大
きくできる通常0.15mmないし0.2mm程度の板厚に
されていた。
FIG. 1A shows a metal plate 1 used for manufacturing the annular pedestal according to the present invention, and the metal plate 1 is made of various types of stainless steel and has a thickness of 0.05~
It is set to 0.1mm. On the other hand, in conventional metal plates for manufacturing pedestals, the thickness of the formed anode is
Since the thickness was around 1.8 mm, the plate thickness was usually around 0.15 mm to 0.2 mm to ensure sufficient mechanical strength.

この発明者らは、この発明の対象とする0.6mm
以下の厚みを有する成形陽極をつくる場合に、電
池全体の厚みとの関係からも上記従来の金属板の
厚みを台座本来の機能を果し得る範囲内でできる
だけ薄くする必要があるものと考えたが、これに
加えて前述のとおりばね弾性との関係においてど
の程度の板厚にすべきかに付き検討することによ
つて、板厚が0.1mm以下とされた場合に陽極成形
時の割れ、亀裂などの問題を大きく抑制できるば
ね弾性とすることができ、また0.05mmより薄くし
すぎると上述した台座本来の機能を果し得なくな
り、さらに金属板自体の成形加工も難しくなるこ
とが判つた。
The inventors have discovered that the 0.6 mm
When making a molded anode with the following thickness, we considered it necessary to make the thickness of the conventional metal plate as thin as possible within the range that allows the pedestal to perform its original function, also in relation to the overall thickness of the battery. However, in addition to this, as mentioned above, by considering how much plate thickness should be used in relation to spring elasticity, we found that if the plate thickness is set to 0.1 mm or less, cracks and cracks during anode forming will be reduced. It has been found that if the thickness is too thin than 0.05 mm, the pedestal cannot perform its original function as described above, and furthermore, it becomes difficult to form the metal plate itself.

なお金属板1の材質をステンレス鋼に限定した
のは、主としてニツケルなどの他の金属板では前
記範囲の板厚にしたときに機械的強度を保ち得な
くなり、また薄くすることによるばね弾性の低下
ないしは陽極成形時の割れないし亀裂に対する抑
制効果が充分に得られなくなるためである。
The reason why the material of the metal plate 1 is limited to stainless steel is mainly because other metal plates such as nickel cannot maintain mechanical strength when the thickness is within the above range, and the spring elasticity decreases due to thinning. This is because the effect of suppressing cracks or cracks during anode molding cannot be sufficiently obtained.

次にこの金属板1を常法に準じてしぼり加工な
どの手段で第1図Bに示されるような開口部2を
有し水平部3と垂直部4とから構成される断面L
字状の形態に成形してこの発明に係る環状台座5
とする。この台座5は成形加工時の内部歪みの発
生によつて硬度の増大や引張り強度ないし伸び率
の低下を引きおこすことがあつても初期の板厚に
応じたばね弾性の弱い塑性変形しやすい性質を持
つものである。
Next, this metal plate 1 is squeezed according to a conventional method to form a cross section L having an opening 2 as shown in FIG. 1B and consisting of a horizontal portion 3 and a vertical portion 4.
An annular pedestal 5 according to the present invention formed into a character shape
shall be. This pedestal 5 has a property of being susceptible to plastic deformation with weak spring elasticity depending on the initial plate thickness, even if internal distortion during forming may cause an increase in hardness or a decrease in tensile strength or elongation. It is something.

第2図においてこのようにしてつくられる環状
台座5を金型の台枠6および筒枠7内にセツトし
てこれに酸化第一銀、酸化第二銀、酸化マンガ
ン、酸化水銀、過酸化ニツケル(NiOOH)など
の陽極活物質と必要に応じてカーボンブラツクの
ような導電助剤などを充填し、上枠8上方から加
圧して陽極厚みが0.6mm以下の台座付き成形陽極
9とする。
In FIG. 2, the annular pedestal 5 made in this way is set in the underframe 6 and cylinder frame 7 of the mold, and ferrous oxide, ferric oxide, manganese oxide, mercury oxide, and nickel peroxide are added thereto. An anode active material such as (NiOOH) and a conductive additive such as carbon black are filled as necessary, and pressure is applied from above the upper frame 8 to form a molded anode 9 with a pedestal having an anode thickness of 0.6 mm or less.

この陽極9を金型から取り出すと、活物質の種
類や成形圧に応じたスプリングバツク現象を伴な
うが、陽極9の周縁に固着された環状台座5はば
ね弾性の弱い塑性変形しやすいものであるため
に、径方向外方への伸張力が加わつても第3図に
示されるように台座5における垂直部4が陽極9
の伸びに追随してやや外方に伸びる。
When this anode 9 is taken out from the mold, a springback phenomenon occurs depending on the type of active material and the molding pressure, but the annular pedestal 5 fixed to the periphery of the anode 9 has weak spring elasticity and is easily deformed plastically. Therefore, even if a stretching force is applied outward in the radial direction, the vertical portion 4 of the pedestal 5 will not reach the anode 9 as shown in FIG.
It extends slightly outward following the elongation of.

したがつて陽極9の厚みが前述のとおり0.6mm
以下という薄い場合でも陽極中心部の割れないし
亀裂や台座5の離脱などの問題がおこりにくくな
る。第4図中曲線−a,bはこの発明に係る環状
台座を使用した場合の不良発生率を示したもの
で、曲線aはステンレス鋼板の厚みを0.06mmに、
また曲線−bはステンレス鋼板の厚みを0.12mmに
したものである。これよりステンレス鋼の厚みを
0.18mmにしてなる従来の金属板を使用した曲線−
bに比べて不良発生率が非常に少なく、酸化第一
銀を活物質とする陽極厚みをこの業界で近年要請
されている0.6mmないし0.5mm以下にすることが可
能であることが理解できる。
Therefore, the thickness of the anode 9 is 0.6 mm as mentioned above.
Even if the anode is as thin as below, problems such as cracks or cracks in the center of the anode and detachment of the pedestal 5 are less likely to occur. Curves a and b in Fig. 4 show the failure rate when the annular pedestal according to the present invention is used.
Moreover, curve-b is the one in which the thickness of the stainless steel plate is 0.12 mm. From this, the thickness of stainless steel
A curve using a conventional metal plate made of 0.18mm.
It can be seen that the defectiveness rate is very low compared to the case b, and it is possible to reduce the thickness of the anode using ferrous oxide as an active material to 0.6 mm to 0.5 mm or less, which has been recently demanded in this industry.

第5図はこのような台座付き成形陽極を電池内
部に収納してなるこの発明のボタン型電池の一例
を示したもので、陽極缶10内部に環状台座5が
上方に位置するように台座付き成形陽極9を載置
しこの上にたとえばビニロン−レーヨン吸液層と
セロフアン層と親水処理ポリプロピレン層とから
なるセパレータ11を設け、亜鉛アマルガムのよ
うな陰極活物質とポリアクリル酸ソーダ、カルボ
キシメチルセルロースのような糊剤とを含みこれ
にアルカリ電解液を加えてなる陰極12を内填さ
せた陰極端子板13を前記の陽極缶10に環状ガ
スケツト14を介して嵌合し、陽極缶10を内方
へ締付けて電池内部を密閉状態にしている。
FIG. 5 shows an example of a button-type battery of the present invention in which such a molded anode with a pedestal is housed inside the battery. A molded anode 9 is placed thereon, and a separator 11 made of, for example, a vinylon-rayon absorbent layer, a cellophane layer, and a hydrophilized polypropylene layer is provided, and a cathode active material such as zinc amalgam, sodium polyacrylate, or carboxymethyl cellulose is disposed on the anode 9. A cathode terminal plate 13 containing a cathode 12 made of a glue and an alkaline electrolyte is fitted into the anode can 10 through an annular gasket 14, and the anode can 10 is inserted into the anode can 10. Tighten to seal the inside of the battery.

この電池によれば使用する台座付き成形陽極9
が中心部の割れないし亀裂のないしかも台座との
密着性に優れるものであるために電池特性に好結
果を持たらすことができるばかりでなく、台座本
来の機能、つまり陽極缶10を内方に締付けたと
きに加わる封口圧を受け止めて陽極9の機械的変
形ないし崩れを防止する機能を充分に発揮させる
ことができる。
According to this battery, a molded anode with a pedestal 9 is used.
Since it has no cracks or cracks in the center and has excellent adhesion to the pedestal, it not only provides good results in battery characteristics, but also allows the pedestal to perform its original function, that is, to hold the anode can 10 inward. The function of preventing mechanical deformation or collapse of the anode 9 by absorbing the sealing pressure applied when tightening can be fully exhibited.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A,Bはこの発明に係る環状台座の製造
法を説明するための断面図、第2図はこの発明法
に係る環状台座を使用して陽極を成形する状態を
示す断面図、第3図は金型内で加圧成形した後取
り出した状態を示す断面図、第4図は成形陽極の
厚みと不良発生率との関係を示す特性図、第5図
はこの発明のボタン型電池の一例を示す断面図で
ある。 5……環状台座、9……成形陽極。
1A and 1B are cross-sectional views for explaining the method for manufacturing an annular pedestal according to the present invention, FIG. Figure 3 is a cross-sectional view showing the state taken out after pressure molding in a mold, Figure 4 is a characteristic diagram showing the relationship between the thickness of the molded anode and the failure rate, and Figure 5 is a button type battery of the present invention. It is a sectional view showing an example. 5... Annular pedestal, 9... Molded anode.

Claims (1)

【特許請求の範囲】[Claims] 1 厚み0.6mm以下の成形陽極9の周縁に付する
断面L字状の環状台座5の材質がステンレス鋼と
されかつこのステンレス鋼の板厚が0.05〜0.10mm
とされたボタン型電池。
1. The material of the annular pedestal 5 having an L-shaped cross section attached to the periphery of the molded anode 9 having a thickness of 0.6 mm or less is stainless steel, and the plate thickness of this stainless steel is 0.05 to 0.10 mm.
button type battery.
JP8112678A 1978-07-03 1978-07-03 Button type cell Granted JPS559329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8112678A JPS559329A (en) 1978-07-03 1978-07-03 Button type cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8112678A JPS559329A (en) 1978-07-03 1978-07-03 Button type cell

Publications (2)

Publication Number Publication Date
JPS559329A JPS559329A (en) 1980-01-23
JPS627660B2 true JPS627660B2 (en) 1987-02-18

Family

ID=13737690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8112678A Granted JPS559329A (en) 1978-07-03 1978-07-03 Button type cell

Country Status (1)

Country Link
JP (1) JPS559329A (en)

Also Published As

Publication number Publication date
JPS559329A (en) 1980-01-23

Similar Documents

Publication Publication Date Title
JP2010277936A (en) Sealed battery
JPS60180058A (en) Manufacture of battery and its can
JP4223134B2 (en) Sealed battery container sealing structure
US2951891A (en) Battery case construction
JP3671551B2 (en) Battery can and method for producing dry battery using the can
JPS627660B2 (en)
JP3131145U (en) Button-type alkaline battery
CN200990393Y (en) Battery case body and battery produced with the same battery case body
JPS6157658B2 (en)
JPH0665027B2 (en) Button-type battery manufacturing method
JP3222969B2 (en) Manufacturing method of prismatic sealed battery
JPS5856459B2 (en) Flat sealed alkaline battery
JPH0547422A (en) Manufacture of button-shaped air cell
JP3681798B2 (en) Manufacturing method for negative electrode case of button type alkaline battery
JPH02207449A (en) Manufacture of flat type cell
JP2001313008A (en) Battery can, its manufacturing method and battery
JPS5953665B2 (en) Method for manufacturing an annular pedestal attached to a molded anode
JPH0235173Y2 (en)
JP3374629B2 (en) Flat battery manufacturing method
JPS628122Y2 (en)
JPH04349340A (en) Manufacture of cylindrical battery
JP3631792B2 (en) Square battery
JPH03283258A (en) Sealed battery
JPS60254561A (en) Alkaline battery
JPS6127057A (en) Manufacture of battery