JPS6267235A - Electric control device for internal combustion engine - Google Patents

Electric control device for internal combustion engine

Info

Publication number
JPS6267235A
JPS6267235A JP60205914A JP20591485A JPS6267235A JP S6267235 A JPS6267235 A JP S6267235A JP 60205914 A JP60205914 A JP 60205914A JP 20591485 A JP20591485 A JP 20591485A JP S6267235 A JPS6267235 A JP S6267235A
Authority
JP
Japan
Prior art keywords
boost pressure
engine
supercharging
actual
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60205914A
Other languages
Japanese (ja)
Inventor
Nobushi Yasuura
保浦 信史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP60205914A priority Critical patent/JPS6267235A/en
Publication of JPS6267235A publication Critical patent/JPS6267235A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)

Abstract

PURPOSE:To provide an optimum supercharging pressure by providing a supercharging means driven by an electric motor, a rotating speed of which is made variable in accordance with a command signal, so as to allow the means to be controlled based on a deviation of the actual supercharging pressure from a target supercharging one of an engine. CONSTITUTION:An electric arithmetic means 6 operates both a target supercharging pressure and a basic value based on signals from an engine speed sensor 3 and a load sensor 4 with a key SW 11 turned on. Then the resultant is compared with the actual supercharging pressure detected by a supercharger sensor 5 for operating a correction required, and then the basic value is corrected by the correction value obtained so as to operate a command value. As a motor drive means 7 drives a motor 8 based on the command value, a compressor 9 is rotated in accordance with an engine speed for generating the supercharging pressure. For the operating range between an engine start and a low engine speed, supercharging is accomplished by the compressor 9. And for the operating range beyond an intermediate engine speed and an intermediate engine load, as the necessary supercharging is accomplished by a turbocharger 2 so as to allow the actual supercharging pressure to meet the target supercharging one, the electric motor 8 is suspended.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関の過給圧を制御する内燃機関用電気的
制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrical control device for an internal combustion engine that controls the boost pressure of the internal combustion engine.

〔従来の技術〕[Conventional technology]

従来より内燃機関の比出力を向トさせる方式として、例
えば、特開昭56−521号公報に示されるように、タ
ーボチャーヂャを有する過給機関がある。これは機関の
排ガスエネルギーにてタービンを駆動し、得られた動力
で速度型コンプレッサを駆動し、機関の吸入空気を過給
し、これに応じて燃料供給量を増し機関出力の増大をは
かるものである。但し、従来のターボ機関では低回転域
で排気ガスエネルギーが少ないため、ターボチャーヂャ
の回転数も低く、所望の過給圧が実現できないという問
題があった。
2. Description of the Related Art Conventionally, as a system for reducing the specific output of an internal combustion engine, there is a supercharged engine having a turbocharger, as disclosed in, for example, Japanese Unexamined Patent Publication No. 56-521. This uses exhaust gas energy from the engine to drive a turbine, and the resulting power drives a speed compressor to supercharge the engine's intake air, increasing the amount of fuel supplied and increasing engine output. It is. However, in conventional turbo engines, the exhaust gas energy is low in the low rotation range, so the rotation speed of the turbocharger is also low, making it impossible to achieve the desired supercharging pressure.

特に低速からの加速性を必要とする車両用エンジンでは
低回転域で排気エネルギーが小さいと共に、ターボロー
タの回転イナーシャによる遅れ、即ちターボラグが発生
するため低速時の加速性を十分に向上できないという問
題があった。
In particular, in vehicle engines that require acceleration from low speeds, the exhaust energy is small in the low rotation range, and there is a delay due to the rotational inertia of the turbo rotor, that is, turbo lag, which makes it impossible to sufficiently improve acceleration at low speeds. was there.

そこでコンプレッサに例えば容積型を用いると共に、機
関の駆動軸より直接ヘルド等で結合し機械的にコンプレ
ッサを駆動する、いわゆるスーパ−チャーヂャを採用す
ることにより、低速域での過給効果を得ることができタ
ーボナヤーヂャ付機関の欠点を解決できるが、容積型コ
ンブレノ4月31速度型コンプレッサに比較して大型で
車量も大きく、かつ機関とヘルド等を介して機械的に連
結して駆動する必要があるため、機関の出力トルクを消
費する問題がある。
Therefore, by using a positive displacement compressor, for example, and by adopting a so-called supercharger, which is connected directly to the engine's drive shaft with a heald or the like and mechanically drives the compressor, it is possible to obtain a supercharging effect in the low speed range. Although it can solve the disadvantages of engines with a turbonyard, it is larger and has a larger volume than a positive displacement type compressor, and needs to be mechanically connected to the engine via a heald, etc. Therefore, there is a problem that the output torque of the engine is consumed.

更に始動時等の穫低速回転域では=1ンプレノサの容積
効率が低下するため所望の過給効果を得る事は困難とな
る問題がある。
Furthermore, in a low-speed rotation range such as during startup, the volumetric efficiency of the amplenosa decreases by 1, making it difficult to obtain the desired supercharging effect.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

そこで本発明では、可変i!電動機にて過給1段を駆動
すると共に電動機回転数を制御して[1標過給圧を実現
する事により、機関の始動性の改善、低速トルクの向上
を実現すると共に、高回転、高負荷時で十分の排気エネ
ルギーがある状態ではターポチャーヂャにより過給する
事により、電気エネルギーを節約し、効率のよい過給装
置を実現することを目的とするものである。
Therefore, in the present invention, variable i! By driving the first stage of supercharging with an electric motor and controlling the motor rotation speed to achieve one standard boost pressure, it is possible to improve engine startability and low-speed torque, as well as to realize high rotation and high-speed The purpose of this is to save electrical energy and realize an efficient supercharging device by supercharging with a tarpocharger when there is sufficient exhaust energy under load.

なお、本発明では始動時から所定の過給圧が得られるた
め機関の圧縮比を低減でき、平均有効圧の増大が実現で
きる。
In addition, in the present invention, since a predetermined supercharging pressure is obtained from the time of starting, the compression ratio of the engine can be reduced, and an increase in the average effective pressure can be realized.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、機関の過給を行なうためのコンプレッサを可
変速制御可能な電動機にて駆動する電動機駆動方式の過
給手段と、機関の回転数や負荷等の運転条件を検出する
だめの運転条件検出器と、機関の吸気マニホルドに配し
た実過給圧を検出する実過給圧検出器と、この実過給圧
と運転条件より算出された目標過給圧に対する誤差を算
出し、!S誤差に応じた指令信号を発生して、前記電動
機の回転数を制御する電気的演算手段とを備える構成で
あり、実過給圧の目標過給圧に対する誤差を修正するた
めの制御を行なうものである。
The present invention relates to an electric motor-driven supercharging means for driving a compressor for supercharging an engine using an electric motor capable of variable speed control, and an operating condition for detecting operating conditions such as engine speed and load. A detector, an actual boost pressure detector placed in the engine's intake manifold that detects the actual boost pressure, and an error between the actual boost pressure and the target boost pressure calculated from the operating conditions are calculated. It is configured to include an electrical calculation means that generates a command signal according to the S error and controls the rotation speed of the electric motor, and performs control to correct the error of the actual boost pressure with respect to the target boost pressure. It is something.

なお、過給用コンプレッサを駆動する電動機の電源を車
載用バッテリとする事により、機関の始動時の如き極低
回転域からアイドル運転時の如き低回転低負荷域におい
ても実過給圧を予め計画さく5) れた目標過給圧に従って正確に制in−M能であり、始
動性、低速トルク特性の向トが実現されると共に、機関
の平均有効圧の向−1−が実現される。
In addition, by using an on-vehicle battery as the power source for the electric motor that drives the supercharging compressor, the actual supercharging pressure can be maintained in advance even in the extremely low rotation range such as when starting the engine, and the low rotation and low load range such as during idling. Planning 5) Accurate control of in-M according to the set target boost pressure, achieving the desired starting performance and low-speed torque characteristics, and achieving the desired average effective pressure of the engine. .

また、排気ターボチャーヂャを併用する事によって、機
関の高回転、高負荷域の過給をこれによって行なう事が
可能であるため、前記過給手段の使用領域を適切にオー
バーラツプさせ、この領域を排気ターボチャーヂャで口
碑過給圧が実現されない領域に限定する事によって、車
載バッテリ電源の節約がはかられると共に、電動機駆動
の過給手段の能力を最小限におさえ、システムの小型軽
量化が達成できる。
In addition, by using an exhaust turbocharger in combination, it is possible to supercharge the engine in the high speed and high load range, so the usage range of the supercharging means can be appropriately overlapped and this range can be improved. By limiting the exhaust turbocharger to the area where the nominal supercharging pressure cannot be achieved, it is possible to save on-vehicle battery power, and also to minimize the capacity of the electric motor-driven supercharging means, making the system smaller and lighter. It can be achieved.

さらに、電動機駆動される過給手段のコンプレッサとし
ては、例えば遠心コンプレッサを用い、かつ電動機とし
て数万回転程度の無接触型超高速電動機を用い、これを
半導体スイッチング素子を用いた駆動手段で可変速駆動
する方式を用いる事により、所望の過給圧を自山番こ設
定できる。従って、機関の始動時から応答遅れのない過
給が可能となるため、燃焼最高圧一定条件下で平均有効
圧を高め、比出力及び始動性を向上させることができる
Further, as the compressor of the supercharging means driven by an electric motor, for example, a centrifugal compressor is used, and the electric motor is a non-contact type ultra-high speed motor with a rotation speed of approximately tens of thousands of revolutions, and this is controlled at variable speed by a driving means using semiconductor switching elements. By using the driving method, the desired supercharging pressure can be set automatically. Therefore, since supercharging without response delay is possible from the time of starting the engine, the average effective pressure can be increased under a constant maximum combustion pressure condition, and the specific output and startability can be improved.

〔実施例〕〔Example〕

以下、本発明を実施例に従って説明する。 Hereinafter, the present invention will be explained according to examples.

第1図は本発明の一例を示す構成図で、lはディーゼル
機関、2は排気ガスにて回転駆動されるターポチャーヂ
ャ、3は機関回転数検出用の回転数センサ、4は機関の
負荷を検出する負荷センサ、5は機関の吸気マニホルド
圧力を検出するための半導体式等の過給圧センサである
。6は電気的演算手段であり、回転数センサ3、負荷セ
ンサ4より検出した機関の回転数及び負荷を基本パラメ
タとして機関1に計画された目標過給圧を演算すると共
に目標過給圧と過給圧センサ5より検出した実過給圧よ
り誤差に応じた指令信号を演算する。
Fig. 1 is a configuration diagram showing an example of the present invention, where l is a diesel engine, 2 is a tarpocharger driven to rotate by exhaust gas, 3 is a rotation speed sensor for detecting the engine rotation speed, and 4 is a sensor for detecting the engine load. 5 is a boost pressure sensor such as a semiconductor type for detecting the intake manifold pressure of the engine. Reference numeral 6 denotes an electrical calculation means, which calculates the target boost pressure planned for the engine 1 using the engine rotation speed and load detected by the rotation speed sensor 3 and load sensor 4 as basic parameters, and also calculates the target boost pressure and supercharging pressure. A command signal according to the error is calculated from the actual boost pressure detected by the supply pressure sensor 5.

7は電動機駆動手段で指令信号に応じて電動機8の回転
数を制御する。9は電動機8によって駆動されるコンプ
レッサ(圧縮機)で、電動機8の回転数に応じて機関1
の過給圧力を変化させる事ができる。10は機関1に燃
料噴射を行なうための噴射ポンプで、この噴射量調節用
ランク等の位置を例えばボテンシッメータで検出する事
により負荷を検出する負荷センサ4を構成する事ができ
る。また、噴射ポンプlOは機関lが4サイクルデイー
ゼルエンジンの場合、クランク軸の半分の回転比のデャ
で駆動され、所定の噴射時期に運転条件に応じた燃料量
を機関1に噴射する。
Reference numeral 7 denotes a motor drive means for controlling the rotation speed of the motor 8 in accordance with a command signal. 9 is a compressor driven by the electric motor 8, and the engine 1
The supercharging pressure can be changed. Reference numeral 10 denotes an injection pump for injecting fuel into the engine 1, and a load sensor 4 for detecting the load can be constructed by detecting the position of this injection amount adjusting rank etc. with a potentiometer, for example. Further, when the engine 1 is a four-stroke diesel engine, the injection pump 10 is driven at a rotation ratio that is half that of the crankshaft, and injects an amount of fuel into the engine 1 at a predetermined injection timing according to the operating conditions.

回転数検出器3は噴射ポンプ10の駆動ギヤの回転に応
じたパルス信号を電磁ピックアップより検出する。ター
ボチャーヂャ2は機関1の排気エネルギーにてタービン
を駆動し、その駆動力で遠心コンプレッサを駆動し吸気
の過給を行なう構成である。コンプレッサ9は機関lの
例えば始動時やアイドル時等の低負荷運転領域でターボ
チャーヂャ2の過給能力が不足する場合に電動機8にて
電気エネルギーで駆動され、過給能力を付加するもので
ある。なお、11は車両のキースイッチである。
The rotation speed detector 3 detects a pulse signal corresponding to the rotation of the drive gear of the injection pump 10 using an electromagnetic pickup. The turbocharger 2 is configured to use the exhaust energy of the engine 1 to drive a turbine, and use the driving force to drive a centrifugal compressor to supercharge intake air. The compressor 9 is driven by electric energy by the electric motor 8 to add supercharging capacity when the turbocharger 2 lacks supercharging capacity in a low-load operating region of the engine 1, such as when starting or idling. be. Note that 11 is a key switch of the vehicle.

電気的演算手段10の構成例は第2図に示される。ここ
で、61はマイクロプロセッサユニット(以下MPUと
略記)、62はADコンバータ(ADC)及びマルチプ
レクサ(MPX) 、63はランダムアクセスメモリ 
(RAM) 、64はリードオンリーメモリー(ROM
) 、65はDAコンバータ(DAC) 、66はパル
ス波形整形回路、67はバッファ回路である。
An example of the configuration of the electrical calculation means 10 is shown in FIG. Here, 61 is a microprocessor unit (hereinafter abbreviated as MPU), 62 is an AD converter (ADC) and multiplexer (MPX), and 63 is a random access memory.
(RAM), 64 is read-only memory (ROM)
), 65 is a DA converter (DAC), 66 is a pulse waveform shaping circuit, and 67 is a buffer circuit.

ここでキースイッチ11のキー信号はバッファ回路67
をへてMPU61に入力される。回転数センサ3の回転
信号は波形整形回路66をへて整形されMPU61に入
力される。また、負荷センサ4のラック位置信号や過給
圧センサ5の過給圧に応じた過給圧信号等のアナログ電
圧信号はADコンバータ及びマルチプレクサ62を介し
てMPU61に入力される。
Here, the key signal of the key switch 11 is transmitted to the buffer circuit 67.
The signal is then input to the MPU 61. The rotation signal from the rotation speed sensor 3 is shaped by a waveform shaping circuit 66 and input to the MPU 61 . Further, analog voltage signals such as a rack position signal from the load sensor 4 and a boost pressure signal corresponding to the boost pressure from the boost pressure sensor 5 are input to the MPU 61 via an AD converter and a multiplexer 62.

MPU61はこれらの各種の入力信号より機関の運転条
件を検出し、これに対して予め計画された最適な過給圧
の目標値を算出すると共に、この目標値を実現するため
の電動機駆動手段7に対する指令値を発生する。
The MPU 61 detects the operating conditions of the engine from these various input signals, calculates a pre-planned optimal target value of boost pressure based on the detected engine operating conditions, and also controls the motor drive means 7 to realize this target value. Generates a command value for.

電気的演算手段6の演算アルゴリズムの例を第7図に示
すフローチャートにて説明する。
An example of the calculation algorithm of the electrical calculation means 6 will be explained with reference to the flowchart shown in FIG.

キースイッチ11がオンとなると演算がスタートし、M
PU61はROM64に記憶された演算手順に従って、
演算を進める。ステップ101でMPU61は運転条件
を各種センサより読み込む。
When the key switch 11 is turned on, calculation starts and M
The PU61 follows the calculation procedure stored in the ROM64.
Proceed with the calculation. In step 101, the MPU 61 reads operating conditions from various sensors.

回転数データは回転数センサ3より回転数に比例した周
波数のパルス信号を得ることができるので、これを計数
する事により得る。又負荷データは負荷センサ4よりラ
ック位置に比例したアナログ信号を入力し、A/Dコン
バータ62を経てMPU61に読み込むことにより得、
RAM63にデータを記憶する。
The rotation speed data can be obtained by counting a pulse signal whose frequency is proportional to the rotation speed, which can be obtained from the rotation speed sensor 3. Load data is obtained by inputting an analog signal proportional to the rack position from the load sensor 4 and reading it into the MPU 61 via the A/D converter 62.
Store data in RAM 63.

ステップ103で回転数データと負荷データを引数とす
る目標過給圧マツプと基本値マツプを二次元マツプ補間
演算する事により目標過給圧データ及び指令値の基本値
データを算出する。ステップ104では実際の過給圧を
過給圧センサのアナログ信号よりA/Dコンバータ62
を経てMPU61へ読み込むことにより検出し、RAM
63に記憶する。
In step 103, the target boost pressure data and the basic value data of the command value are calculated by performing two-dimensional map interpolation calculation on the target boost pressure map and the basic value map using the rotational speed data and the load data as arguments. In step 104, the actual boost pressure is determined by the A/D converter 62 from the analog signal of the boost pressure sensor.
is detected by reading it into the MPU61 through
63.

ステップ105でMPLI61は目標過給圧データと実
過給圧データとを比較し、両者の誤差より補正値データ
と演算する。ステップ106で前記基本値データと補正
値データより指令値データを演算する。
In step 105, the MPLI 61 compares the target boost pressure data and the actual boost pressure data, and calculates correction value data based on the error between the two. In step 106, command value data is calculated from the basic value data and correction value data.

この演算の最も単純なアルゴリズムの例として、基本値
データと補正値データを加算して指令値データを算出す
る例を示す。指令値データをDc、基本値データをり8
、補正値データをり、とし、かつ目標過給圧をP。、実
過給圧をP、とすると、Dc =Ds + DT =D
w +K (Po  P t )となる。ここでKは定
数である。
As an example of the simplest algorithm for this calculation, an example will be shown in which command value data is calculated by adding basic value data and correction value data. Command value data is Dc, basic value data is 8
, the correction value data is R, and the target boost pressure is P. , the actual boost pressure is P, then Dc = Ds + DT = D
w + K (Po P t ). Here K is a constant.

ステップ107で最終的な指令値データD、をD/Aコ
ンバータ65を経てアナログ電圧の指令電圧■、として
出力する。
In step 107, the final command value data D is outputted as an analog voltage command voltage (2) via the D/A converter 65.

本例では指令値の演算アルゴリズムとして基本値を目標
過給圧に対する実過給圧の誤差に比例した補正値にて補
正する例を示したが、その他に誤差の積分値や微分値を
算出して補正するいわゆるPID補正を行なう事により
制ill 14を向−1,さ干る事が可能である。
In this example, as an algorithm for calculating the command value, we have shown an example in which the basic value is corrected using a correction value that is proportional to the error in the actual boost pressure relative to the target boost pressure. By performing the so-called PID correction, which corrects the signal, it is possible to reduce the illumination 14 by -1.

第3図は電動機駆動1段7の回路構成の・例を示す図で
ある。この図で71は電圧−周波数変換回路、72は三
相駆動信号発生回路、73は三相全波出力回路で、負荷
の電動機8として三相誘導電動機を接続した例を示ず。
FIG. 3 is a diagram showing an example of the circuit configuration of the first stage 7 of motor drive. In this figure, 71 is a voltage-frequency conversion circuit, 72 is a three-phase drive signal generation circuit, and 73 is a three-phase full-wave output circuit, and an example in which a three-phase induction motor is connected as the load motor 8 is not shown.

電圧−周波数変換回路71は指令電圧vcCご比例した
繰り返し周波数の指令パルスを発/lする回路で、具体
的な回路図の一例を第4図に示す。この図で前段の演算
増幅器74はコンデンサ75、抵抗76.77の時定数
で指令電圧vcを積分する積分回路を構成し、後段の比
較器78にて矩形波のパルス電圧に変換して、指令電圧
V、に比例した繰り返し周波数の指令パルスを発生する
。なお、79は充放電切換用トランジスタである。
The voltage-frequency conversion circuit 71 is a circuit that generates a command pulse with a repetition frequency proportional to the command voltage vcC, and an example of a specific circuit diagram is shown in FIG. In this figure, the operational amplifier 74 at the front stage constitutes an integration circuit that integrates the command voltage vc with the time constant of a capacitor 75 and a resistor 76.77, and the comparator 78 at the rear stage converts it into a rectangular wave pulse voltage. A command pulse with a repetition frequency proportional to the voltage V is generated. Note that 79 is a charging/discharging switching transistor.

三相駆動信号発生回路72の一例は第5図に示される。An example of the three-phase drive signal generation circuit 72 is shown in FIG.

ここでは東芝製ドライバ素子(型式名1゛r)6280
3P)を使用した例を示し、このドライバ素子のCK端
子に電圧−周波数変換回路71の発生する指令パルスを
印加すると共に、本素子を三相1−2相励磁モードで使
用する事により、φ1.φ2.φ3端子に三相半波駆動
パルスを得る。そこでφ1.φ2.φ3端子をそのまま
す、。
Here, Toshiba driver element (model name 1゛r) 6280
By applying the command pulse generated by the voltage-frequency conversion circuit 71 to the CK terminal of this driver element and using this element in the three-phase 1-2 phase excitation mode, φ1 .. φ2. Obtain a three-phase half-wave drive pulse to the φ3 terminal. Therefore, φ1. φ2. Leave the φ3 terminal as is.

b、 、b、信号として出力すると共にインバータを経
てb4、b3、b、信号を出力する事により、三相全波
駆動パルスを発生する。これらCK端子に印加されるク
ロック信号CKと出力端す、。
A three-phase full-wave drive pulse is generated by outputting b, , b, and b4, b3, b signals through an inverter. A clock signal CK is applied to these CK terminals and an output terminal.

b!、b3、bl、bl、b、の駆動信号のタイムチャ
ートは第8図に示される。
b! , b3, bl, bl, b, a time chart of the drive signals is shown in FIG.

第6図は三相全波出力回路73でトランジスタ81.8
2,83.84.85.86の各ヘースに三相駆動信号
発生回路72の駆動信号b1゜b2、bl、bl、b3
、b6を印加する事により出力端U、V、Wに接続され
た電動機8を三相駆動する事が可能である。従って本例
では、電動機駆動手段7は可変周波数三相全波インバー
タを構成し、負荷の三相誘導電動機8を可変周波数制御
する事によって指令値に応じた回転数で変速制御するこ
とができる。なお、80は車載バッテリであり各トラン
ジスタに並列接続されたダイオード87,88.89,
90,91.92はエネルギー回生用である。そして、
電動機8の駆動軸に遠心コンプレッサ9のロータが直結
されており、その回転数に応じた過給能力を発?L L
、機関1を過給する。
Figure 6 shows a three-phase full-wave output circuit 73 with transistors 81.8
The drive signals b1, b2, bl, bl, b3 of the three-phase drive signal generation circuit 72 are applied to each of the bases 2, 83, 84, 85, and 86.
, b6, it is possible to drive the electric motor 8 connected to the output terminals U, V, and W in three phases. Therefore, in this example, the motor drive means 7 constitutes a variable frequency three-phase full-wave inverter, and by variable frequency control of the three-phase induction motor 8 serving as the load, it is possible to control the speed at a rotation speed according to the command value. In addition, 80 is an on-board battery, and diodes 87, 88, 89, 89, and 88 are connected in parallel to each transistor.
90, 91.92 are for energy regeneration. and,
The rotor of the centrifugal compressor 9 is directly connected to the drive shaft of the electric motor 8, and generates supercharging capacity according to its rotation speed. L L
, supercharging engine 1.

以−トの構成の作動を説明する。キー5WIIがオンと
なると本装置は作動状態に入り、電気的演算手段6は機
関1の運転条件に応じた目標過給圧及び基本値を演算す
ると共に、過給圧センサ5より検出された実過給圧と比
較し補正(直を演算して、前記基本値をこの補正値で補
正して指令値を演算する。電動機駆動手段7は指令値に
応じた周波数で電動機8を駆動するため、この回転数に
応じてコンプレッサ9は回転駆動され過給圧を発仕し、
目標過給圧に対する実過給圧の誤差を修正することがで
き、機関lを予め81画された過給圧にて運転する事が
可能となる。
The operation of the following configuration will be explained. When the key 5WII is turned on, this device enters the operating state, and the electrical calculation means 6 calculates the target boost pressure and basic value according to the operating conditions of the engine 1, and also calculates the actual value detected by the boost pressure sensor 5. The correction value is calculated by comparing the boost pressure with the correction value, and the command value is calculated by correcting the basic value with this correction value.The motor driving means 7 drives the motor 8 at a frequency according to the command value. The compressor 9 is driven to rotate according to this rotation speed and generates supercharging pressure,
It is possible to correct the error in the actual boost pressure with respect to the target boost pressure, and it becomes possible to operate the engine l at a predefined boost pressure of 81.

即ち始動時から低速運転域では機関1の排気エネルギー
は小さいためターボチャーヂャ2で過給圧を発生する事
は出来ない。この状態で機関の過給は主として電動機駆
動のコンプレッサ9より過給が行われ、過給圧は計画値
を満足する事ができるため、機関1は始動時でも例えば
2〜3気圧に過給できるため、圧縮比10程度の低い低
圧縮比機関でも圧縮着火運転が可能となる。
That is, since the exhaust energy of the engine 1 is small in the low-speed operating range from the time of startup, the turbocharger 2 cannot generate supercharging pressure. In this state, the engine is supercharged mainly by the electric motor-driven compressor 9, and the boost pressure can satisfy the planned value, so the engine 1 can be supercharged to, for example, 2 to 3 atmospheres even when starting. Therefore, compression ignition operation is possible even in a low compression ratio engine with a compression ratio of about 10.

また、中速中負荷以上の運転条件で排気エネルギーが十
分得られターボチャーヂャ2が必要な過給能力を発揮す
る状態では、ターボチャーヂャ2によって実過給圧は目
標過給圧に達するため電気的演算手段6の指令値も低い
値となるため電動機駆動手段7の駆動周波数も下り電動
機8へ供給される電気的エネルギーはほとんど零か場合
によってはコンプレッサ9をへてエネルギー吸収が可能
であり、逆に電気エネルギーを発生する発電制動をかけ
て実過給圧が目標過給圧を超過する分をおさえる事も可
能であり、この場合に電動機8は電動機駆動回路7を経
て排気エネルギーの一部を電力として回生じ、車載バッ
テリを充電する事ができる。
In addition, when sufficient exhaust energy is obtained under operating conditions of medium speed and medium load or higher and turbocharger 2 exerts the necessary supercharging capacity, the actual boost pressure will reach the target boost pressure by turbocharger 2. Since the command value of the electrical calculation means 6 also becomes a low value, the drive frequency of the motor drive means 7 also decreases, and the electrical energy supplied to the motor 8 is almost zero, or in some cases, energy can be absorbed through the compressor 9. Conversely, it is also possible to apply dynamic braking that generates electrical energy to suppress the amount by which the actual boost pressure exceeds the target boost pressure. This energy can be recovered as electricity and used to charge the vehicle's battery.

なお、本例では電動機8はターボチャーヂャ2とは別の
コンプレッサ9を駆動し過給する例を示したが、ターボ
チャーヂャ2と電動機8の軸を直結もしくは連結して駆
動する事によりコンプレッサ9を省略する事も可能であ
る。
In this example, the electric motor 8 drives a compressor 9 separate from the turbocharger 2 for supercharging, but by driving the turbocharger 2 and electric motor 8 by directly connecting or connecting their shafts, It is also possible to omit 9.

また、電気的演算手段による目標過給圧の演算方法とし
て回転数と負荷を基本的運転条件とする二次元マツプよ
り演算する例を示したが、回転数とキースイッチの信号
より始動時(例えば、極低回転かつキースイッチオン)
を判定し、始動時は目標過給圧を通常運転時より高く設
定する事により、始動性の向上をはかる事も可能である
In addition, as a method for calculating the target boost pressure using electrical calculation means, we have shown an example in which the target boost pressure is calculated from a two-dimensional map with the rotation speed and load as the basic operating conditions. , extremely low rotation and key switch on)
It is also possible to improve startability by determining the target boost pressure at startup and setting it higher than during normal operation.

さらに機関の運転条件のうち負荷を検出するため燃料噴
射ポンプの燃料調節部材の位置を検出する例を示したが
、アクセル操作量をボテンシッメータで検出すると共に
回転数とアクセル操作量を変数として電気的演算手段で
目標過給圧を算出する事も可能である。目標過給圧はさ
らに機関の冷却水温によって補正する事により機関の過
給圧をより適切に制御する事が可能となる。
Furthermore, an example was shown in which the position of the fuel adjustment member of the fuel injection pump is detected to detect the load among the engine operating conditions, but the accelerator operation amount is detected with a potentiometer and the rotation speed and accelerator operation amount are used as variables to detect the position of the fuel adjustment member of the fuel injection pump. It is also possible to calculate the target supercharging pressure using a calculation means. By further correcting the target boost pressure based on the engine cooling water temperature, it becomes possible to control the engine boost pressure more appropriately.

〔発明の効果〕〔Effect of the invention〕

以上の如く本発明では、指令信号に応じて回転数を変速
制御可能な電動機にて駆動される過給手段を備え、機関
の目標過給圧と実過給圧との誤差に応じて前記過給手段
を制御する事を特徴としており、機関の始動時、低速低
負荷時がら高速高負荷時までの全運転域にわたって最適
な過給圧を実現できるという優れた効果が得られる。
As described above, the present invention includes a supercharging means driven by an electric motor whose rotational speed can be controlled in variable speed according to a command signal, and the supercharging means is configured to adjust the supercharging means according to the error between the target supercharging pressure and the actual supercharging pressure of the engine. It is characterized by controlling the supply means, and has the excellent effect of achieving optimal boost pressure over the entire operating range from engine startup and low speed and low load to high speed and high load.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成の一例を示す全体構成図、第2図
は第1図中の電気的演算手段の一例を示す構成図、第3
図は第1図中の電動機駆動手段の一例を示す構成図、第
4図は第3図中の電圧−周波数変換回路の電気回路図、
第5図は第3図中の三相駆動信号発生回路の電気回路図
、第6図は第3図中の三相全波出力回路の電気回路図、
第7図は電気的演算手段における処理手順を示すフロー
チャート、第8図は電動機駆動手段の各部信号波形を示
すタイムチャートである。 1・・・内燃機関、2・・・ターボチャーヂャ53・・
・回転数センサ、4・・・負荷セン号、5・・・過給圧
センサ。 6・・・電気的演算手段、7・・・電動機駆動手段、8
・・・電動機、9・・・コンプレッサ、IO・・・噴射
ポンプ。 11・・・キースイッチ、61・・・MP[J。 代理人弁理士 岡  部   隆 第7図 第8図
FIG. 1 is an overall configuration diagram showing an example of the configuration of the present invention, FIG. 2 is a configuration diagram showing an example of the electrical calculation means in FIG. 1, and FIG.
The figure is a configuration diagram showing an example of the motor driving means in Figure 1, and Figure 4 is an electric circuit diagram of the voltage-frequency conversion circuit in Figure 3.
Figure 5 is an electric circuit diagram of the three-phase drive signal generation circuit in Figure 3, Figure 6 is an electric circuit diagram of the three-phase full-wave output circuit in Figure 3,
FIG. 7 is a flowchart showing the processing procedure in the electrical calculation means, and FIG. 8 is a time chart showing signal waveforms at various parts of the motor drive means. 1... Internal combustion engine, 2... Turbocharger 53...
・Rotation speed sensor, 4...Load sensor number, 5...Supercharging pressure sensor. 6... Electric calculation means, 7... Electric motor drive means, 8
...Electric motor, 9...Compressor, IO...Injection pump. 11...Key switch, 61...MP[J. Representative Patent Attorney Takashi OkabeFigure 7Figure 8

Claims (3)

【特許請求の範囲】[Claims] (1)指令信号に応じて電動機の回転速度を変速制御可
能な電動機駆動手段と、 内燃機関の吸気系に備えられ前記電動機にて駆動される
過給手段と、 前記機関の吸気マニホルドの圧力を検出することによっ
て実過給圧を検出する実過給圧検出器と、前記機関の運
転条件を検出するための各種の運転条件検出器と、 該運転条件検出器より得た運転条件検出信号及び前記実
過給圧検出器より得た実過給圧信号より目標過給圧に対
する実過給圧を修正するための指令信号を演算する電気
的演算手段とを備え、該指令信号にて前記電動機の回転
速度を変速制御する事を特徴とする内燃機関用電気的制
御装置。
(1) A motor driving means capable of variable speed control of the rotational speed of the electric motor according to a command signal; a supercharging means provided in the intake system of the internal combustion engine and driven by the electric motor; an actual boost pressure detector that detects the actual boost pressure; various operating condition detectors that detect operating conditions of the engine; and an operating condition detection signal obtained from the operating condition detector; electrical calculation means for calculating a command signal for correcting the actual boost pressure with respect to the target boost pressure from the actual boost pressure signal obtained from the actual boost pressure detector; An electrical control device for an internal combustion engine, characterized by variable speed control of the rotation speed of the engine.
(2)前記電気的演算手段は、機関の回転数と負荷を基
本的運転条件として目標過給圧を演算すると共に、前記
実過給圧検出器より検出した実過給圧と前記目標過給圧
とを比較し両者の誤差に応じた補正値を演算し、さらに
前記回転数、負荷より前記指令信号の基本値を演算し、
該基本値を前記補正値で補正する事により、前記指令信
号を演算する事を特徴とする特許請求の範囲第1項に記
載の内燃機関用電気的制御装置。
(2) The electrical calculation means calculates the target boost pressure using the engine speed and load as basic operating conditions, and also calculates the target boost pressure using the actual boost pressure detected by the actual boost pressure detector and the target boost pressure. Compare the pressure and calculate a correction value according to the error between the two, further calculate the basic value of the command signal from the rotation speed and load,
2. The electrical control device for an internal combustion engine according to claim 1, wherein the command signal is calculated by correcting the basic value with the correction value.
(3)前記電気的演算手段は、キースイッチと回転数よ
り機関の始動状態を判定し始動時用の目標過給圧を演算
する事を特徴とする特許請求の範囲第1項または第2項
に記載の内燃機関用電気的制御装置。
(3) The electrical calculation means determines the starting state of the engine based on the key switch and the rotation speed, and calculates the target boost pressure for starting. An electrical control device for an internal combustion engine according to.
JP60205914A 1985-09-18 1985-09-18 Electric control device for internal combustion engine Pending JPS6267235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60205914A JPS6267235A (en) 1985-09-18 1985-09-18 Electric control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60205914A JPS6267235A (en) 1985-09-18 1985-09-18 Electric control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS6267235A true JPS6267235A (en) 1987-03-26

Family

ID=16514835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60205914A Pending JPS6267235A (en) 1985-09-18 1985-09-18 Electric control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS6267235A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220862A (en) * 2004-02-09 2005-08-18 Hino Motors Ltd Internal combustion engine with supercharger
WO2007148369A1 (en) * 2006-06-16 2007-12-27 Tetsuji Tateoka Electric power generation method using combustion exhaust gas and electric power generation device using combustion exhaust gas
JP2010180711A (en) * 2009-02-03 2010-08-19 Mazda Motor Corp Diesel engine starting method and device therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220862A (en) * 2004-02-09 2005-08-18 Hino Motors Ltd Internal combustion engine with supercharger
JP4511845B2 (en) * 2004-02-09 2010-07-28 日野自動車株式会社 Internal combustion engine with a supercharger
WO2007148369A1 (en) * 2006-06-16 2007-12-27 Tetsuji Tateoka Electric power generation method using combustion exhaust gas and electric power generation device using combustion exhaust gas
US7859127B2 (en) 2006-06-16 2010-12-28 Tetsuji Tateoka Generating method and generating system utilizing combustion exhaust gas
JP2010180711A (en) * 2009-02-03 2010-08-19 Mazda Motor Corp Diesel engine starting method and device therefor

Similar Documents

Publication Publication Date Title
US5088286A (en) Control system for turbocharger with rotary electric machine
US4878347A (en) Device for controlling turbocharger with electric rotary machine
US4958497A (en) Drive system for turbochargers with rotary electric machines
US9048765B2 (en) Engine powered generator
JPH01177412A (en) Controller for turbocharger with electric rotary machine
JPH0534489B2 (en)
US5415139A (en) Control system for controlling excess air ratio of internal combustion engine using a generator-motor
JP4178912B2 (en) Control device for internal combustion engine provided with turbocharger with electric motor
JPS6267235A (en) Electric control device for internal combustion engine
JPH11280510A (en) Turbocharger control device for internal combustion engine
JP5606562B2 (en) Electric supercharger control device
JPH05280385A (en) Controller for turbo charger
JPH04342828A (en) Control device for turbocharger provided with rotary electric equipment
JPH05240058A (en) Internal combustion engine with turbocharger
JPH08182382A (en) Controller for turbo-charger with motor-generator
JP2903696B2 (en) Control device for turbocharger with rotating electric machine
JP2990362B2 (en) Insulated engine control device
JP3203891B2 (en) Power unit control device for rotary electric machine for turbo
JP3160821B2 (en) Control device for turbocharger with rotating electric machine
JP2775899B2 (en) Control device for turbocharger with rotating electric machine
JP2987851B2 (en) Control device for turbocharger with rotating electric machine
JP3092260B2 (en) Control device for turbocharger with rotating electric machine
JP2893963B2 (en) Control device for turbocharger with rotating electric machine
JP2590475B2 (en) Control device for turbocharger with rotating electric machine
JP2964617B2 (en) Control device for turbocharger with rotating electric machine