JPS6263839A - Method and device for automatic calibration of gas analyzer - Google Patents

Method and device for automatic calibration of gas analyzer

Info

Publication number
JPS6263839A
JPS6263839A JP18023685A JP18023685A JPS6263839A JP S6263839 A JPS6263839 A JP S6263839A JP 18023685 A JP18023685 A JP 18023685A JP 18023685 A JP18023685 A JP 18023685A JP S6263839 A JPS6263839 A JP S6263839A
Authority
JP
Japan
Prior art keywords
calibration
period
change
gas
span
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18023685A
Other languages
Japanese (ja)
Inventor
Shozo Shibata
柴田 省三
Naonori Izumi
出水 尚典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITAKA KOGYO KK
Yokogawa Electric Corp
Original Assignee
MITAKA KOGYO KK
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITAKA KOGYO KK, Yokogawa Electric Corp filed Critical MITAKA KOGYO KK
Priority to JP18023685A priority Critical patent/JPS6263839A/en
Publication of JPS6263839A publication Critical patent/JPS6263839A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To constitute the titled device so that it is not influenced by a drift error and a shift error, by comparing the result of previous calibration and the result of present calibration, executing a calibration in the minimum calibration period which is determined by the previous calibration when there is a difference in the variation tendency, and extending the calibration period when there is no difference. CONSTITUTION:Based on gas which is supplied from a zero use gas bomb and a span use gas bomb 16, zero point calibration and span calibration are executed. Until a sample period is ended, an analog output having no correction is outputted in a real time. At the time point when the sample period is ended, the zero point calibration and the span calibration are executed. Based on a result of this calibration, the variation tendency of a drift is derived. In the next calibration, in case expected variation tendency and a difference exist, the next calibration is further executed in the same way. When no difference exists, the calibration period is extended.

Description

【発明の詳細な説明】 ・ぐ産業上の利用分野〉 本発明は、校正ガスを使用して所定の周期で校正が自動
的に行なわれるガス分析計量する。
DETAILED DESCRIPTION OF THE INVENTION Industrial Field of Application The present invention performs gas analysis and measurement in which calibration is automatically performed at predetermined intervals using a calibration gas.

〈従来の技術〉 従来、赤外線ガス分析計等のガス分析計では、赤外線透
過窓の汚れ等により、時間の軽過と共に出力がドリフト
する。この為、校正ガスを用いて一定の周期で自動的に
校正が行われる。第4図は、従来方法によって校正を行
ったガス分析計の出力の指示記録を表わづ。一定ガス濃
度のサンプルガスを用いて指示記録したもので、CI 
+ C2*C3・・・は校正が行われるタイミングを表
わす。
<Prior Art> Conventionally, in a gas analyzer such as an infrared gas analyzer, the output drifts as time passes due to dirt on the infrared transmitting window. For this reason, calibration is automatically performed at regular intervals using calibration gas. FIG. 4 shows an indication record of the output of a gas analyzer calibrated using the conventional method. CI is an instruction recorded using a sample gas with a constant gas concentration.
+C2*C3... represents the timing at which calibration is performed.

このタイミングでドリフトの方向、及びドリフトの山が
検出され、これに応じて補正の方向、及び補正lが決定
され、校正が行われる。
At this timing, the direction of the drift and the peak of the drift are detected, the direction of correction and the correction l are determined accordingly, and calibration is performed.

しかしながら、このような従来方法では、CI。However, in such conventional methods, CI.

C2、C3・・・の所で行われる校正以外、校正と校正
との間で生ずるドリフトDIの補正を行っていない。こ
の為、指示記録上にドリフトD+と校正時のシフトSI
とが現われ、連袂記録した場合、これら誤tを含んだ形
となってしまう。
Other than the calibration performed at C2, C3, . . . , no correction is made for the drift DI that occurs between calibrations. For this reason, the drift D+ and the shift SI during calibration are recorded on the instruction record.
appear and if they are recorded consecutively, the result will be a form that includes these errors.

更に、このような従来方法では、校正周期Tlが固定さ
れている為、前記ドリフトの変化傾向が同じで、改めて
校正を行わなくても、ドリフトの補正方向、並びに補正
酊が子側されるような場合でも、同じ周期で校正を行い
校正ガスを無駄に消費していた。
Furthermore, in such a conventional method, since the calibration period Tl is fixed, the tendency of change of the drift is the same, and the direction of correction of the drift and the correction angle can be adjusted to the secondary side without performing calibration again. Even in such cases, calibration was performed at the same cycle, wasting calibration gas.

〈発明が解決しようとする問題点ン・ 本発明の解決しよ・うとする技術的課題は、前記自動校
正された出力を指示記録させたとき、前記校正毎のシフ
ト並びに前記校正と校正との間のドリフトが現われない
ようにすることにあり、また、ドリフトの変化傾向が同
じで、改めて校正をtjわなくても、ドリフトの補正方
向、並びに補正mが予測されるような場合の校正ガスの
無駄な消費を防ぐことにある。
<Problem to be Solved by the Invention> The technical problem to be solved by the present invention is that when the automatically calibrated output is instructed and recorded, the shift for each calibration and the difference between the calibrations are The aim is to prevent the drift between The aim is to prevent wasteful consumption of

〈問題点を解決するための手段〉 本発明の第1の発明の構成は、一定期間、前記校正ガス
を用いて校正を行い前記ガス分析計のドリフトの変化傾
向を求め、予め最小の校正期間を定め、この期間経過後
に再び校正をfうい、前回の校正結果と比較し変化傾向
に差があるとき、前記最小の校正m間で校正を引続き行
い、このような校正結果の比較を行って前記変化傾向に
差がないとき、前記校正期間を延長すると共に、前回の
校正から次ぎの校正迄の期間、前回の校正で(qた変化
傾向に基づきリアルタイムで前記ガス分析計の出力に補
正演算を旌し出力させるようにした自動校正方法にある
<Means for Solving the Problems> The configuration of the first aspect of the present invention is to calibrate the gas analyzer using the calibration gas for a certain period of time to determine the tendency of change in the drift of the gas analyzer, and to calculate the minimum calibration period in advance. After this period has elapsed, calibrate again f and compare with the previous calibration result. If there is a difference in the change trend, continue calibrating between the minimum calibration m and compare such calibration results. When there is no difference in the change trends, the calibration period is extended, and during the period from the previous calibration to the next calibration, correction calculations are performed on the output of the gas analyzer in real time based on the change trends in the previous calibration. This is an automatic calibration method that allows you to calculate and output the following information.

本発明の第2の発明の構成は、サンプルガス、ピロ点用
のガス及びスパン用のガスが与えられる赤外線ガス分析
計からの信号を読み込む手段と、ゼロ点校正並びにスパ
ン校正した後、所定南面経過したときの出力に基づきゼ
ロ点変化量並びにスパン変化量を検出する手段と、前記
検出されたゼロ点変化量並びにスパン変化量の時間当り
変化率を計算する手段と、前記ゼロ点並びにスパンの変
化に基づき最小の校正111間経過後のゼロ点補正信号
、及びスパン補正信号を演算する手段と、前記補正信号
を用い前記赤外線ガス分析計からの信号入力に補正演算
を施し出力する手段とを具備し、前記最小の校正期間経
過侵校正を行い、前回の校正のときのゼロ点並びにスパ
ンの変化率と比較し、差がないとき校正期間を延長し、
前回の校正のときの前記変化率と差があるときは最小の
校正期間に戻って校正を行うようにした自動校正装置に
ある。
The configuration of the second invention of the present invention includes a means for reading signals from an infrared gas analyzer to which a sample gas, a pyro point gas, and a span gas are supplied, and after performing zero point calibration and span calibration, a predetermined south face. means for detecting the zero point change amount and span change amount based on outputs over time; means for calculating the rate of change per time of the detected zero point change amount and span change amount; means for calculating a zero point correction signal and a span correction signal after a minimum calibration period 111 based on the change; and means for performing a correction calculation on a signal input from the infrared gas analyzer using the correction signal and outputting the result. carry out invasive calibration over the minimum calibration period, compare it with the zero point and span change rate from the previous calibration, and if there is no difference, extend the calibration period;
The automatic calibration device is configured to perform calibration by returning to the minimum calibration period when there is a difference from the rate of change from the previous calibration.

く作用〉 前記の技術手段は次のように作用tjる。即ち、一定期
間、ゼロ点校正、並びにスパン校1を行い、前記ガス分
析計の出力のゼロ点、並びにスパンのドリフトをモニタ
ーし、これらデータに基づきドリフトの変化傾向を求め
、この変化傾向に糟づき前記最小の校正期間、前記ガス
分析計の出力にリアルタイムで補正演算を施し出力させ
る。
Action> The above technical means works as follows. That is, zero point calibration and span calibration 1 are performed for a certain period of time, the drift of the zero point and span of the output of the gas analyzer is monitored, and based on these data, the tendency of drift change is determined, and the influence of this change trend is determined. Then, during the minimum calibration period, the output of the gas analyzer is subjected to a correction calculation in real time and outputted.

また、前記最小の校正期間経過後、前記(![]点校正
、並びにスパン校正を行い、前回の校正結果と差がない
とき、校正の間隔が延長され、史にこのような操作を繰
返し、校正の周111]庖−順次延長する。
In addition, after the minimum calibration period has passed, if the (![] point calibration and span calibration are performed and there is no difference from the previous calibration result, the calibration interval is extended and such operations are repeated in the past, Calibration period 111] Extend sequentially.

く実旅例〉 以下図面に従い本発明の詳細な説明する。第1図は本発
明方法を実施した装置の構成図である。
Practical Travel Example> The present invention will be described in detail below with reference to the drawings. FIG. 1 is a block diagram of an apparatus implementing the method of the present invention.

一点鎖線で囲んだ部分Aは赤外線ガス分析計の如きガス
分析計で、配管1より電磁弁2を介しサンプルガスが与
えられ、配管3よりゼロ点用のガス、或はスパン用のガ
スが与えられる。
The part A surrounded by the one-dot chain line is a gas analyzer such as an infrared gas analyzer, in which sample gas is supplied from piping 1 through solenoid valve 2, and zero point gas or span gas is supplied from piping 3. It will be done.

一点鎖線で囲んだ部分Bは自動校正器で、このうち、4
はガス分析計Aからアナログ入力vLが与えられた増幅
器である。5は増幅器4からのアナログ出力をデジタル
信号に変換するA/D変挽回路、6は中央演σ処理装H
(CPLJ)、7は読込んだデータを記憶するランダム
・アクセス・メ[す(RAM) 、8は処理ル−チン・
プログラム、或は各種演算処理プログラムが格納された
リード・オンリー・メモリ<ROM) 、9はI10ボ
ートで、これらはバス(Bus)10によって接続され
ている。
Part B surrounded by a dashed line is an automatic calibrator, of which 4
is an amplifier to which analog input vL is given from gas analyzer A. 5 is an A/D conversion circuit that converts the analog output from the amplifier 4 into a digital signal, and 6 is a central arithmetic processing unit H.
(CPLJ), 7 is a random access memory (RAM) for storing read data, and 8 is a processing routine.
A read-only memory (ROM) in which programs or various arithmetic processing programs are stored, 9 is an I10 port, and these are connected by a bus (Bus) 10.

11はCPU6において演算処理されたデジタル出力を
アナログイさ号に変換するり、/A変換回路、12はこ
の変換回路からのアノ−ログ信号を増幅して出力Voを
与える増幅器である。
Reference numeral 11 is an /A conversion circuit for converting the digital output processed by the CPU 6 into an analog equal sign, and reference numeral 12 is an amplifier for amplifying the analog signal from this conversion circuit to provide an output Vo.

13は校正結果を表示する表示手段、14は自動校正の
開始、停止を指令するボタンである。
13 is a display means for displaying the calibration results, and 14 is a button for instructing the start and stop of automatic calibration.

15はゼロ点用ガスボンベで、サンプルがス成分を含ま
ない、例えば窒素ガスが封入されている。
Reference numeral 15 denotes a zero point gas cylinder, which is filled with nitrogen gas, which does not contain any gas components in the sample.

16はスパン用ガスボンベで、既知濃度のサンプルガス
が封入されている。17はソリッド・ステート・リレー
で、r710ボート9から与えられる1llJ御信号に
基づきM磁弁18並びに19の駆動出力を発生する。2
0は、同じく電磁弁2への駆動出力を発生するソリッド
・ステート・リレーである。
16 is a span gas cylinder, which is filled with a sample gas of a known concentration. A solid state relay 17 generates a drive output for the M magnetic valves 18 and 19 based on the 1llJ control signal given from the R710 boat 9. 2
0 is a solid state relay that also generates a drive output to the solenoid valve 2.

次に、この装置を用いて行われる、本発明の自動校正方
法について、第2図のタイムチャート、並びに第3図の
70−チヤ〜トに従い説明を行う。
Next, the automatic calibration method of the present invention performed using this apparatus will be explained according to the time chart of FIG. 2 and chart 70 of FIG. 3.

第2図において、図(a)はガス分析計Aより与えられ
る入力信号Vzのドリフトの状態を表わすタイムチャー
トで、横軸は時間、縦軸はドリフト量を表わすa説明の
便宜上、ガス分析計Aには一定濃度のサンプルガスが流
されていものとする。
In Fig. 2, figure (a) is a time chart showing the state of drift of the input signal Vz given by gas analyzer A, where the horizontal axis shows time and the vertical axis shows the amount of drift. It is assumed that a sample gas of a constant concentration is flowing through A.

赤外線ガス分析計では、赤外線が透過する窓がサンプル
ガスによって運ばれたゴミ等によって汚れ1時間の経過
と共にドリフト量が実線のカーブのように増加する。図
(b)は校正、補正演算が施された自動校正型出力■0
を指示記録したタイムチャートで、横軸は時間、縦軸は
ドリフトmを表わす。
In an infrared gas analyzer, the window through which infrared rays pass is contaminated by dust and the like carried by the sample gas, and the amount of drift increases as shown by the solid curve as one hour passes. Figure (b) is an automatic calibration type output that has undergone calibration and correction calculations■0
In this time chart, the horizontal axis represents time and the vertical axis represents drift m.

第1図の構成図及び第2図のタイムチャートを参照しな
がら、主として第3図の7O−y−セードに従い本発明
方法を説明する。指令ボタン14を押して、自動校正を
開始した後、ステップ(1)において、先ず、サンプル
期間(第2図<a>の期間TS)かどうか判断される。
The method of the present invention will be explained mainly according to the 7O-y-sode shown in FIG. 3 while referring to the block diagram shown in FIG. 1 and the time chart shown in FIG. 2. After pressing the command button 14 to start automatic calibration, it is first determined in step (1) whether or not it is a sample period (period TS in FIG. 2 <a>).

サンプル期間であると判断された場合、ステップ(2)
乃至ステップ(7)に移り、ガス分析計Aから与えられ
る入力V工のピロ点のドリフト、スパンのドリフトをモ
ニターし、これ!うデータに基づきドリフトの変化傾向
を求める。
If it is determined that it is a sample period, step (2)
Proceed to step (7) and monitor the drift of the pillow point and span of the input V input from gas analyzer A. The drift change trend is determined based on the data.

即ち、ステップ(2)において、ゼロ用ガスボンベ15
並びにスパン用ガスボンベ16から与えられるガスに基
づき、ゼロ点校正、スパン校正が行われる(夕、イミン
グCo )。次いで、ステップ13)、(4)のループ
で1ナンプル期間Ts終了迄、リアルタイムで補正なし
のアナログ出力V。
That is, in step (2), the zero gas cylinder 15
Also, zero point calibration and span calibration are performed based on the gas supplied from the span gas cylinder 16 (evening, timing Co.). Next, in the loop of steps 13) and (4), the analog output V is output without correction in real time until the end of one sample period Ts.

を出力しく第2図(b)参照)、ステップ(5)におい
て、サンプル期間T5終了した時点(タイミングC+)
で、ゼロ点校正、スパン校正が行われる。
(see Figure 2(b)), at the end of the sample period T5 (timing C+) in step (5).
Zero point calibration and span calibration are performed.

ステップ(6)において、ステップ(2)及び(5)の
校正結果に基づき、ドリフ1への変化傾向を求める。即
ち、リンプルwJn T sにおtプるゼロ点の変化量
、スパンの変化量から、これらの時間変化に応じた割合
を求め、ステップ(7)で定める最小の校正1llI間
T+が経過したときにおけるドリフト量を計算し、これ
に対する補正用、補正の方向を決定する。
In step (6), the tendency of change to drift 1 is determined based on the calibration results of steps (2) and (5). That is, from the amount of change in the zero point and the amount of change in span applied to the ripple wJn T s, calculate the ratio according to these time changes, and calculate when the minimum calibration time T+ specified in step (7) has elapsed. The amount of drift in is calculated, and the direction of correction for this is determined.

ステップ(13)において、次ぎの校正c2迄の最小周
期の校正期間Tl、前記補正邑を時間変化に応じて割当
て、これにより、リアルタイムで、入力V□に補正演算
を施しアナログ出力Voを出力する。予想された変化傾
向と差がない場合、第2図(b)に示すように、指示記
録にドリフト並びにシフトは現われない。
In step (13), the minimum cycle of calibration period Tl until the next calibration c2 and the correction value are assigned according to the time change, thereby performing a correction calculation on the input V□ in real time and outputting the analog output Vo. . If there is no difference from the expected change trend, no drift or shift will appear in the instruction record, as shown in FIG. 2(b).

ステップ(14)、(15)で時間管理が行われ、校正
周期T、が終了したとき、ステップ(1)に戻る。この
場合、次ぎのステップ(8)に移り、ゼロ点校正、スパ
ン校正がC2のタイミングで行われる。次いで、ステッ
プ(9)において、前回の校正結果と比較し、期間T1
におけるゼロ点の変化量、スパンの変化量を求める。こ
れからゼロ点、スパンの変化率を計算し、ステップ(1
0)において、前回の校正期間、即ちサンプル期間Ts
における変化率と比較し、差がないとき、ステップ(1
1)に移って、校正周期を延長する。
Time management is performed in steps (14) and (15), and when the calibration cycle T ends, the process returns to step (1). In this case, the process moves to the next step (8), and zero point calibration and span calibration are performed at timing C2. Next, in step (9), it is compared with the previous calibration result, and the period T1
Find the amount of change in the zero point and the amount of change in span. From this, calculate the zero point and span change rate, and step (1
0), the previous calibration period, that is, the sample period Ts
When there is no difference, step (1
Proceed to step 1) and extend the calibration cycle.

本実施例の場合、校正周期T2は最小周期T+の2倍の
周期に定められている。
In the case of this embodiment, the calibration cycle T2 is set to twice the minimum cycle T+.

ステップ(13)に移り、前記ゼロ点、スパンの変化率
に基づき、期間T2経過後のドリフトmを計算し、これ
に対する補正量、補正の方向を決定し、これを時間変化
に応じて割当て、リアルタイムで、入力vLに補正演算
を施しアナログ出力v0を出力する。ステップ(14)
、(15)で時間管理が行われ、校正周期T2が終了し
たステップ(1)に再び戻る。
Proceeding to step (13), based on the rate of change of the zero point and span, calculate the drift m after the period T2 has elapsed, determine the amount of correction and direction of correction for this, and allocate this according to the change over time; In real time, a correction calculation is performed on the input vL and an analog output v0 is output. Step (14)
, (15), time management is performed, and the process returns to step (1) where the calibration cycle T2 has ended.

ステップ(8)で、タイミングC3でのゼロ点校正、ス
パン校正が行われ、ステップ(9)において、期間T2
におけるゼロ点、スパンの変化率がJf譚され、ステッ
プ(10)において、前回の校正期間T+における変化
率と差がないどき、ステップ(11)に移って、校正周
期を延長する。
In step (8), zero point calibration and span calibration are performed at timing C3, and in step (9), period T2
The rate of change of the zero point and span at is determined as Jf, and in step (10), when there is no difference from the rate of change in the previous calibration period T+, the process moves to step (11) to extend the calibration period.

このときの校正周期T3は、例えば最小周期T1の3f
8に定められる。
The calibration cycle T3 at this time is, for example, 3f of the minimum cycle T1.
8.

これ以下、ステップ(13)乃至(15)において前回
と同様な操作が繰返され、期間73経過後、再びステッ
プ(1)に戻る。
From this point on, the same operations as the previous time are repeated in steps (13) to (15), and after the period 73 has elapsed, the process returns to step (1) again.

第2図<a)に示す如く、期間下3において、点線で示
す予想変化傾向に対し、実際のものが異なっている場合
、ステップ(10)でそれが判断され、ステップ(12
)により、校正周期が最小のインターバルT+に戻され
、以下同様な手順で校正が行われる。
As shown in Figure 2<a), if the actual change is different from the expected change trend shown by the dotted line in period 3, this is determined in step (10), and step (12)
), the calibration period is returned to the minimum interval T+, and calibration is performed in the same manner thereafter.

尚、この場合には、予想したドリフトの変化傾向と実際
のものとが異なる為、ドリフトD2並びにシフトS2が
指示記録に現われる。
In this case, since the predicted drift change tendency is different from the actual one, drift D2 and shift S2 appear in the instruction record.

〈発明の効果〉 本発明によれば、一定期間、ゼロ点校正、並びにスパン
校正を行い、前記ガス分析計の出力のゼロ点、並びにス
パンのドリフトをモニターし、これらデータに基づきド
リフトの変化傾向を求め、この変化傾向に基づきlyI
記最小の校正期間、前記ガス分析計の出力にリアルタイ
ムで補正演算を施し出力させるようにした為、ドリフト
の変化傾向が急変しない限り、前記ドリフト誤差、並び
に前記シフト誤差は指示記録に現われない。
<Effects of the Invention> According to the present invention, zero point calibration and span calibration are performed for a certain period of time, the drift of the zero point and span of the output of the gas analyzer is monitored, and the change trend of the drift is determined based on these data. Based on this change trend, lyI
During the minimum calibration period, the output of the gas analyzer is subjected to correction calculations in real time and output, so the drift error and the shift error will not appear in the instruction record unless the drift change trend suddenly changes.

また、前記最小の校正期間経過後、前記ゼロ点校正、並
びにスパン校正を行い、前回の校正結果と差がないとき
、校正の間隔が延長され、更にこのような操作を繰返し
前記変化傾向に差がないとき、校正の周期が前期最小の
周期の3倍、4倍・・・と順次延長される為、前記校正
のガスの無駄な消費が押えられる。
Furthermore, after the minimum calibration period has elapsed, the zero point calibration and span calibration are performed, and if there is no difference from the previous calibration result, the calibration interval is extended, and such operations are repeated to correct the difference in the change trend. When there is no calibration period, the calibration period is sequentially extended to 3 times, 4 times, etc. of the minimum period of the previous period, so that wasteful consumption of the calibration gas can be suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法をT:tMシた装首の構成図、第2
図並びに第3図は夫々本発明方法を説明する為のタイム
チャー1−並びにフローチャート、第4図は従来方法を
説明する為のタイムチ1−1−である。
Figure 1 is a block diagram of a neck strap using the T:tM method of the present invention;
3 and 3 are a time chart 1-1 and a flowchart for explaining the method of the present invention, respectively, and FIG. 4 is a time chart 1-1 for explaining the conventional method.

Claims (2)

【特許請求の範囲】[Claims] (1)校正ガスを使用して所定の周期でガス分析計の校
正を自動的に行う自動校正方法において、一定期間、前
記校正ガスを用いて校正を行い前記ガス分析計のドリフ
トの変化傾向を求め、予め最小の校正期間を定め、この
期間経過後に再び校正を行い、前回の校正結果と比較し
変化傾向に差があるとき、前記最小の校正期間で校正を
引続き行い、このような校正結果の比較を行つて前記変
化傾向に差がないとき、前記校正期間を延長すると共に
、前回の校正から次ぎの校正迄の期間、前回の校正で得
た変化傾向に基づきリアルタイムで前記ガス分析計の出
力に補正演算を施し出力させるようにしたことを特徴と
するガス分析計における自動校正方法。
(1) In an automatic calibration method that automatically calibrates a gas analyzer at a predetermined period using a calibration gas, calibration is performed using the calibration gas for a certain period of time to determine the change trend of the drift of the gas analyzer. After determining the minimum calibration period in advance, calibrate again after this period has elapsed, and if there is a difference in the change trend compared to the previous calibration result, continue calibrating with the minimum calibration period, and calculate the calibration result. If there is no difference in the change trends after comparing the above, the calibration period is extended, and the gas analyzer is adjusted in real time based on the change trends obtained in the previous calibration during the period from the previous calibration to the next calibration. An automatic calibration method for a gas analyzer, characterized in that the output is subjected to a correction calculation before being output.
(2)校正ガスを使用して所定の周期でガス分析計の校
正を自動的に行う自動校正装置において、サンプルガス
、ゼロ点用のガス及びスパン用のガスが与えられる赤外
線ガス分析計からの信号を読み込む手段と、ゼロ点校正
並びにスパン校正した後、所定期間経過したときの出力
に基づきゼロ点変化量並びにスパン変化量を検出する手
段と、前記検出されたゼロ点変化量並びにスパン変化量
の時間当り変化率を計算する手段と、前記ゼロ点並びに
スパンの変化に基づき最小の校正期間経過後のゼロ点補
正信号、及びスパン補正信号を演算する手段と、前記補
正信号を用い前記赤外線ガス分析計からの信号入力に補
正演算を施し出力する手段とを具備し、前記最小の校正
期間経過後校正を行い、前回の校正のときのゼロ点並び
にスパンの変化率と比較し、差がないとき校正期間を延
長し、前回の校正のときの前記変化率と差があるとき最
小の校正期間に戻り校正を行うようにしたことを特徴と
するガス分析計における自動校正装置。
(2) In an automatic calibration device that automatically calibrates a gas analyzer at a predetermined period using calibration gas, the infrared gas analyzer provides sample gas, zero point gas, and span gas. means for reading a signal; means for detecting the amount of change in zero point and the amount of change in span based on the output after a predetermined period has elapsed after zero point calibration and span calibration; and the detected amount of zero point change and span change. means for calculating a rate of change per hour of the infrared gas; means for calculating a zero point correction signal and a span correction signal after a minimum calibration period has elapsed based on changes in the zero point and span; and a means for performing a correction calculation on the signal input from the analyzer and outputting the result, and after the minimum calibration period has elapsed, the calibration is performed and compared with the zero point and span change rate from the previous calibration, and there is no difference. An automatic calibration device for a gas analyzer, characterized in that when the calibration period is extended and there is a difference from the rate of change in the previous calibration, the calibration is performed by returning to the minimum calibration period.
JP18023685A 1985-08-16 1985-08-16 Method and device for automatic calibration of gas analyzer Pending JPS6263839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18023685A JPS6263839A (en) 1985-08-16 1985-08-16 Method and device for automatic calibration of gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18023685A JPS6263839A (en) 1985-08-16 1985-08-16 Method and device for automatic calibration of gas analyzer

Publications (1)

Publication Number Publication Date
JPS6263839A true JPS6263839A (en) 1987-03-20

Family

ID=16079747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18023685A Pending JPS6263839A (en) 1985-08-16 1985-08-16 Method and device for automatic calibration of gas analyzer

Country Status (1)

Country Link
JP (1) JPS6263839A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996000374A1 (en) * 1992-06-08 1996-01-04 Telaire Systems, Inc. Functional testing method for toxic gas sensors
JP2006017695A (en) * 2004-05-31 2006-01-19 Yokogawa Electric Corp Calibration method, and zirconia type oxygen concentration analyzer using the same
JP2006253556A (en) * 2005-03-14 2006-09-21 Jeol Ltd Method for calibrating charged particle beam drawing device
JP2010008166A (en) * 2008-06-25 2010-01-14 Asahi Kasei Electronics Co Ltd Measuring device using infrared sensor and calibration method
JP2017106747A (en) * 2015-12-07 2017-06-15 東亜ディーケーケー株式会社 Analysis device, method of evaluating drift of the same, and program
KR102371647B1 (en) * 2021-04-30 2022-03-07 주식회사 케이씨 Gas Supply Device and Gas Supply Method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996000374A1 (en) * 1992-06-08 1996-01-04 Telaire Systems, Inc. Functional testing method for toxic gas sensors
JP2006017695A (en) * 2004-05-31 2006-01-19 Yokogawa Electric Corp Calibration method, and zirconia type oxygen concentration analyzer using the same
JP4591105B2 (en) * 2004-05-31 2010-12-01 横河電機株式会社 Calibration method
JP2006253556A (en) * 2005-03-14 2006-09-21 Jeol Ltd Method for calibrating charged particle beam drawing device
JP2010008166A (en) * 2008-06-25 2010-01-14 Asahi Kasei Electronics Co Ltd Measuring device using infrared sensor and calibration method
JP2017106747A (en) * 2015-12-07 2017-06-15 東亜ディーケーケー株式会社 Analysis device, method of evaluating drift of the same, and program
KR102371647B1 (en) * 2021-04-30 2022-03-07 주식회사 케이씨 Gas Supply Device and Gas Supply Method

Similar Documents

Publication Publication Date Title
US3960497A (en) Chemical analyzer with automatic calibration
US6360582B1 (en) Method for calibration of chemical sensor in measuring changes in chemical concentration
JPS6263839A (en) Method and device for automatic calibration of gas analyzer
JPS60249069A (en) Step response measuring device
US3798429A (en) Apparatus for integrating the area of a succeeding peak superimposed on the tail of a preceding peak in the output of a measuring instrument
JPS61737A (en) Automatic calibration gas introduction time decision mechanism for continuous analyzer
JPH0823312A (en) Signal processing unit
JPH0247555A (en) Digital waveform displaying apparatus
JPH04130258A (en) Gas-concentration measuring apparatus
JPS5828218Y2 (en) Voice noise measurement device
JPH0116037Y2 (en)
JPS6395597A (en) Transmission of measuring data
JPS6025424A (en) Scanning type radiation thermometer
JPS61221661A (en) Measuring instrument for digital voltage variation rate
JPH04273014A (en) Data processing device
JPH07128372A (en) Signal measuring method
JPS62195518A (en) Correcting device for sensor output with hysteresis
JPS62274419A (en) Analog input device
JPH0560696A (en) Nitrogen oxide measuring apparatus
JPS61151446A (en) Chemoluminescent type gas analyser
JP2607113B2 (en) A / D conversion method
JPH04203983A (en) Semiconductor measuring device
JPS5926072A (en) High precision phase difference measuring device
JPH0441290B2 (en)
JPS6337213A (en) Automatic device for calibration