JPS6261761A - Method and apparatus for producing ultra-quickly cooled thin amorphous alloy strip - Google Patents

Method and apparatus for producing ultra-quickly cooled thin amorphous alloy strip

Info

Publication number
JPS6261761A
JPS6261761A JP20067485A JP20067485A JPS6261761A JP S6261761 A JPS6261761 A JP S6261761A JP 20067485 A JP20067485 A JP 20067485A JP 20067485 A JP20067485 A JP 20067485A JP S6261761 A JPS6261761 A JP S6261761A
Authority
JP
Japan
Prior art keywords
molten metal
nozzle
metal
supply pipe
resistant plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20067485A
Other languages
Japanese (ja)
Other versions
JPH0377025B2 (en
Inventor
Yasunori Tanji
丹治 雍典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP20067485A priority Critical patent/JPS6261761A/en
Publication of JPS6261761A publication Critical patent/JPS6261761A/en
Publication of JPH0377025B2 publication Critical patent/JPH0377025B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/064Accessories therefor for supplying molten metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To improve quality by providing a heat resistant plate having many holes right above a molten metal ejection nozzle, inserting a carbon ring thereunder and heating the carbon ring with a high-frequency furnace. CONSTITUTION:The heat resistant plate 8 having the many holes is disposed as a furnace material in a molten metal supply pipe 1 and the carbon ring 11 is inserted as a getter material to the under side thereof so as not to contact directly with a molten metal 2' and the pipe 1. A raw material metal is charged onto the plate 8 and while gaseous Ar is introduced into the pipe 1 from the upper part thereof, the metal is heated together with the ring 11 with the high- frequency heating furnace 4. After the raw material melts, the pipe 1 is lowered to exert pressure to the molten metal 2', thereby ejecting the metal from the nozzle. The ring 11 acts as the getter material in this stage to prevent the formation of an oxide film on the metal 2'. The ejection of the molten metal 2' is thereby stabilized and the quality is improved.

Description

【発明の詳細な説明】 (1)産業上の利用分野 本発明はアモルファス合金薄帯の製造方法盤にその製造
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Industrial Application Field The present invention relates to a method for manufacturing an amorphous alloy ribbon and an apparatus for manufacturing the same.

アモルファス合金薄帯装置の一つに回転冷却体と溶湯噴
出ノズルを備えた溶湯供給管と加熱炉とからなるものが
ある。該溶湯噴出ノズルは前記溶湯供給管と同軸的に配
置され溶湯供給管に装入される原料金属が溶解するまで
保持され、溶解後ガス圧により9回転冷却体に向けて安
定した溶融金属噴流を噴出させ、超急冷金属薄帯を作製
するために必要なものである。
One type of amorphous alloy ribbon device is one that consists of a rotating cooling body, a molten metal supply pipe equipped with a molten metal spouting nozzle, and a heating furnace. The molten metal spouting nozzle is arranged coaxially with the molten metal supply pipe, and is held until the raw metal charged into the molten metal supply pipe is melted. After melting, the molten metal spouting nozzle emits a stable molten metal jet toward the 9-rotation cooling body using gas pressure. This is necessary for producing an ultra-quenched metal ribbon by ejecting it.

(2)従来の技術 この種のアモルファス合金薄帯製造装置においては第1
図ならびに第2図の概略図に示すようにまず溶湯供給管
1に装入された原料金属2は溶湯噴出ノズル3の直上で
加熱炉4で加熱溶解された後エアピストンなど(図示せ
ず)により溶湯供給管lを回転冷却体5の表面直下まで
降下させ、溶湯供給管1内の溶融金属2′にアルゴン等
の不活性ガスを高圧で加え、溶融金属2′を回転冷却体
に向けて、噴出、凝固させ金属薄帯を作製する。溶湯供
給管l内へは加熱による原料金属2の酸化を防ぐために
絶えず不活性ガス、例えばアルゴンガスなどを低圧で送
入している。ここで原料金属の溶解に際して下記の理由
で多孔を有する耐熱板8を配設する。そのだめに溶融金
属とノズルの先端までの距離が長くなり溶湯噴出時の溶
湯温度の低下をまねく。
(2) Conventional technology In this type of amorphous alloy ribbon manufacturing equipment, the first
As shown in the figure and the schematic diagram of FIG. 2, the raw metal 2 charged into the molten metal supply pipe 1 is heated and melted in the heating furnace 4 directly above the molten metal spouting nozzle 3, and then an air piston or the like (not shown) is used. The molten metal supply pipe 1 is lowered to just below the surface of the rotary cooling body 5, and an inert gas such as argon is added at high pressure to the molten metal 2' in the molten metal supply pipe 1, and the molten metal 2' is directed toward the rotary cooling body. , eject and solidify to produce a metal ribbon. In order to prevent the raw metal 2 from oxidizing due to heating, an inert gas such as argon gas is constantly fed into the molten metal supply pipe 1 at low pressure. Here, when melting the raw metal, a heat-resistant plate 8 having porous holes is provided for the following reason. As a result, the distance between the molten metal and the tip of the nozzle increases, leading to a drop in the temperature of the molten metal when it is spouted.

また前記溶湯供給管1と同軸的に配置された溶湯噴出ノ
ズル3においては原料金属2が溶は始めるとその溶融金
属2′によってノズル3が塞がれる。
Further, in the molten metal spouting nozzle 3 disposed coaxially with the molten metal supply pipe 1, when the raw metal 2 starts to melt, the nozzle 3 is blocked by the molten metal 2'.

そのためにノズル3まで流れず先端部の溶融金属はノズ
ルより流入した空気と接触することになる。
Therefore, the molten metal does not flow to the nozzle 3 and the molten metal at the tip comes into contact with the air flowing in from the nozzle.

従っテ鉄、アルミニューム、ジルコンなど酸化し易い原
料金属の溶湯はノズル先端部で酸化され。
Therefore, molten raw metals that are easily oxidized, such as iron, aluminum, and zircon, are oxidized at the nozzle tip.

溶湯の底部に酸化被膜6が形成される。前記の様な状態
でノズルから溶融金属が噴出される場合。
An oxide film 6 is formed on the bottom of the molten metal. When molten metal is spouted from the nozzle under the conditions described above.

該酸化被膜6はノズルスリット間に引っ掛かり。The oxide film 6 gets caught between the nozzle slits.

目詰まりを生せしめる。その結果、溶融金属噴出流に先
割れが生じ、製造される金属薄帯に割れや穴が生じ広幅
のものは出来ない。この欠陥を除去する目的で本願出願
人は先に特公昭57−54227号「幅広非晶質金属テ
ープの製造方法及びその製造装置」に示す様な発明をし
た。即ち溶湯供給管と溶湯噴出ノズルの間に多数の孔を
有する耐熱板を配設し、これにr材の働きをもたせ前記
酸化被膜が耐熱板よりノズルへ流出しない様にした。
Causes clogging. As a result, cracks occur at the tip of the molten metal jet, and cracks and holes occur in the produced metal ribbon, making it impossible to produce wide strips. In order to eliminate this defect, the applicant of the present application previously made an invention as disclosed in Japanese Patent Publication No. 57-54227, ``Method and Apparatus for Manufacturing Wide Amorphous Metal Tape''. That is, a heat-resistant plate having a large number of holes was disposed between the molten metal supply pipe and the molten metal spouting nozzle, and this served as an R material to prevent the oxide film from flowing out from the heat-resistant plate to the nozzle.

これによって溶融金属のみ耐熱板(P材)を通過しノズ
ル先端より安定な溶融金属噴出流を噴出させることに一
部成功した。しかし溶融金属の中に酸化性の強い物質(
例えばTi + Zrなど)が添加されている場合、上
記の空気接触面の酸化被膜の防止は困難となる。しかも
、これは積極的な酸化防止策とはならない。
As a result, only the molten metal passed through the heat-resistant plate (P material) and a stable molten metal jet stream was ejected from the nozzle tip. However, there are strongly oxidizing substances in the molten metal (
For example, if Ti + Zr, etc.) are added, it becomes difficult to prevent the above-mentioned oxide film on the air contact surface. Moreover, this is not a positive oxidation prevention measure.

(3)発明が解決しようとする問題点 本発明は液体超急冷法により、金属薄帯を製造するに際
し回転冷却体、噴出ノズルを備えた溶湯供給管および加
熱炉で構成される金属薄帯製造装置において多数の孔を
有する耐熱板(P材)を溶湯供給管内の溶湯噴出ノズル
の直上に配設し更に該耐熱板(P材)上で原料金属を溶
解する際の該耐熱板の配設によるノズル先端の温度低下
と空気流入による溶融金属の底辺部の酸化被膜の生成を
防ぐために炭素環を原料金属、および溶湯供給管に直接
触れない様にして上記耐熱板の下に配設しこれを原料金
属と同時に、アルゴンガス中で加熱することを特徴とす
る超急冷金属薄帯の製造方法に関するもので、噴出ノズ
ルから安定な溶融金属噴流を噴出させ、均質で良質な金
属広幅薄帯を提供する。
(3) Problems to be Solved by the Invention The present invention uses a liquid ultra-quenching method to produce metal ribbon, which is comprised of a rotary cooling body, a molten metal supply pipe equipped with a spout nozzle, and a heating furnace. In the device, a heat-resistant plate (P material) having a large number of holes is arranged directly above the molten metal spouting nozzle in the molten metal supply pipe, and further, the arrangement of the heat-resistant plate when raw metal is melted on the heat-resistant plate (P material). In order to prevent the temperature drop at the nozzle tip and the formation of an oxide film on the bottom of the molten metal due to air inflow, the carbon ring is placed under the heat-resistant plate so that it does not come into direct contact with the raw metal or the molten metal supply pipe. This method involves heating ultra-quenched metal ribbon in argon gas at the same time as the raw material metal, and a stable molten metal jet is ejected from a jet nozzle to produce a homogeneous and high-quality wide metal ribbon. provide.

(4)問題点を解決するための手段 本発明に用いる金属薄帯製造装置は第1図に示すように
溶湯供給管l内の原料金属を溶解する際にノズル3の直
上に多数の孔を有する耐熱板8がP材の役目として配設
されている。また上記耐熱板の下からノズル先端までの
温度低下とノズル先端から流入する空気による溶融金属
の酸化被膜生成とを防ぐためのゲッター材として炭素環
が耐熱板下に配設される。
(4) Means for Solving Problems As shown in FIG. 1, the metal ribbon manufacturing apparatus used in the present invention has a large number of holes directly above the nozzle 3 when melting the raw metal in the molten metal supply pipe 1. A heat-resistant plate 8 having the same structure is provided as a P material. Further, a carbon ring is provided under the heat-resistant plate as a getter material to prevent the temperature from decreasing from the bottom of the heat-resistant plate to the tip of the nozzle and to prevent the formation of an oxide film on the molten metal due to air flowing in from the tip of the nozzle.

該炭素環は溶融金属や炭素と反応する材質からなる溶融
供給管などに直接接触することを避けねばならない。
The carbon ring must be prevented from coming into direct contact with a melt supply pipe made of a material that reacts with molten metal and carbon.

耐熱板の孔は溶融金属がそれ自体の表面張力で保持され
る程度の大きさであればよい。
The holes in the heat-resistant plate need only be large enough to hold the molten metal by its own surface tension.

原料金属とゲッタ材としての炭素環とがアルゴンガス中
で同時に加熱されるときノズル先端から流入する空気は
上部から流しているアルゴンガス熱され混入する空気中
の酸素7炭酸ガスとする。
When the raw material metal and the carbon ring as the getter material are heated simultaneously in argon gas, the air flowing in from the nozzle tip is heated by the argon gas flowing from the top, and the mixed air becomes oxygen and carbon dioxide.

その炭酸ガスは耐熱材(P材)とノズル先端までの空間
に充満する。更に余分に発生した炭酸ガスはノズルを通
して外部へ流出する。ノズル先端から流入する空気中の
酸素は溶融金属に接触する前にゲッター材と燃焼反応し
、炭酸ガスとなり溶融金属の酸化被膜生成を防ぐことが
出来る。
The carbon dioxide gas fills the space between the heat-resistant material (P material) and the nozzle tip. Furthermore, the excess carbon dioxide gas generated flows out through the nozzle. The oxygen in the air flowing in from the nozzle tip undergoes a combustion reaction with the getter material before coming into contact with the molten metal, and becomes carbon dioxide gas, which can prevent the formation of an oxide film on the molten metal.

(5)作用 以上の様にゲッターとして炭素環を耐熱板(F材)の下
に配設することによってノズルが目づまりすることなく
溶融金属を円滑な渦流れの下に。
(5) Function As described above, by arranging the carbon ring as a getter under the heat-resistant plate (F material), the molten metal can flow under a smooth swirl without clogging the nozzle.

ノズルの先端から冷却回転に向けて噴出させることが出
来る。
It can be ejected from the tip of the nozzle toward the cooling rotation.

(6)実施例 原料金属2としてFe 、512N116 ZrMo 
2s I BB 12を成分とする母合金500.9を
前記供給管1の多数の孔を有する耐熱板8.45φXI
O■上に装入した。
(6) Fe, 512N116 ZrMo as raw material metal 2 of the example
2s I BB A heat-resistant plate 8.45φ
It was charged onto O■.

なお、前記耐熱板8はアルミナ製で1.Oφ−の多前記
供給管内の原料金属2の酸化を防ぐためにアルゴンガス
を20 CO/ minの速度で流しながら高周波加熱
炉4で1200℃まで加熱して原料金属を溶解しそれと
同時に炭素環をも加熱した。
Note that the heat-resistant plate 8 is made of alumina and has the following characteristics: To prevent the oxidation of the raw metal 2 in the supply pipe, the raw metal is heated to 1200°C in a high frequency heating furnace 4 while flowing argon gas at a rate of 20 CO/min to melt the raw metal and at the same time dissolve the carbon ring. Heated.

原料金属が完全に溶融した後に、供給管1が降下され前
記ノズル3を回転冷却体5に対抗させる所定の位置(回
転冷却体5の円周表面部とノズル先端部との間隙は約0
.1 +m )まで降下させ、供給管1内の溶融金属に
アルゴンガスで圧力を加えて溶融金属を耐熱板(P材)
8中を通過させ、ノズル3から高速回転(周速20m/
秒)している回転冷却体5上に向けて噴出させた。この
とき溶融金属の噴出状況は極めて滑らかであった。
After the raw metal is completely melted, the supply pipe 1 is lowered and the nozzle 3 is placed at a predetermined position opposing the rotary cooling body 5 (the gap between the circumferential surface of the rotary cooling body 5 and the nozzle tip is approximately 0).
.. 1 + m), apply pressure to the molten metal in the supply pipe 1 with argon gas, and transfer the molten metal to a heat-resistant plate (P material).
8, and rotated at high speed from nozzle 3 (circumferential speed 20 m/
The liquid was ejected onto the rotating cooling body 5, which was running (seconds). At this time, the flow of molten metal was extremely smooth.

以上の様にして作られたFe 62N1 、b (Zr
Mo ) 2S ’8B12合金薄帯は幅50閣厚さ0
.020■でその表面平坦度は±1.0μmの均質で良
質の広幅アモルファス合金薄帯であった。
Fe 62N1, b (Zr
Mo) 2S '8B12 alloy ribbon has a width of 50 and a thickness of 0.
.. It was a homogeneous and good quality wide amorphous alloy ribbon with a surface flatness of ±1.0 μm.

なお前記広幅アモルファス合金薄帯を製造した後で使用
した耐熱板(P材)に、ノロ(スラグ)6などは全て引
り掛かシノズルのノロによる汚れは殆んど認められなか
った。またゲッター用の炭素環の消耗は稀かであった。
Note that all the slag (slag) 6 was caught on the heat-resistant plate (P material) used after manufacturing the wide amorphous alloy ribbon, and almost no stains due to the slag from the shinozzle were observed. In addition, consumption of the carbon ring for the getter was rare.

耐熱板に引っ掛ったノロ(スラ・ゾ)7は原料金属が加
熱されたときに生じた酸化物などである。これは溶融状
態では溶湯の上部に浮くものであり広幅薄帯製造の際の
ノズルの目詰まりの直接原因とはならない。
The slag 7 caught on the heat-resistant plate is an oxide generated when the raw metal is heated. In the molten state, this floats to the top of the molten metal and is not a direct cause of nozzle clogging during the production of wide ribbons.

本実験に使用したノズルの材質と形状は石英ガラスで0
.3X50+mの長方形である。
The material and shape of the nozzle used in this experiment were quartz glass.
.. It is a rectangle of 3x50+m.

前記と同じ成分組成を有する原料金属で前記と同じ製造
方法を用いてノズルの使用可能な回数を調べた結果、同
一ノズルで酸化し易いZr添加溶融金属を10回吹出し
てもなお安定して良質の広幅アモルファス合金薄帯を作
ることが可能であった〇只し耐熱板(P材)はノロ(ス
ラグ)で汚れるので数回に一回位いの割合で、取りはづ
し洗浄しなければならない。炭素環は殆んど消耗せず十
回は十分使用できた。勿論ノズル先端部を酸化性雰囲気
から保護するためのケ゛ツター用炭素環を用いない場合
には、前記ノズルからの溶融金属特にZrなどの酸化し
易い金属が含まれる際の噴出流は安定せずノロ(スラグ
)4によるスリット目詰まりによる割れや孔が生じ殆ん
ど完全な広幅薄帯とはならなかった。
As a result of investigating the number of times the nozzle can be used using the same manufacturing method as above with a raw material metal having the same component composition as above, it was found that even if Zr-added molten metal, which is easily oxidized, was blown out 10 times using the same nozzle, the quality remained stable and of good quality. It was possible to make wide amorphous alloy thin strips. However, the heat-resistant plate (P material) gets dirty with slag, so it has to be removed and washed every few times. No. The carbon ring was hardly consumed and could be used ten times. Of course, if the carbon ring for the starter is not used to protect the tip of the nozzle from the oxidizing atmosphere, the jet flow from the nozzle will be unstable and sloppy when molten metal, especially metals that are easily oxidized such as Zr, are contained. (Slag) 4 caused cracks and holes due to clogging of the slits, and an almost perfect wide ribbon was not obtained.

第1図は従来のこの種金属薄帯の製造装置の断面を示し
、1は溶湯供給管で2はその中に投入された原料金属、
2′は溶融された金属、3は前記供給管の底部に突出し
たノズル、4は高周波F、5は前記ノズルの直下に且つ
これに近接して設けられた回転冷却体、6は酸化皮膜、
7は原料金属などの浮上ノロ(スラグ)、8は多数の孔
を有するr材としての耐熱板、10は酸化皮膜ノロ生成
の原因となるノズルの先端から流入する空気、11はデ
ノターとしての炭素環を示す。また第2図はノズルの先
端から流入する空気中の酸素が溶融金属と接触し酸化被
膜が生成され溶融金属が噴出する際にノズルの目づまり
9を生せしめる様子を示す。また第1図右方の線図は原
料金属が加熱溶融され溶湯となってノズルから回転冷却
体に噴出されるまでの位置と温度を示す。第3図は本発
明に図と同じである。
Fig. 1 shows a cross section of a conventional manufacturing apparatus for this type of metal ribbon, in which 1 is a molten metal supply pipe, 2 is a raw metal fed into it,
2' is a molten metal, 3 is a nozzle protruding from the bottom of the supply pipe, 4 is a high frequency F, 5 is a rotary cooling body provided directly below and close to the nozzle, 6 is an oxide film,
7 is floating slag (slag) such as raw material metal, 8 is a heat-resistant plate as an R material having many holes, 10 is air flowing in from the tip of the nozzle which causes the formation of oxide film slag, 11 is carbon as a denoter Shows a ring. Further, FIG. 2 shows how oxygen in the air flowing in from the tip of the nozzle comes into contact with the molten metal to form an oxide film, which causes the nozzle to become clogged 9 when the molten metal is ejected. Further, the diagram on the right side of FIG. 1 shows the position and temperature at which the raw metal is heated and melted to become molten metal and is ejected from the nozzle to the rotary cooling body. FIG. 3 is the same as that shown in the present invention.

(6)発明の効果 以上で述べた様に多孔を有する耐熱板(P材)と炭素環
をノズル直上に配置し、原料金属を該耐熱板(P材)上
で溶解することにより、溶融金属噴出ノズル形状を損う
ことなくまた安定した一定の溶融金属を大気中で噴出さ
せることを可能とした。これにより形状及び表面平坦度
の優れた良質の広幅金属テープ製造を容易に得ることが
出来る様になった。
(6) Effects of the invention As described above, by arranging a porous heat-resistant plate (P material) and a carbon ring directly above the nozzle, and melting the raw metal on the heat-resistant plate (P material), molten metal can be melted. This makes it possible to eject a stable amount of molten metal into the atmosphere without damaging the ejection nozzle shape. As a result, it has become possible to easily manufacture high-quality wide metal tapes with excellent shape and surface flatness.

本発明によればZrなどの酸化し易い材料についても大
気中での広幅のアモルファス合金薄帯の製造が容易とな
った。
According to the present invention, it has become easy to manufacture a wide amorphous alloy ribbon in the atmosphere even with materials that are easily oxidized such as Zr.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来用いられていた金属薄帯製造装置の一部の
概略断面図。 第2図はノズル先端よシ流入する空気中の酸素が溶融金
属と接触し酸化被膜が生成され、溶融金属の噴出の際に
、ノズルに目詰まりを生じせしめる様子を示す。 第3図は本発明によるアモルファス合金薄帯製造装置盤
にそのノズル周辺の概略断面図である。 図において 1・・・溶湯供給管、2・・・原料金属、2′・・・溶
融金属。 3・・・ノズル、4・・・高周波炉、5・・・回転冷却
体、6・・・酸化被膜、ノロ(スラグ)、7・・・原料
金属などの浮上ノロ(スラグ)、8・・・耐熱板(P材
)、9・・・耐熱板(P材)より通り抜けたノロ(スラ
グ)のノズル中の目詰まりの様子、10・・・ノズル先
端より流入する空気(酸化被膜、ノロ生成の原因χ炭酸
ガスの充満する空間、11・・・ゲッター用炭素環O 第3図
FIG. 1 is a schematic sectional view of a part of a conventional metal ribbon manufacturing apparatus. FIG. 2 shows how oxygen in the air flowing in from the tip of the nozzle comes into contact with the molten metal to form an oxide film, which clogs the nozzle when the molten metal is ejected. FIG. 3 is a schematic cross-sectional view of the nozzle and surrounding area of the amorphous alloy ribbon manufacturing apparatus panel according to the present invention. In the figure, 1... Molten metal supply pipe, 2... Raw metal, 2'... Molten metal. 3... Nozzle, 4... High frequency furnace, 5... Rotating cooling body, 6... Oxide film, slag (slag), 7... Floating slag (slag) of raw material metal, etc., 8...・Heat-resistant plate (P material), 9... Slag (slag) passing through the heat-resistant plate (P material) clogging the nozzle, 10... Air flowing in from the nozzle tip (oxide film, slag formation) Cause χ Space filled with carbon dioxide gas, 11...Carbon ring for getter O Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)溶湯噴出ノズルを具備した溶湯供給管内で原料金
属を加熱溶解し、不活性ガスで加圧して前記噴出ノズル
より回転冷却体に溶湯を噴出させる液体急冷法によるア
モルファス合金薄帯の製造方法において、前記溶湯供給
管底部に設けた溶湯噴出ノズルの直上に多数の孔を有す
る耐熱板を配置し、更に該耐熱板の下に炭素環を溶湯お
よび溶湯供給管に直接触れないようにして挿入し、高周
波炉で前記炭素環を加熱することによってノズル先端の
温度低下を防止し、且つその一部を燃焼させることによ
ってゲッターの働をもたせ溶湯の酸化を防止させること
を特徴とする超急冷アモルファス合金薄帯の製造方法。
(1) A method for manufacturing an amorphous alloy ribbon using a liquid quenching method in which raw metal is heated and melted in a molten metal supply pipe equipped with a molten metal spouting nozzle, pressurized with an inert gas, and the molten metal is spouted from the spouting nozzle onto a rotating cooling body. A heat-resistant plate having a large number of holes is placed directly above the molten metal spouting nozzle provided at the bottom of the molten metal supply pipe, and a carbon ring is further inserted under the heat-resistant plate so as not to directly touch the molten metal and the molten metal supply pipe. The ultra-quenched amorphous material is characterized in that by heating the carbon ring in a high frequency furnace, a drop in temperature at the nozzle tip is prevented, and by burning a part of the carbon ring, it acts as a getter and prevents oxidation of the molten metal. Method for producing alloy ribbon.
(2)原料金属を溶解する溶湯供給管の底面に設けたノ
ズルと、該ノズルの先端に近接して配置された回転冷却
体よりなり、前記溶湯供給管内に且つ前記ノズルの直上
に多数の孔を有するろ材としての耐熱板を設けると共に
該耐熱板の下に溶融金属の酸化を防止するゲッターを溶
湯および溶湯供給管に直接触れない位置に配設すること
を特徴とする超急冷アモルファス合金薄帯の製造装置。
(2) Consisting of a nozzle provided on the bottom of a molten metal supply pipe for melting raw metal and a rotary cooling body placed close to the tip of the nozzle, and a large number of holes in the molten metal supply pipe and directly above the nozzle. An ultra-quenched amorphous alloy ribbon, characterized in that a heat-resistant plate as a filter medium is provided, and a getter for preventing oxidation of molten metal is disposed under the heat-resistant plate at a position that does not directly touch the molten metal and the molten metal supply pipe. manufacturing equipment.
JP20067485A 1985-09-12 1985-09-12 Method and apparatus for producing ultra-quickly cooled thin amorphous alloy strip Granted JPS6261761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20067485A JPS6261761A (en) 1985-09-12 1985-09-12 Method and apparatus for producing ultra-quickly cooled thin amorphous alloy strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20067485A JPS6261761A (en) 1985-09-12 1985-09-12 Method and apparatus for producing ultra-quickly cooled thin amorphous alloy strip

Publications (2)

Publication Number Publication Date
JPS6261761A true JPS6261761A (en) 1987-03-18
JPH0377025B2 JPH0377025B2 (en) 1991-12-09

Family

ID=16428351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20067485A Granted JPS6261761A (en) 1985-09-12 1985-09-12 Method and apparatus for producing ultra-quickly cooled thin amorphous alloy strip

Country Status (1)

Country Link
JP (1) JPS6261761A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058220A1 (en) 2011-10-20 2013-04-25 三菱重工業株式会社 Rotor blade support structure
WO2017098667A1 (en) * 2015-12-11 2017-06-15 ギガフォトン株式会社 Target generation device and euv light generation device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563640A (en) * 1979-06-25 1981-01-14 Matsushita Electric Ind Co Ltd Manufacture of amorphous alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563640A (en) * 1979-06-25 1981-01-14 Matsushita Electric Ind Co Ltd Manufacture of amorphous alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058220A1 (en) 2011-10-20 2013-04-25 三菱重工業株式会社 Rotor blade support structure
KR20140068040A (en) 2011-10-20 2014-06-05 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Rotor blade support structure
WO2017098667A1 (en) * 2015-12-11 2017-06-15 ギガフォトン株式会社 Target generation device and euv light generation device

Also Published As

Publication number Publication date
JPH0377025B2 (en) 1991-12-09

Similar Documents

Publication Publication Date Title
JP4494604B2 (en) Metal strip manufacturing apparatus and manufacturing method
JPS6261761A (en) Method and apparatus for producing ultra-quickly cooled thin amorphous alloy strip
US4676298A (en) Casting in a low density atmosphere
JPH0919760A (en) Ar blow-off ring and method for casting molten metal using it
JPS57134249A (en) Production of thin strip of magnetic alloy
JPH0747192B2 (en) Amorphous metal ribbon manufacturing method
JPS6116219B2 (en)
JPH0422538A (en) Method for continuously casting beam blank
JPH06182503A (en) Method for casting thin strip metal and nozzle for casting
JPH07185751A (en) Device for supplying molten metal for producing rapid cooled strip
CA1213120A (en) Casting in a low density atmosphere
JP3266404B2 (en) Metal ribbon manufacturing method and apparatus
JPS6068156A (en) Plasma spot welding method
JP3227417B2 (en) Cleaning method for nozzle on tundish for continuous casting
JPS55136552A (en) Production of broad amorphous metal tape and producing apparatus thereof
US4603727A (en) Flexible permeable valve for melt spinning process
JPH0519166Y2 (en)
JPS5816761A (en) Production of thin metallic strip
JPH0620595B2 (en) Method for manufacturing thin metal wires
JPS6159822B2 (en)
JPS60199551A (en) Method and device for producing thin metallic strip
JPH08168877A (en) Powder gas cutting method for hardly fusion cuttable metallic material and iron powder used for the same
JPH05115947A (en) Nozzle for manufacturing quenching thin belt
JPH0452056A (en) Method for continuously casting slab for steel strip
JP2002113560A (en) Continuous casting method