JPH05115947A - Nozzle for manufacturing quenching thin belt - Google Patents

Nozzle for manufacturing quenching thin belt

Info

Publication number
JPH05115947A
JPH05115947A JP30854791A JP30854791A JPH05115947A JP H05115947 A JPH05115947 A JP H05115947A JP 30854791 A JP30854791 A JP 30854791A JP 30854791 A JP30854791 A JP 30854791A JP H05115947 A JPH05115947 A JP H05115947A
Authority
JP
Japan
Prior art keywords
nozzle
molten metal
direct current
magnetic field
pouring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30854791A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamane
浩志 山根
Masao Yukimoto
正雄 行本
Kane Miyake
苞 三宅
Michiharu Ozawa
三千晴 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP30854791A priority Critical patent/JPH05115947A/en
Publication of JPH05115947A publication Critical patent/JPH05115947A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To execute low head pouring by installing an electrode for allowing a DC current to flow in the horizontal direction to a molten metal in a nozzle on a nozzle center part, and installing a DC magnet for forming a DC magnetic field in the direction orthogonal to the flow direction of the DC current. CONSTITUTION:When a prescribed voltage is applied from a DC power source 7 to electrodes 6, 6' on the center part of a nozzle 1, a DC current (i) flows in the horizontal direction between the electrodes 6, 6' through a molten metal 2. Also, a DC magnetic field of magnetic flux density B is formed by a DC magnet 9, and Lorentz's force (f) in the same direction as gravity (g) is imparted to the molten metal 2 flowing down in the magnetic field. Injection pressure of the molten metal 2 in a nozzle outlet increases, and low head pouring can be executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微少溶鋼流量によりリ
ボンを鋳造する急冷薄帯製造用ノズルに係り、特に、重
力方向のローレンツ力を作用させて溶融金属の射出圧力
を増大させ低ヘッド注湯を可能にした急冷薄帯製造用ノ
ズルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nozzle for producing a ribbon which is used for casting a ribbon at a minute molten steel flow rate. The present invention relates to a quenching ribbon manufacturing nozzle that enables hot water.

【0002】[0002]

【従来の技術】急冷薄帯製造において、溶融金属を注湯
する方法としては、特開昭51−109221号公報や
特開昭58−16759号公報等で開示されているよう
に、ノズル内をAr 等の不活性ガスで加圧し該圧力によ
り溶融金属を射出するガス加圧式注湯法が従来から知ら
れている。
2. Description of the Related Art As a method of pouring molten metal in the production of a quenched ribbon, as disclosed in JP-A-51-109221 and JP-A-58-16759, the inside of the nozzle is A gas pressure type pouring method of pressurizing with an inert gas such as Ar and injecting a molten metal by the pressure is conventionally known.

【0003】又、長期間に亘って多量の注湯を行う方法
としては、特開昭59−209464号公報等で開示さ
れているように、ノズル上に多量の溶融金属を保持でき
るようなるつぼを設置し、該溶融金属のヘッド圧で注湯
する溶湯静圧利用の注湯法が知られている。
As a method of pouring a large amount of molten metal over a long period of time, as disclosed in Japanese Patent Application Laid-Open No. 59-209464, a crucible capable of holding a large amount of molten metal on a nozzle. There is known a molten metal static pressure pouring method in which a molten metal is poured by the head pressure of the molten metal.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記ガ
ス加圧式注湯法の場合には、図5に示すように、ノズル
1が密閉された構成であるため、外部からノズル1内へ
連続的に溶融金属2を供給することが困難となってい
た。従って、連続的な大量注湯を行うことができないと
いう欠点があった。
However, in the case of the gas pressurizing pouring method described above, the nozzle 1 is hermetically sealed as shown in FIG. It was difficult to supply the molten metal 2. Therefore, there is a drawback that a large amount of molten metal cannot be continuously poured.

【0005】又、溶湯静圧利用の注湯法の場合には、ノ
ズル出口における溶融金属の射出圧力を上昇させるため
には、溶湯金属ヘッド高さを増加させなければならなか
った。このため、図6に示すように、ノズル1内におけ
る溶湯金属(溶湯)2の滞留時間が長くなり、その結
果、該溶融金属の温度が低下してノズル1に詰まりが発
生し易くなるという欠点があった。
Further, in the case of the pouring method using the static pressure of the molten metal, the height of the molten metal head has to be increased in order to increase the injection pressure of the molten metal at the nozzle outlet. Therefore, as shown in FIG. 6, the residence time of the molten metal (molten metal) 2 in the nozzle 1 becomes long, and as a result, the temperature of the molten metal decreases and the nozzle 1 is likely to be clogged. was there.

【0006】発明は、かかる従来例の欠点等を解消すべ
くなされたものであり、ノズル内を加圧することなく連
続的な大量注湯ができ、且つ、溶融金属のヘッド高さが
低い場合であっても、ノズル出口における溶融金属の射
出圧力を十分に保って、低ヘッド注湯ができるような急
冷薄帯製造用ノズルを提供することにある。
The invention has been made in order to solve the drawbacks of the conventional example. In the case where a large amount of molten metal can be continuously poured without pressurizing the inside of the nozzle and the head height of the molten metal is low. Even if there is, it is an object of the present invention to provide a nozzle for producing a rapid cooling ribbon, which can maintain a sufficient injection pressure of the molten metal at the nozzle outlet and can carry out low head pouring.

【0007】[0007]

【課題を解決するための手段】本発明は、急冷薄帯製造
用ノズルにおいて、ノズル入口部に設けられノズルの外
部から供給される溶融金属をノズル内に導く溶融金属供
給口と、ノズルの中央部に設置されノズル内の溶融金属
に水平方向の直流電流を流す電極と、該直流電流の流れ
方向と直交する方向に直流磁場を形成する直流磁石と、
溶融金属を外部に注湯流として射出するノズル出口とを
設け、直流電流と直流磁場の作用で生ずる重力方向のロ
ーレンツ力を前記ノズル内の溶融金属に与え前記ノズル
出口における溶融金属の射出圧力を増大させることによ
り、前記課題を解決したものである。
According to the present invention, there is provided in a nozzle for producing a quenched ribbon, a molten metal supply port which is provided at a nozzle inlet and which guides a molten metal supplied from the outside of the nozzle into the nozzle, and a center of the nozzle. An electrode for flowing a horizontal direct current to the molten metal in the nozzle installed in the nozzle part, and a direct current magnet for forming a direct current magnetic field in a direction orthogonal to the flow direction of the direct current,
A nozzle outlet for injecting molten metal as a pouring flow to the outside is provided, and Lorentz force in the direction of gravity generated by the action of a direct current and a direct current magnetic field is applied to the molten metal in the nozzle so that the molten metal injection pressure at the nozzle outlet The problem is solved by increasing the number.

【0008】[0008]

【作用】図1は本発明に係る急冷薄帯用ノズルを正面か
ら見た構成断面図であり、図2は図1のA−A′断面図
であって本発明に係る急冷薄帯用ノズルを上から見た図
に相当するものである。
1 is a sectional view of the quenching ribbon nozzle according to the present invention as seen from the front, and FIG. 2 is a sectional view taken along the line A--A 'of FIG. 1 showing the quenching ribbon nozzle according to the present invention. Corresponds to the view from above.

【0009】以下、これらの図を用いて、本発明の作用
について詳述する。
The operation of the present invention will be described in detail below with reference to these drawings.

【0010】図1、図2において、ノズル1の出口形状
はスリット間隔0.7mmのスリットノズルとなってい
る。又、電極6、6′には直流電源7から所定の電圧が
印加され、電極6、6′間に溶融金属2を介して水平方
向の直流電圧i が流れるようになっている。
1 and 2, the outlet shape of the nozzle 1 is a slit nozzle having a slit interval of 0.7 mm. A predetermined voltage is applied from the DC power supply 7 to the electrodes 6 and 6 ', and a horizontal DC voltage i flows between the electrodes 6 and 6'through the molten metal 2.

【0011】更に、直流磁石9によって磁束密度Bの直
流磁場が形成され、該磁場の中を下降する溶融金属2に
重力g と同一方向のローレンツ力f が付与される。
Furthermore, a DC magnetic field having a magnetic flux density B is formed by the DC magnet 9, and a Lorentz force f in the same direction as the gravity g is applied to the molten metal 2 descending in the magnetic field.

【0012】このようなローレンツ力f の作用により、
ノズル1の出口における溶融金属2の射出圧力が増加す
る。
Due to the action of such Lorentz force f,
The injection pressure of the molten metal 2 at the outlet of the nozzle 1 increases.

【0013】又、このように射出圧力が増加するため、
ノズル1内を雰囲気下で加圧する必要もなくなる。従っ
て、るつぼ5内の溶融金属2をノズル1内に導くために
は、ノズル1の上部に溶融金属供給口8を開口した構成
だけで十分となっている。
Further, since the injection pressure increases in this way,
It is not necessary to pressurize the inside of the nozzle 1 under the atmosphere. Therefore, in order to guide the molten metal 2 in the crucible 5 into the nozzle 1, it is sufficient to open the molten metal supply port 8 in the upper portion of the nozzle 1.

【0014】更に、上記ローレンツ力f の作用によって
溶融静圧が増加するため、溶融金属2のヘッド高さが低
い場合であっても、十分な射出圧力が得られる。
Further, since the static static pressure of melting increases due to the action of the Lorentz force f, a sufficient injection pressure can be obtained even when the head height of the molten metal 2 is low.

【0015】従って、注湯流4が前記従来例ではノズル
の詰りを生ずるような低流量の場合であっても、本発明
により長時間に亘って安定して注湯を行うことができ
る。
Therefore, even if the pouring flow 4 is a low flow rate which causes the nozzle to be clogged in the above-mentioned conventional example, the present invention enables stable pouring for a long time.

【0016】[0016]

【実施例】以下、本発明の実施例について図を用いて詳
しく説明する。図3は、本発明に係る急冷薄帯用ノズル
1を用いて、取鍋13からタンディッシュ12に溶融金
属2を供給し、厚さ50μm 、幅50mmのFe 30Cr
10Al リボン11を単ロール法によって製造した実施
例を示す。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 3 is a schematic view of a quenching ribbon nozzle 1 according to the present invention, in which molten metal 2 is supplied from a ladle 13 to a tundish 12, and Fe 30Cr having a thickness of 50 μm and a width of 50 mm is used.
An example in which the 10Al ribbon 11 is manufactured by the single roll method will be described.

【0017】このような実施例において、ノズル1の出
口形状は、スリット間幅0.7mmのスリットノズルであ
る。又、図1、図2で示した前記直流電流i として40
0Aを流すと共に前記直流磁石9によって1Tの磁場を
形成した。このようにして、前記ローレンツ力f を生じ
させ、ノズル1の出口における溶融金属2の射出圧力を
増加させた。
In such an embodiment, the outlet shape of the nozzle 1 is a slit nozzle having a slit width of 0.7 mm. In addition, as the direct current i shown in FIGS.
A magnetic field of 1 T was formed by the DC magnet 9 while flowing 0 A. In this way, the Lorentz force f was generated and the injection pressure of the molten metal 2 at the outlet of the nozzle 1 was increased.

【0018】この結果、図3のヘッド高さHを200mm
と低くしても、ノズル1に詰りが生ぜず、安定して0.
35kg/sec の注湯を行うことができた。
As a result, the head height H in FIG.
Even if it is lowered, the nozzle 1 will not be clogged and will be stable at 0.
Pouring of 35 kg / sec was possible.

【0019】又、必要溶融金属の流量が0.35kg/se
c のとき、幅100mmのロールを周速20m /sec で鋳
造することができた。
The required flow rate of molten metal is 0.35 kg / se.
At the time of c, a roll having a width of 100 mm could be cast at a peripheral speed of 20 m 2 / sec.

【0020】一方、図4は前記従来例を用いて、タンデ
ィッシュ12に取鍋13から溶融金属2を供給しノズル
1上のヘッド圧で注湯を行った実施例を本発明実施例と
の比較のために示す図である。この図において、取鍋1
3からタンディッシュ12に供給された溶融金属2は、
溶融金属2のヘッド高さHに対応する射出圧力で、ノズ
ル1の出口からロール10に射出され、リボン11が製
造される。
On the other hand, FIG. 4 shows an embodiment in which the molten metal 2 is supplied to the tundish 12 from the ladle 13 and the pouring is performed by the head pressure on the nozzle 1 by using the above-mentioned conventional example. It is a figure shown for comparison. In this figure, ladle 1
The molten metal 2 supplied from 3 to the tundish 12 is
The ribbon 11 is manufactured by injecting the molten metal 2 from the outlet of the nozzle 1 into the roll 10 at an injection pressure corresponding to the head height H of the molten metal 2.

【0021】このような従来例に係る急冷薄帯用ノズル
を用いた比較例において、ヘッド高さHを300mmにす
ると溶融金属2の射出圧力が不足し、即座にノズル1に
詰りが発生した。又、ヘッド高さHを400mmにする
と、初期には詰りが生じなかったが、ノズル1内の溶融
金属2の温度が経つにつれて低下し、その結果、ノズル
1に詰りが生じるようになった。
In a comparative example using such a nozzle for a rapid cooling ribbon according to the conventional example, when the head height H was set to 300 mm, the injection pressure of the molten metal 2 became insufficient and the nozzle 1 was immediately clogged. Further, when the head height H was set to 400 mm, no clogging occurred at the initial stage, but the temperature of the molten metal 2 in the nozzle 1 decreased as time passed, and as a result, the nozzle 1 clogged.

【0022】図3で詳述した本発明実施例の場合と、図
4で詳述した前記従来例に係る急冷薄帯用ノズルの場合
を比較すれば明らかなように、本発明に係る急冷薄帯用
ノズルを使用することにより、溶融金属のヘッド高さが
低いときであっても十分な射出圧力がノズルの出口で得
られ、その結果、低ヘッド注湯が可能となることが分
る。
As can be seen by comparing the case of the embodiment of the present invention detailed in FIG. 3 and the case of the nozzle for a rapid cooling ribbon according to the conventional example described in detail in FIG. 4, the rapid cooling thin film according to the present invention. It can be seen that by using the band nozzle, a sufficient injection pressure can be obtained at the outlet of the nozzle even when the head height of the molten metal is low, and as a result, low head pouring is possible.

【0023】[0023]

【発明の効果】以上詳しく説明したような本発明によれ
ば、ノズル内の溶融金属に重力方向のローレンツ力が作
用するような構成であるため、ノズル出口における溶融
金属の射出圧力が増加し、その結果、低ヘッド注湯等が
可能となる利点がある。
According to the present invention described in detail above, since the Lorentz force in the gravity direction acts on the molten metal in the nozzle, the injection pressure of the molten metal at the nozzle outlet increases, As a result, there is an advantage that low head pouring can be performed.

【0024】又、本発明によれば、ノズル内を雰囲気下
で加圧する必要もなく、ノズル内へ溶融金属を供給しな
がら注湯することも可能となる。従って、本発明によれ
ば、前記従来例で不可能だった連続的な大量注湯も可能
となる。
Further, according to the present invention, it is not necessary to pressurize the inside of the nozzle under the atmosphere, and it is possible to supply the molten metal while supplying the molten metal into the nozzle. Therefore, according to the present invention, continuous large-volume pouring, which was impossible in the conventional example, is possible.

【0025】更に、本発明によれば、溶融金属のヘッド
高さが低い場合であっても、ローレンツ力の作用によっ
てノズル出口における溶融金属の射出圧力を増加でき
る。このため、ノズル内での溶融金属の温度低下が少な
く、前記従来例に比して、ノズルの詰りが著しく低減す
る利点がある。
Further, according to the present invention, even when the head height of the molten metal is low, the injection pressure of the molten metal at the nozzle outlet can be increased by the action of the Lorentz force. For this reason, there is an advantage that the temperature of the molten metal in the nozzle is less lowered and the clogging of the nozzle is significantly reduced as compared with the conventional example.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明に係るノズルの構成断面図であ
る。
FIG. 1 is a cross-sectional view of the configuration of a nozzle according to the present invention.

【図2】図2は、図1のA−A′断面図である。FIG. 2 is a sectional view taken along the line AA ′ of FIG.

【図3】図3は、本発明実施例の構成説明図である。FIG. 3 is an explanatory diagram of a configuration of an embodiment of the present invention.

【図4】図4は、従来例の構成説明図である。FIG. 4 is an explanatory diagram of a configuration of a conventional example.

【図5】図5は、ガス加圧式注湯法に関する従来例説明
図である。
FIG. 5 is an explanatory view of a conventional example relating to a gas pressurization type pouring method.

【図6】図6は、溶湯静圧利用の注湯法に関する従来例
説明図である。
FIG. 6 is an explanatory view of a conventional example relating to a pouring method utilizing static pressure of molten metal.

【符号の説明】[Explanation of symbols]

1…ノズル、 2…溶融金属、 4…注湯流、 6…電極、 8…溶融金属供給口、 9…直流磁石、 10…ロール、 11…リボン、 12…タンディッシュ、 13…取鍋、 g …重力、 f …ローレンツ力、 i …電流、 B…磁場。 1 ... Nozzle, 2 ... Molten metal, 4 ... Molten metal flow, 6 ... Electrode, 8 ... Molten metal supply port, 9 ... DC magnet, 10 ... Roll, 11 ... Ribbon, 12 ... Tundish, 13 ... Ladle, g … Gravity, f… Lorentz force, i… current, B… magnetic field.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三宅 苞 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 小沢 三千晴 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Baku, No. 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Technical Research Division (72) Inventor Michiharu Ozawa No. 1, Kawasaki-cho, Chiba-shi Kawasaki Steel Co., Ltd. Corporate Technology Research Division

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ノズル入口部に設けられ、ノズルの外部か
ら供給される溶融金属をノズル内に導く溶融金属供給口
と、 ノズル中央部に設置され、ノズル内の溶融金属に水平方
向の直流電流を流す電極と、 該直流電流の流れ方向と直交する方向に直流磁場を形成
する直流磁石と、 溶融金属を外部に注湯流として射出するノズル出口とを
具備し、 前記直流電流と直流磁場の作用で生ずる重力方向のロー
レンツ力を前記ノズル内の溶融金属に与えることによ
り、前記ノズル出口における溶融金属の射出圧力を増大
させることを特徴とする急冷薄帯製造用ノズル。
1. A molten metal supply port provided at a nozzle inlet for guiding molten metal supplied from the outside of the nozzle into the nozzle, and a direct current in a horizontal direction to the molten metal inside the nozzle installed at the center of the nozzle. Of the direct current and the direct current magnetic field, and a direct current magnet that forms a direct current magnetic field in a direction orthogonal to the flow direction of the direct current, and a nozzle outlet that injects molten metal as a pouring flow to the outside. A nozzle for producing a quenched ribbon, characterized in that a Lorentz force in the direction of gravity generated by an action is applied to the molten metal in the nozzle to increase the injection pressure of the molten metal at the nozzle outlet.
JP30854791A 1991-10-28 1991-10-28 Nozzle for manufacturing quenching thin belt Pending JPH05115947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30854791A JPH05115947A (en) 1991-10-28 1991-10-28 Nozzle for manufacturing quenching thin belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30854791A JPH05115947A (en) 1991-10-28 1991-10-28 Nozzle for manufacturing quenching thin belt

Publications (1)

Publication Number Publication Date
JPH05115947A true JPH05115947A (en) 1993-05-14

Family

ID=17982345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30854791A Pending JPH05115947A (en) 1991-10-28 1991-10-28 Nozzle for manufacturing quenching thin belt

Country Status (1)

Country Link
JP (1) JPH05115947A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326457A (en) * 1993-04-16 1994-11-25 Internatl Business Mach Corp <Ibm> Conductive liquid depositing equipment, and method thereof
JP2015501221A (en) * 2011-10-06 2015-01-15 オセ−テクノロジーズ・ベー・ヴエーOce’−Nederland Besloten Vennootshap Method and system for maintaining injection stability in an injector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326457A (en) * 1993-04-16 1994-11-25 Internatl Business Mach Corp <Ibm> Conductive liquid depositing equipment, and method thereof
JP2015501221A (en) * 2011-10-06 2015-01-15 オセ−テクノロジーズ・ベー・ヴエーOce’−Nederland Besloten Vennootshap Method and system for maintaining injection stability in an injector

Similar Documents

Publication Publication Date Title
JPH0675753B2 (en) Method and apparatus for controlling a conducting liquid flow
US4282921A (en) Method for melt puddle control and quench rate improvement in melt-spinning of metallic ribbons
US4353408A (en) Electromagnetic thin strip casting apparatus
JPS6277151A (en) Method and apparatus for twin roll type continuous casting
JPH05115947A (en) Nozzle for manufacturing quenching thin belt
JPH0523800A (en) Method and apparatus for producing rapid solidified alloy foil
US5265665A (en) Continuous casting method of steel slab
CN109794589A (en) A kind of process control method preventing CSP continuous casting billet lobe defect
CN1011867B (en) Method and apparatus for continuous casting of metal band esp. of steel band
US4375234A (en) Electromagnetic thin strip casting process
JP2856960B2 (en) Continuous casting method of steel slab by traveling magnetic field and static magnetic field
JP3083940B2 (en) Metal / alloy ribbon manufacturing method
JPH0577007A (en) Method for continuously casting steel slab using static magnetic field
JP3096237B2 (en) Molten alloy supply method for production of amorphous alloy ribbon
JP2888312B2 (en) Continuous casting method of steel slab by static magnetic field
JP3166517B2 (en) Electromagnetic casting apparatus and method for casting Al or Al alloy
JP3098699B2 (en) Supply method of molten alloy for manufacturing amorphous alloy ribbon and stopper for controlling supply amount
JP2925374B2 (en) Continuous casting method of steel slab by static magnetic field
JP2750320B2 (en) Continuous casting method using static magnetic field
JP3098698B2 (en) Supply method of molten alloy for production of amorphous alloy ribbon
US3889739A (en) Pressurized nitrogen to extrude molten steel-silicon alloy
JP3238781B2 (en) Stable casting method for metal strip
JP3111346B2 (en) Powder for continuous casting
JP2856959B2 (en) Continuous casting method of steel slab using traveling magnetic field and static magnetic field
JP2002283008A (en) Method for casting rapidly cooled and solidified strip