JPS6261353A - Manufacture of complementary mos semiconductor element - Google Patents

Manufacture of complementary mos semiconductor element

Info

Publication number
JPS6261353A
JPS6261353A JP60199345A JP19934585A JPS6261353A JP S6261353 A JPS6261353 A JP S6261353A JP 60199345 A JP60199345 A JP 60199345A JP 19934585 A JP19934585 A JP 19934585A JP S6261353 A JPS6261353 A JP S6261353A
Authority
JP
Japan
Prior art keywords
oxide film
resist
well
silicon substrate
protect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60199345A
Other languages
Japanese (ja)
Inventor
Yukihiro Tominaga
冨永 之廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP60199345A priority Critical patent/JPS6261353A/en
Publication of JPS6261353A publication Critical patent/JPS6261353A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control a compressive stress occurring in a silicon substrate as much as possible and thereby to prevent the warp, slip, etc. of a wafer, by forming no thick oxide film in an initial process, and further by reusing a protect oxide film as a pad oxide film. CONSTITUTION:A thin oxide film (protect oxide film) 2 is made to grow on a silicon substrate 1, and further a resist 3 is deposited. Then, the resist 3 on a P well portion 4 and a matching mark portion 5 is removed, and a P-type impurity 6 is ion-implanted using the remaining resist 3 as a mask. In succession, a resist 7 is applied for coating, only the matching mark portion 5 is opened, the oxide film 2 and the silicon substrate 1 are removed by etching, an a matching mark 8 is formed. Thereafter the resist 3 for a P well and the coating resist 7 are totally removed, and heat treatment is applied in an inactive gas atmosphere to form a P well layer 9. With the oxide film 2 used as a pad oxide film, subsequently, a nitride film 10 used in an LOCOS process is made to grow, and a prescribed pattern is formed by photoetching.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は相補型MOS半導体の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a complementary MOS semiconductor.

(従来の技術) 第2図(a)〜(f)は、従来の一般的なPウェルタイ
プの相補型MOS半導体素子の製造方法を工程層に説明
するものであり、簡略化のためN型MO3部分のみを示
しである。
(Prior Art) Figures 2(a) to 2(f) explain a conventional general P-well type complementary MOS semiconductor device manufacturing method in terms of process layers. Only the MO3 portion is shown.

先づ(a)において、シリコン基板21に5000〜1
0000Aの厚い酸化膜22を熱成長させ、ホトエツチ
ングによりPウェル部23とその後の工程で使用するマ
スク合わせ用パターン24を穿設し、さらに均一なイオ
ン注入を得るため400〜800Aの薄い酸化膜(プロ
テクト酸化膜)25を成長させた後、イオン注入法でP
型の不純物を注入する。26はこのときに注入されたP
型不純物を示す。
In step (a), 5000 to 1 is applied to the silicon substrate 21.
A thick oxide film 22 of 0000A is thermally grown, a P-well portion 23 and a pattern 24 for mask alignment used in subsequent steps are formed by photoetching, and a thin oxide film 22 of 400-800A is grown to obtain more uniform ion implantation. After growing a protective oxide film (25), P
Inject mold impurities. 26 is the P injected at this time.
Indicates type impurities.

次にo3)に示すように、P型不純物26を拡散させP
ウェル層26′を形成するために、1100〜1200
℃で3〜10時間の熱処理を行う。27はこの際シリコ
ン基板21が酸化することにより生ずる段差部であり、
後述する工程におけるパターン合わせの基準として使用
される。
Next, as shown in o3), the P-type impurity 26 is diffused and P
1100-1200 to form the well layer 26'.
Heat treatment is performed at ℃ for 3 to 10 hours. Reference numeral 27 denotes a step portion that is generated when the silicon substrate 21 is oxidized;
It is used as a reference for pattern matching in the process described later.

その後、酸化膜22を全面除去し、400〜5ooj:
、、の薄い酸化膜(パッド酸化膜)28を成長させた電
子の断面を示したものが(e)である。
After that, the oxide film 22 is completely removed, and 400~5ooj:
(e) shows a cross section of electrons grown in the thin oxide film (pad oxide film) 28 of , .

さらに、LOCOS工程において使用する窒化膜29を
厚さ1500〜3000Aに成長させ、ホトエツチング
により所定のパターンを形成する。
Further, a nitride film 29 used in the LOCOS process is grown to a thickness of 1500 to 3000 Å, and a predetermined pattern is formed by photoetching.

この際PウェルM26′との位置合わせは前記シリコン
基板段差部27を光学的に検出して、合わせ一ギークパ
ターンエツジ30との間隔b 、 b’が等しぐなるよ
うに調整しながら行われる。しかる後レジスト31をマ
スクとして窒化膜29をエツチング除去する。このとき
の状態を示したものが(由である。。
At this time, alignment with the P-well M26' is performed by optically detecting the silicon substrate step portion 27 and adjusting the distances b and b' from the alignment geek pattern edge 30 to be equal. . Thereafter, the nitride film 29 is removed by etching using the resist 31 as a mask. The state at this time is (Yu).

そして、レジスト31を・除去した後、酸化処理を施し
くe)に示すごとくフィールド酸化膜32を形成する。
After removing the resist 31, oxidation treatment is performed to form a field oxide film 32 as shown in e).

さらに、窒化膜29及び酸化膜28の除ゴ(、ゲート酸
化等通常の工程処理を経て、電極用金属配線を行ったも
のが(f)に示される。図中、33はソース拡散層、3
4はドレイン拡散層、35はゲート酸化膜、36はゲー
トポリシリコン、37はPウェル電極、38はソース電
極、39はドレイン電極、40はゲート電極を示す。
Further, the nitride film 29 and the oxide film 28 have been removed (and gate oxidized, etc.) and metal wiring for electrodes has been formed, as shown in FIG.
4 is a drain diffusion layer, 35 is a gate oxide film, 36 is a gate polysilicon, 37 is a P-well electrode, 38 is a source electrode, 39 is a drain electrode, and 40 is a gate electrode.

(発明が解決しようとする問題点) しかし・上記の従来方法においては、厚い酸化膜形成工
程、プロテクト酸化工程、ノぐラド酸化工程等多くの熱
酸化工程が含まれてお9−、これらの工程によって形成
される酸化膜はシリコン基板に対して熱膨張率差に基因
する圧縮応力を与える。
(Problems to be Solved by the Invention) However, the above-mentioned conventional method includes many thermal oxidation steps such as a thick oxide film formation step, a protect oxidation step, and a no-glado oxidation step. The oxide film formed by the process applies compressive stress to the silicon substrate due to the difference in coefficient of thermal expansion.

そして、この圧縮応力は酸化膜厚が厚くなるほど増大し
、ウェハのソリやスリップ等の欠陥を発生させる原因と
なっている。
This compressive stress increases as the oxide film becomes thicker, causing defects such as warping and slipping of the wafer.

さらに、深い拡散層を必要とするPウェル形成工程でも
、高温長時間の熱処理が行われるため、厚い酸化膜とシ
リコン基板との界面付近に生ずる圧縮応力はウェハの欠
陥原因となり易い。
Furthermore, even in the P-well formation process that requires a deep diffusion layer, heat treatment is performed at high temperatures and for a long time, so compressive stress generated near the interface between the thick oxide film and the silicon substrate is likely to cause defects in the wafer.

この発明は似上述べた熱処理時に発生する圧縮応力が原
因となっているウニへのソリやスリップ等の欠陥を防止
することを目的とする。
The object of the present invention is to prevent defects such as warping and slipping of sea urchins caused by compressive stress generated during heat treatment as described above.

(問題点を解決するための手段) この発明は相補型MOS半導体素子の製造方法び合わせ
マーク部の前記レジストを除去する工程注入する工程と
、合わせマーク部以外に再度レジストを形成し、エツチ
ングにより合わせマーク部に段差を形成する工程全類に
施し、前記プロテクト酸化膜をLOCOS用のパッド酸
化膜として再使用することを特徴とするものである。
(Means for Solving the Problems) The present invention provides a method for manufacturing a complementary MOS semiconductor device, a step of removing the resist in the alignment mark portion, a step of implanting, forming a resist again in areas other than the alignment mark portion, and etching. This method is characterized in that it is applied to all the steps of forming a step in the alignment mark portion, and the protect oxide film is reused as a pad oxide film for LOCOS.

(作 用) この発明では、従来方法のように初期工程において厚い
酸化膜を形成する仁となく、さらにプロテクト酸化膜を
パッド酸化膜として再使用するため、シリコン基板に生
ずる圧縮応力を可及的に抑1lj1丈ることかでき、ウ
ェハのソリやスリップ等を防止できる。
(Function) In this invention, unlike the conventional method, there is no need to form a thick oxide film in the initial process, and since the protect oxide film is reused as a pad oxide film, the compressive stress generated in the silicon substrate can be reduced as much as possible. It is possible to reduce the length of the wafer, thereby preventing warping and slipping of the wafer.

(実施例) 以下、図面に基づいてこの発明を説明する。第1図(a
)〜(e)はこの発明の製造方法をPウェルタイプにつ
いて工程順に説明するものである。
(Example) The present invention will be described below based on the drawings. Figure 1 (a
) to (e) explain the manufacturing method of the present invention for a P-well type in the order of steps.

先づ(a)において、シリコン基板1に400〜800
λの比較的薄い酸化膜(プロテクト酸化膜)2を成長さ
せ、さらにレジスト3を積層し、次いでPウェル部4及
び合わせマーク部5の前記レジスト3を除去し、残され
たレジスト3をマスクとしてP型不純物6をイオン注入
する。
In step (a), 400 to 800
A relatively thin oxide film (protective oxide film) 2 of λ is grown, a resist 3 is further laminated, and then the resist 3 in the P well part 4 and alignment mark part 5 is removed, and the remaining resist 3 is used as a mask. P-type impurity 6 is ion-implanted.

続いてレジスト7を再度コーティングし、合わせマーク
部5のみを開孔l〜たものが(b)である。この状態か
ら通常のエツチシダ法を用いて、酸化膜2とシリフン基
板1を深さ500〜5000Aにエツチング除去し、合
わせマーク8を形成する。
Subsequently, the resist 7 was coated again, and only the alignment mark portions 5 were opened, as shown in (b). From this state, the oxide film 2 and silicone substrate 1 are etched away to a depth of 500 to 5000 Å using a normal etching process to form alignment marks 8.

その後、Pウェル用のレジスト3及び再#コーティング
レジスト7を全面除去したものが(e)である次に、N
、あるいはAr等の不活性ガス雰囲気中で熱処理が行わ
れPウェル層9が形成される。(d)に示されるように
、酸化膜2の成長は起こらず拡散のみが進行する。
After that, the resist 3 for P well and the re-coating resist 7 are completely removed, as shown in (e).
Alternatively, heat treatment is performed in an atmosphere of an inert gas such as Ar, and the P well layer 9 is formed. As shown in (d), the growth of the oxide film 2 does not occur and only diffusion progresses.

その後、前記酸化膜(プロテクト酸化膜)2をパッド酸
化膜として利用し、LOCOS工程において使用する厚
さ1500〜3oooXの窒化膜10を成長させ、ホト
エツチングにより所定のパターンを形成する。この際P
ウェル層9との位置合わせは、前記従来方法と同様に行
われ、この状態を示したものが(e)である。
Thereafter, using the oxide film (protection oxide film) 2 as a pad oxide film, a nitride film 10 with a thickness of 1,500 to 300X is grown to be used in the LOCOS process, and a predetermined pattern is formed by photoetching. At this time P
Alignment with the well layer 9 is performed in the same manner as in the conventional method, and this state is shown in (e).

(e)以後のフィールド酸化膜形成、電極用8を属配線
等の工程については前記第2図の(e)及び(f)と同
一となる。
(e) The subsequent steps of forming a field oxide film, forming electrodes 8 and metal wiring, etc. are the same as those in (e) and (f) of FIG. 2 above.

(発明の効果) 以上説明したように本発明の製造方法によれば、Pある
いはNウェル形成工程において厚い酸化膜の代替として
レジストを用いたこと、及びイオン注入用のプロテクト
酸化膜をl、0CO8用のパッド醸化膜として再使用し
たことによって、2段の熱処理工程を不要とし、シリコ
ン基板に生ずる圧縮応力に基因するウェハのソリやスリ
ップ等の発生を防止し得、さらに工程の削減も可能とな
る。
(Effects of the Invention) As explained above, according to the manufacturing method of the present invention, a resist is used as a substitute for a thick oxide film in the P or N well formation process, and a protect oxide film for ion implantation is By reusing it as a pad-enhancing film, it is possible to eliminate the need for a two-stage heat treatment process, prevent warping and slipping of the wafer caused by compressive stress generated in the silicon substrate, and further reduce the number of processes. becomes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(e)は本発明の製造方法を工程順に示
す部分断面図、第2図(a)〜(f)は従来の製造方法
を工程順に示す部分断面図である。 2・・・プロテクト酸化膜、9・・・Pウェル、臂、2
2・・・厚い酸化膜、25・・・プロデクト酸イヒ膜、
26′・Pウェル層、28・パッド酸f1−膜、32・
・・フィールド酸化膜。 特許出願人 沖電気工業株式会社 13 レレスト
FIGS. 1(a) to (e) are partial cross-sectional views showing the manufacturing method of the present invention in the order of steps, and FIGS. 2(a) to (f) are partial cross-sectional views showing the conventional manufacturing method in the order of steps. 2...Protect oxide film, 9...P well, arm, 2
2...Thick oxide film, 25...Prodectic acid Ichi film,
26'・P well layer, 28・Pad acid f1- film, 32・
...Field oxide film. Patent applicant Oki Electric Industry Co., Ltd. 13 Rerest

Claims (1)

【特許請求の範囲】[Claims] シリコン基板に薄いプロテクト酸化膜、レジストをこの
順に形成し、次いでPあるいはNウェル部及び合わせマ
ーク部の前記レジストを除去する工程と、残された前記
レジストをマスクとし前記プロテクト酸化膜を通してP
あるいはNウェル形成用の不純物を注入する工程と、合
わせマーク部以外に再度レジストを形成し、エッチング
により合わせマーク部に段差を形成する工程を順に施し
、前記プロテクト酸化膜をLOCOS用のパッド酸化膜
として再使用し、その後の酸化処理及び電極形成を行う
ことを特徴とする相補型MOS半導体素子の製造方法。
A step of forming a thin protect oxide film and a resist on a silicon substrate in this order, then removing the resist in the P or N well area and the alignment mark area, and using the remaining resist as a mask, applying P through the protect oxide film.
Alternatively, the process of implanting impurities for N-well formation, forming a resist again in areas other than the alignment mark area, and forming a step in the alignment mark area by etching are sequentially performed, and the protect oxide film is replaced with a pad oxide film for LOCOS. 1. A method for manufacturing a complementary MOS semiconductor device, characterized in that the device is reused as a MOS semiconductor device, and then subjected to oxidation treatment and electrode formation.
JP60199345A 1985-09-11 1985-09-11 Manufacture of complementary mos semiconductor element Pending JPS6261353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60199345A JPS6261353A (en) 1985-09-11 1985-09-11 Manufacture of complementary mos semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60199345A JPS6261353A (en) 1985-09-11 1985-09-11 Manufacture of complementary mos semiconductor element

Publications (1)

Publication Number Publication Date
JPS6261353A true JPS6261353A (en) 1987-03-18

Family

ID=16406224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60199345A Pending JPS6261353A (en) 1985-09-11 1985-09-11 Manufacture of complementary mos semiconductor element

Country Status (1)

Country Link
JP (1) JPS6261353A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368147A (en) * 2001-04-04 2002-12-20 Internatl Business Mach Corp <Ibm> Manufacturing method for semiconductor device having deep sub-collector region
JP2007103472A (en) * 2005-09-30 2007-04-19 Toshiba Corp Semiconductor integrated circuit device and its manufacturing method
JP2007194497A (en) * 2006-01-20 2007-08-02 Fujifilm Corp Semiconductor device manufacturing method, and solid-state imaging element manufacturing method using same
US20100035388A1 (en) * 2008-08-05 2010-02-11 Choi Kee-Joon Method for fabricating semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147179A (en) * 1975-06-12 1976-12-17 Fujitsu Ltd Method of munufacturing of semiconductor device
JPS594154A (en) * 1982-06-30 1984-01-10 Nec Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147179A (en) * 1975-06-12 1976-12-17 Fujitsu Ltd Method of munufacturing of semiconductor device
JPS594154A (en) * 1982-06-30 1984-01-10 Nec Corp Manufacture of semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368147A (en) * 2001-04-04 2002-12-20 Internatl Business Mach Corp <Ibm> Manufacturing method for semiconductor device having deep sub-collector region
JP2007103472A (en) * 2005-09-30 2007-04-19 Toshiba Corp Semiconductor integrated circuit device and its manufacturing method
US7943478B2 (en) 2005-09-30 2011-05-17 Kabushiki Kaisha Toshiba Semiconductor device manufacturing method
JP4718961B2 (en) * 2005-09-30 2011-07-06 株式会社東芝 Semiconductor integrated circuit device and manufacturing method thereof
JP2007194497A (en) * 2006-01-20 2007-08-02 Fujifilm Corp Semiconductor device manufacturing method, and solid-state imaging element manufacturing method using same
US20100035388A1 (en) * 2008-08-05 2010-02-11 Choi Kee-Joon Method for fabricating semiconductor device
US8338281B2 (en) * 2008-08-05 2012-12-25 Magnachip Semiconductor, Ltd. Method for fabricating semiconductor device

Similar Documents

Publication Publication Date Title
US6001709A (en) Modified LOCOS isolation process for semiconductor devices
US4098618A (en) Method of manufacturing semiconductor devices in which oxide regions are formed by an oxidation mask disposed directly on a substrate damaged by ion implantation
US4743566A (en) Method of manufacturing a semiconductor device, in which a silicon slice is locally provided with field oxide with a channel stopper
US4002501A (en) High speed, high yield CMOS/SOS process
US5895252A (en) Field oxidation by implanted oxygen (FIMOX)
JP2682529B2 (en) Method for forming element isolation insulating film of semiconductor element
JPS58155737A (en) Sole mask diffusing process
JPS6261353A (en) Manufacture of complementary mos semiconductor element
JPH11186376A (en) Method of isolating semiconductor device through trenches
JPS6174350A (en) Manufacture of semiconductor device
JPS62211938A (en) Manufacture of semiconductor device
US5726091A (en) Method of reducing bird&#39;s beak of field oxide using reoxidized nitrided pad oxide layer
JPH0268930A (en) Manufacture of semiconductor device
JPH1154499A (en) Fabrication of semiconductor device
JPS6213047A (en) Manufacture of semiconductor device
JPS6116530A (en) Manufacture of semiconductor device
KR100250226B1 (en) Semiconductor element isolation method
KR960010461B1 (en) Manufacturing method of field oxide in semiconductor device
JPS62131538A (en) Manufacture of semiconductor device
KR0139890B1 (en) Method for manufacturing field oxide film of semiconductor device
KR100453345B1 (en) Method for forming a active cell isolation layer of a semiconductor device
JPH0334425A (en) Manufacture of semiconductor device
JP4171122B2 (en) Method for forming a semiconductor device twin well
KR100379503B1 (en) Method for forming oxide layer
JPS62156839A (en) Manufacture of semiconductor device