JPS6259511A - Production of artificial graphite electrode - Google Patents

Production of artificial graphite electrode

Info

Publication number
JPS6259511A
JPS6259511A JP60199574A JP19957485A JPS6259511A JP S6259511 A JPS6259511 A JP S6259511A JP 60199574 A JP60199574 A JP 60199574A JP 19957485 A JP19957485 A JP 19957485A JP S6259511 A JPS6259511 A JP S6259511A
Authority
JP
Japan
Prior art keywords
compound
iron
puffing
coke
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60199574A
Other languages
Japanese (ja)
Other versions
JPH066510B2 (en
Inventor
Kenichi Fujimoto
研一 藤本
Masahiro Yamada
正弘 山田
Hisayuki Nagino
薙野 久幸
Makoto Yamashita
良 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Corp
Priority to JP60199574A priority Critical patent/JPH066510B2/en
Publication of JPS6259511A publication Critical patent/JPS6259511A/en
Publication of JPH066510B2 publication Critical patent/JPH066510B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce artificial graphite electrode while preventing occurrence of puffing, by adding an iron compound having a specific particle diameter, calcium compound, etc., to coal tar needle coke. CONSTITUTION:Coal tar needle coke as a raw material is blended with an iron compound having <=3mu average particle diameter and one or more selected from a Ca compound, Mg compound, Ce compound and La compound. Needle coke having needle-like anisotropic microstructure may be used as the needle coke. Iron oxide, iron hydroxide, etc., is used as the iron compound and an oxide, a carbonate, etc., are used as the Ca compound, etc. The total amounts of the iron compound and the Ca compound, etc., based on the total amounts of the coke and the pitch are about 0.2-3wt% and the blending ratio of the iron compound and the Ca compound, etc., is about 1:1-0.2 by weight. Consequently, a high-quality artificial graphite electrode can be advantageously produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明ハ、コールタール系ニードルコークスを原料とし
て人造黒鉛電極を製造するにあたり、パッフィングを減
少させ、黒鉛電極の嵩比重を向上させる黒鉛電極の製造
方法に関するものである0(従来の技術) 製鋼用電気炉の電極等に用いられる人造黒鉛電極は、一
般に易黒鉛化性コークスとピッチ等のバインダーおよび
含浸剤を原料とし、(1)コークスの粉砕、粒度配合、
(2)バインダーとの混線、(3)成型、(4)−次焼
成、(5)含浸剤の含浸、(6)二次焼成、(7)黒鉛
化、(8)切削加工のを工程を経て製造される。
Detailed Description of the Invention (Industrial Field of Application) The present invention (c) provides a graphite electrode that reduces puffing and improves the bulk specific gravity of the graphite electrode when manufacturing an artificial graphite electrode using coal tar-based needle coke as a raw material. 0 (Prior art) Artificial graphite electrodes used for electrodes in steelmaking electric furnaces are generally made from graphitizable coke, a binder such as pitch, and an impregnating agent. Grinding, particle size blending,
(2) Mixing with binder, (3) Molding, (4) Secondary firing, (5) Impregnation with impregnant, (6) Secondary firing, (7) Graphitization, and (8) Cutting process. It is manufactured after

黒鉛化工程は二次焼成した電極を電気炉を用いて、窒素
、アルゴンなどの不活性雰囲気中、もしくは詰め粉を用
いて空気を遮断した状態で2500〜3000℃に加熱
し、コークスを黒鉛に変化させる工程であるが、近年合
理化を目的に従来のアチンン炉を用いる黒鉛化から急速
黒鉛化炉を用いる方法に変化してきている。
In the graphitization process, the secondary fired electrode is heated to 2,500 to 3,000°C using an electric furnace in an inert atmosphere such as nitrogen or argon, or in a state where air is blocked using packing powder, and the coke is converted into graphite. In recent years, for the purpose of rationalization, the conventional method of graphitization using an Atchin furnace has been changed to a method using a rapid graphitization furnace.

急速黒鉛化炉を用いると、例えば数十時間で黒鉛化が行
われるので黒鉛化に際しての温度の上昇速度が速く、昇
温途中で電極に不可逆膨張、いわゆるパッフィングが起
こることが知られている。
When a rapid graphitization furnace is used, graphitization is performed in, for example, several tens of hours, so the temperature rises rapidly during graphitization, and it is known that irreversible expansion, so-called puffing, occurs in the electrode during the temperature rise.

パッフィングの程度が大きいと、黒鉛電極の嵩比重が小
さくなり、強度が弱くなる。このパッフィングは黒鉛化
時における昇温速度が速いほど顕著に力るので、急速黒
鉛化炉で電極を黒鉛化する際特に問題となる。
When the degree of puffing is large, the bulk specific gravity of the graphite electrode becomes small and the strength becomes weak. This puffing becomes more pronounced as the temperature rise rate during graphitization becomes faster, and therefore becomes a particular problem when graphitizing electrodes in a rapid graphitization furnace.

従来、この黒鉛電極用原料として、石油系重質油を原料
としたコークスが使用されてきた。石油系コークスには
硫黄が0.4〜2.0%程度含まれている。石油系コー
クスのパッフィング原因は黒鉛構造が生成しはじめる1
700〜2000℃の温度で硫黄が急激に揮発するため
に起こるとされている。
Conventionally, coke made from petroleum-based heavy oil has been used as a raw material for graphite electrodes. Petroleum-based coke contains about 0.4 to 2.0% sulfur. The cause of puffing in petroleum-based coke is the formation of graphite structure1
It is said that this occurs because sulfur evaporates rapidly at temperatures of 700 to 2000°C.

(例えばE、Fi7er等、High Tempera
ture−HighPressures 、 Vol、
 19. P、243〜250.1977年参照)。
(For example, E, Fi7er, etc., High Tempera
ture-High Pressures, Vol.
19. P, 243-250, 1977).

このため、これまでのパッフィング防止剤としてはコー
クス中の硫黄と反応して硫化物となり、硫黄としての揮
発を防止するような化合物を添加する方法が提案されて
いる。例えば、酸化鉄、弗化カルシウム、酸化チタンな
どの化合物がバンクインク防止剤として効果があるとさ
れている(米国特許第3.33桟993号、同第456
4705号、同第4、14 c)、 623号、同第4
,312,745号、同第4,334,980号各明細
書)。
For this reason, conventional puffing inhibitors have been proposed in which a compound is added that reacts with sulfur in coke to form sulfide and prevents volatilization as sulfur. For example, compounds such as iron oxide, calcium fluoride, and titanium oxide are said to be effective as bank ink inhibitors (U.S. Pat. Nos. 3.33 and 456).
No. 4705, No. 4, 14 c), No. 623, No. 4
, No. 312,745 and No. 4,334,980).

コールタール系ニー ドルコークス全黒鉛電極用原料と
する場合も同様にパッフィングが起こるが、コールター
ル系二−ドルコークスハ石油系=−トルコークスに比較
して硫黄の含有量が少ないという特長を有しているので
、同一の原因でパッフィングが起こるものとは考えられ
ない。
Puffing also occurs when coal tar-based needle coke is used as a raw material for all-graphite electrodes, but coal tar-based needle coke has the advantage of having a lower sulfur content than petroleum-based turquoise coke. Therefore, it is unlikely that puffing occurs due to the same cause.

従って、パッフィング防止剤も石油系ニードルコークス
の場合とは異なるものが提案され、石油系ニードルコー
クスには有効とされている酸化鉄などはコールタール系
ニードルコークスに対しては効果が認められず、コール
タール系ニードルコークス用のパッフィング防止剤とし
ては、例えば酸化クロムが有効であると報告されている
Therefore, anti-puffing agents have been proposed that are different from those used for petroleum-based needle coke, and iron oxide, which is considered effective for petroleum-based needle coke, is not effective against coal tar-based needle coke. It has been reported that, for example, chromium oxide is effective as a puffing inhibitor for coal tar-based needle coke.

(1,6th、 Biennial Conferen
ce on Carbon、ExtendedAbst
ract July 18−22.1983年、P、5
95参照)。
(1,6th, Biennial Conference
ce on Carbon, ExtendedAbst
ract July 18-22.1983, P, 5
95).

また本発明者らはニッケルおよびコバルト化合物が、さ
らには平均粒径3μm以下の鉄化合物がコールタール系
ニードルコークスのパッフィング防止剤として適してい
ることを見い出し、すでに特許出願(特願昭59−12
9671号、特願昭60−54284号)を行った。
In addition, the present inventors have discovered that nickel and cobalt compounds, and furthermore, iron compounds with an average particle size of 3 μm or less, are suitable as anti-puffing agents for coal tar-based needle coke.
No. 9671 and Japanese Patent Application No. 60-54284).

本発明者らは、コールタール系ニードルコークスを原料
として黒鉛電極を製造する際の黒鉛化時のパッフィング
の原因について種々検討を行った結果、コールタール系
ニードルコークス(7) 場合には、極く少量含有され
ている硫黄に起因するパッフィングもわずかに生起する
ものの、黒鉛結晶の成長が急速になり始める1700〜
1800℃で原料コークス中の窒素が揮散することに起
因する部分が大きいことを見出した。
The present inventors have conducted various studies on the causes of puffing during graphitization when producing graphite electrodes using coal tar-based needle coke as a raw material. Although some puffing occurs due to the small amount of sulfur contained, graphite crystals begin to grow rapidly from 1700 onwards.
It has been found that a large portion of this is due to the volatilization of nitrogen in the raw material coke at 1800°C.

これらのことから、石油系ニードルコークス、コールタ
ール系ニードルコークスで硫黄、窒素ノ差はあるものの
、いずれも1700℃以上の黒鉛結晶が発達する温度で
原料コークス中に含まれる炭素以外の元素がガス化して
、このガス圧によってパッフィングが生起するものと推
定した。
From these facts, although there are differences in sulfur and nitrogen between petroleum-based needle coke and coal tar-based needle coke, in both cases, elements other than carbon contained in raw material coke become gases at temperatures above 1,700°C, at which graphite crystals develop. It was assumed that puffing was caused by this gas pressure.

本発明者らは前記の推測をもとに、硫黄あるいは窒素に
由来する硫化水素、二硫化炭素あるいは窒素ガスをスム
ーズに原料コークスから揮散させれば、ガスによる圧力
が小さくなりパッフィングが防止ないし軽減できるとの
考え方から、コールタール系ニードルコークスを原料と
する黒鉛電極の製造について各種検討を行い本発明を完
成した〇(発明が解決しようとする問題点) 本発f![、コールタール系ニードルコークスを原料と
する黒鉛電極製造時に発生するパッフィングを防止し、
かつ得られる電極の嵩比重を高めた黒鉛電極の製造方法
を提供するものである。
Based on the above speculation, the present inventors believe that if hydrogen sulfide, carbon disulfide, or nitrogen gas derived from sulfur or nitrogen is smoothly volatilized from raw coke, the pressure caused by the gas will be reduced and puffing will be prevented or reduced. Based on the idea that it could be done, we conducted various studies on the production of graphite electrodes using coal tar-based needle coke as a raw material, and completed the present invention. (Problems to be solved by the invention) This invention f! [To prevent puffing that occurs when manufacturing graphite electrodes using coal tar-based needle coke as raw material,
The present invention also provides a method for producing a graphite electrode in which the bulk specific gravity of the resulting electrode is increased.

(問題点を解決するための手段) 本発明ハコールタール系二−ドルコークスヲ原料として
人造黒鉛電極を製造するにあたり、パッフィング防止剤
として平均粒径3μm以下の鉄化合物並びにカルシウム
化合物、マグネンウム化合物、セリウム化合物およびラ
ンタン化合物の1種又は2種以上を使用するものである
(Means for Solving the Problems) When manufacturing artificial graphite electrodes using the hacoal tar-based second coke of the present invention as a raw material, iron compounds with an average particle size of 3 μm or less, calcium compounds, magnenium compounds, cerium compounds, and lanthanum are used as anti-puffing agents. One type or two or more types of compounds are used.

以下本発明について詳細に説明する。The present invention will be explained in detail below.

本発明で使用する、人造黒鉛電極の原料となるコールタ
ール系ニードルコークスは針状の異方性微細構造を有す
るものであれば任意のものを使用することができる。
Any coal tar-based needle coke used in the present invention, which is a raw material for the artificial graphite electrode, can be used as long as it has an acicular anisotropic microstructure.

このようなコークスは例えばキノリンネ溶分を除去した
コールタールピッチを原料としてディレートコ−カーに
より生コークスを製造し、次いでこれをカルサイナーで
仮焼することにより製造される。通常、このコークスは
005〜0.3%程度の硫黄分および03〜0612程
度の窒素弁を含有している。コールタール系ニードルコ
ークスは前述のように(1)粉砕、粒度配合、(2)バ
インダーとの混練、(3)成型、(4)−次焼成、(5
)含浸剤の含浸、(6)二次焼成、(7)黒鉛化、(8
)切削加工等の工程を経て人造黒鉛電極とされる。本発
明においては少なくとも黒鉛化工程以前の工程でパッフ
ィング防止剤を添加する。
Such coke is produced, for example, by producing raw coke in a dilate coker using coal tar pitch from which the quinoline solvate has been removed, and then calcining the coke in a calciner. Usually, this coke contains a sulfur content of about 0.05 to 0.3% and a nitrogen content of about 0.03 to 0.612%. As mentioned above, coal tar-based needle coke is produced by (1) pulverization, particle size blending, (2) kneading with a binder, (3) molding, (4) - next calcination, (5)
) Impregnation with impregnating agent, (6) Secondary calcination, (7) Graphitization, (8
) It is made into an artificial graphite electrode through processes such as cutting. In the present invention, an anti-puffing agent is added at least in a step before the graphitization step.

本発明で使用される鉄化合物は酸化鉄、水酸化鉄、炭酸
鉄等が挙げられる。これらの粒径は微細なものがよい。
Examples of the iron compound used in the present invention include iron oxide, iron hydroxide, iron carbonate, and the like. The particle size of these particles is preferably fine.

鉄化合物の粒径はパッフィング防止効果に大きく影響し
、粒径が3μmを越える大きさの鉄化合物を添加しても
効果が小さい。
The particle size of the iron compound greatly affects the anti-puffing effect, and even if an iron compound with a particle size exceeding 3 μm is added, the effect will be small.

本発明では鉄化合物の他に、カルシウム化合物、マグネ
シウム化合物、セリウム化合物、又はランタン化合物を
使用するが鉄化合物の役割は次のように考えられる。
In the present invention, a calcium compound, a magnesium compound, a cerium compound, or a lanthanum compound is used in addition to the iron compound, and the role of the iron compound is considered as follows.

鉄化合物がパッフィング防止剤として作用するが、この
パッフィング防止効果の他、黒鉛電極の嵩比重を高める
作用を有している。
The iron compound acts as an anti-puffing agent, and in addition to this anti-puffing effect, it also has the effect of increasing the bulk specific gravity of the graphite electrode.

すなわち、鉄化合物は炭化触媒になることが知られてお
り、バインダーとなるピッチの炭化歩留を向上させる。
That is, iron compounds are known to act as carbonization catalysts, and improve the carbonization yield of pitch, which serves as a binder.

このため、−次焼成後の電極の嵩比重は鉄化合物を添加
することにより高くなる。
Therefore, the bulk specific gravity of the electrode after the second firing increases by adding the iron compound.

前述のように本発明の目的の一つは黒鉛電極の嵩比重を
高めることであるのでピッチの炭化収率を高める鉄化合
物の添加が必要である。
As mentioned above, one of the objects of the present invention is to increase the bulk specific gravity of the graphite electrode, so it is necessary to add an iron compound to increase the carbonization yield of pitch.

カルシウム化合物、マグネシウム化合物、セリウム化合
物、あるいはランタン化合物としては、酸化物、炭酸塩
、水酸化物等が用いら扛るが、これらの化合物はパッフ
ィング防止効果は有しているが、炭化触媒能を有してい
ないため、−単独で使用しても嵩比重の高い黒鉛電極は
得られない。
Oxides, carbonates, hydroxides, etc. are used as calcium compounds, magnesium compounds, cerium compounds, or lanthanum compounds. Although these compounds have a puffing prevention effect, they do not have carbonization catalytic ability. Therefore, even if - is used alone, a graphite electrode with high bulk specific gravity cannot be obtained.

本発明者等は上記カルシウム、マグネシウム、セリウム
およびランタンの化合物がコールタール系ニードルコー
クスのパッフィング防止に非常に効果があることを見い
出した。
The present inventors have discovered that the above-mentioned calcium, magnesium, cerium and lanthanum compounds are very effective in preventing puffing of coal tar-based needle coke.

これらの化合物を添加することによりパッフィングが防
止できる理由は今のところ明確ではない。
It is currently not clear why adding these compounds can prevent puffing.

カルシウム、マグネシウム、セリウムおよびランタン化
合物はいずれか1種又は2種以上の化合物を使用する。
One or more of calcium, magnesium, cerium and lanthanum compounds may be used.

は粒径が微細々ことが望ま(−いが、特に制限はなく、
工業的に入手できる化合物をそのまま使用できる。
It is desirable that the particle size is very fine (- but there is no particular limit,
Industrially available compounds can be used as they are.

鉄化合物とカルシウム、マグネシウム、セリウムおよび
ランタンの化合物の添加惜は特に制限はないが、少なす
ぎると効果が顕著に表われず、また多すぎると製造され
た黒鉛電極の熱膨張係数が大きくなること、および経済
的に不利であることカラ、コークスとバインダーピッチ
の合計量に対し鉄化合物とカルシウム、マグネシウム、
セリウム、およびランタンの化合物の合計量として02
〜3重量係の範囲が望ましく、より好ましくは02・〜
2重量係である。
There is no particular limit to the addition of iron compounds and compounds of calcium, magnesium, cerium, and lanthanum, but if it is too small, the effect will not be noticeable, and if it is too large, the coefficient of thermal expansion of the graphite electrode produced will increase. iron compounds and calcium, magnesium, and the total amount of coke and binder pitch to be economically disadvantageous.
02 as the total amount of cerium and lanthanum compounds
It is desirable that the weight range is 0.2 to 3, more preferably 02.
There are two people in charge of weight.

鉄化合物とカルシウム、マグネシウム、セリウム、ラン
タンの化合物との混合割合は特に制限はないが通常重量
比で1:1〜0.2が用いられる。
The mixing ratio of the iron compound and the calcium, magnesium, cerium, and lanthanum compounds is not particularly limited, but a weight ratio of 1:1 to 0.2 is usually used.

鉄化合物の配合割合が少ないと炭化触媒としての作用が
充分でなく黒鉛電極の嵩比重が高くならない。またカル
シウム、マグネシウム、セリウム、ランタンの化合物の
量が少ないとパッフィング防止効果が少ない。これら化
合物の量が多すぎると2500℃付近でのいわゆる二次
バックインクが大   □きくなるので好ましくない。
If the blending ratio of the iron compound is small, its action as a carbonization catalyst will not be sufficient and the bulk specific gravity of the graphite electrode will not become high. Furthermore, when the amount of calcium, magnesium, cerium, and lanthanum compounds is small, the anti-puffing effect is small. If the amount of these compounds is too large, so-called secondary back ink at around 2500° C. becomes large, which is not preferable.

以下に本発明の実施例を示す。Examples of the present invention are shown below.

(実施例) 窒素分0.43%、硫黄分0.20 ’%を含むコール
タール系ニードルコークスを用いてテストヒースを作製
し、パッフィングを測定した。
(Example) A test heath was prepared using coal tar-based needle coke containing a nitrogen content of 0.43% and a sulfur content of 0.20'%, and puffing was measured.

パッフィング防止剤はコークスとバインダーピッチとの
混練時に添加した。
The anti-puffing agent was added during kneading of coke and binder pitch.

テストピースの作製条件は次のとおりでちる。The test piece manufacturing conditions were as follows.

ニードルコークスの粒度: 16〜60メツシユ   20wt% 60〜200メツシユ   45wt%200メツシユ
以下  35wt係 バインダーピッチ配合量:35wt% 混線条件:145℃、20分 成型法:モールド成型 テストピース: 200rnm X 100mm”上記
条件で作成したテストピースを900℃で焼成後150
℃、 5 kg/ryn2の圧力で含浸ピッチをテスト
ピースに含浸させ、再び900℃で焼成し、パッフィン
グを測定]−だ。パッフィング測定終了後室温で寸法、
重量を測定し、嵩比重を算出した。
Particle size of needle coke: 16-60 mesh 20wt% 60-200 mesh 45wt% 200 mesh or less 35wt Binder pitch blending amount: 35wt% Mixing conditions: 145°C, 20 minutes Molding method: Mold forming test piece: 200rnm x 100mm” above After firing the test piece made under the following conditions at 900℃
The test piece was impregnated with the impregnated pitch at a pressure of 5 kg/ryn2, fired again at 900°C, and puffing was measured. After puffing measurement, measure dimensions at room temperature.
The weight was measured and the bulk specific gravity was calculated.

パッフィングの測定条件は次のとおりである。The measurement conditions for puffing are as follows.

アルゴン雰囲気中で1000℃まで急速昇温、その後1
0℃/分で昇温し、室温から2600℃までの線膨張量
を測定した。
Rapid heating up to 1000℃ in argon atmosphere, then 1
The temperature was raised at 0°C/min, and the amount of linear expansion from room temperature to 2600°C was measured.

測定結果を表に示す。酸化鉄だけをパッフィング防止剤
とl〜だ比較例に比べ、酸化鉄とカルシウム、−グネシ
クqy、タンの化合物を組合わせるとパッフィングが小
さく、黒鉛化後の嵩比重が高くなることがわかる。
The measurement results are shown in the table. It can be seen that compared to the comparative example in which only iron oxide was used as an anti-puffing agent, the combination of iron oxide and a compound of calcium, -gnesic qy, and tan resulted in less puffing and a higher bulk specific gravity after graphitization.

表 バンフインク量と黒鉛化後の嵩比重使用した酸化鉄
の粒径は15μmであり、その他の化合物の粒径は3μ
m以下であった。
Table Banff ink amount and bulk specific gravity after graphitization The particle size of the iron oxide used is 15 μm, and the particle size of other compounds is 3 μm.
m or less.

(発明の効果) 以上説明したように5本発明によりコールタール系ニー
ドルコークスを原料とする黒鉛電接の製造法においての
黒鉛化時のパッフィング防止が可能で、かつ嵩比重の高
い電極が得られ、良質の人造黒鉛電極を有利に製造する
ことができる。
(Effects of the Invention) As explained above, according to the present invention, it is possible to prevent puffing during graphitization in the production method of graphite electrical contact using coal tar-based needle coke as a raw material, and to obtain an electrode with high bulk specific gravity. , high quality artificial graphite electrodes can be advantageously produced.

出 願 人 新日本製鐵株式会社 新日鐵化学株式会社Applicant: Nippon Steel Corporation Nippon Steel Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] コールタール系ニードルコークスを原料として人造黒鉛
電極を製造するにあたり、パッフィング防止剤として平
均粒径3μm以下の鉄化合物並びにカルシウム化合物、
マグネシウム化合物、セリウム化合物およびランタン化
合物からなる群から選択された1種又は2種以上の化合
物を添加することを特徴とする人造黒鉛電極の製造方法
When producing artificial graphite electrodes using coal tar-based needle coke as a raw material, iron compounds and calcium compounds with an average particle size of 3 μm or less are used as anti-puffing agents.
A method for producing an artificial graphite electrode, which comprises adding one or more compounds selected from the group consisting of a magnesium compound, a cerium compound, and a lanthanum compound.
JP60199574A 1985-09-11 1985-09-11 Manufacturing method of artificial graphite electrode Expired - Lifetime JPH066510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60199574A JPH066510B2 (en) 1985-09-11 1985-09-11 Manufacturing method of artificial graphite electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60199574A JPH066510B2 (en) 1985-09-11 1985-09-11 Manufacturing method of artificial graphite electrode

Publications (2)

Publication Number Publication Date
JPS6259511A true JPS6259511A (en) 1987-03-16
JPH066510B2 JPH066510B2 (en) 1994-01-26

Family

ID=16410093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60199574A Expired - Lifetime JPH066510B2 (en) 1985-09-11 1985-09-11 Manufacturing method of artificial graphite electrode

Country Status (1)

Country Link
JP (1) JPH066510B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02279563A (en) * 1989-03-06 1990-11-15 Sigri Gmbh Production of graphitized carbon compact
WO2014147434A1 (en) 2013-03-21 2014-09-25 Gerhard Hubweber Method and installation to produce graphite bodies
WO2022215747A1 (en) * 2021-04-09 2022-10-13 三菱ケミカル株式会社 Needle coke for graphite electrode, needle coke manufacturing method, and inhibitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5466360A (en) * 1977-11-07 1979-05-28 Arcair Co Mixture being suitable to production of electrode for air carbon arc cutting and groove forming * producing of said electrode and noise reducing method
US4334980A (en) * 1979-02-02 1982-06-15 Great Lakes Carbon Corporation Non-puffing petroleum coke
JPS59162175A (en) * 1983-03-01 1984-09-13 株式会社井上ジャパックス研究所 Metal graphite

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5466360A (en) * 1977-11-07 1979-05-28 Arcair Co Mixture being suitable to production of electrode for air carbon arc cutting and groove forming * producing of said electrode and noise reducing method
US4334980A (en) * 1979-02-02 1982-06-15 Great Lakes Carbon Corporation Non-puffing petroleum coke
JPS59162175A (en) * 1983-03-01 1984-09-13 株式会社井上ジャパックス研究所 Metal graphite

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02279563A (en) * 1989-03-06 1990-11-15 Sigri Gmbh Production of graphitized carbon compact
WO2014147434A1 (en) 2013-03-21 2014-09-25 Gerhard Hubweber Method and installation to produce graphite bodies
DE112013006851B4 (en) * 2013-03-21 2017-10-12 Gerhard Hubweber Process and plant for the production of graphite bodies
WO2022215747A1 (en) * 2021-04-09 2022-10-13 三菱ケミカル株式会社 Needle coke for graphite electrode, needle coke manufacturing method, and inhibitor

Also Published As

Publication number Publication date
JPH066510B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
JP3093015B2 (en) Needle coke manufacturing method
JP5972362B2 (en) Refractory material for the internal lining of a blast furnace, obtained by semi-graphitization of a mixture containing carbon and silicon
JPS6259511A (en) Production of artificial graphite electrode
US4770825A (en) Process for producing electrodes from carbonaceous particles and a boron source
JP2920974B2 (en) Needle coke manufacturing method
JP6922327B2 (en) Graphite and its manufacturing method, and mixtures
JP2652909B2 (en) Method for producing isotropic high-strength graphite material
JPH02271919A (en) Production of fine powder of titanium carbide
JPS6110017A (en) Production of graphite electrode
JPS61214394A (en) Manufacture of graphite electrode
KR102634867B1 (en) Composition for needle cokes and carbon electrode
JP3296011B2 (en) Needle coke manufacturing method
JPS6033208A (en) Method for reducing puffing of graphite electrode
WO2022215747A1 (en) Needle coke for graphite electrode, needle coke manufacturing method, and inhibitor
JPS62179590A (en) Production of needle coke
CN117623776A (en) Antioxidant sealing carbon graphite material and preparation method thereof
JP3094502B2 (en) Manufacturing method of carbon material
WO2000066513A1 (en) Needle coke for graphite electrode and method for production thereof
JPS6399290A (en) Production of coke for high-grade electrode
JP3198123B2 (en) Method for producing isotropic high-strength graphite material
JPH0759708B2 (en) Method for producing coke for molded graphite
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JPS63108095A (en) Production of high-quality coke for electrode
JPS6114112A (en) Manufacture of coke for graphite molding
JPS6220833A (en) Manufacture of briquette for producing metallic magnesium