JPS6258411A - Magnetoresistance effect type magnetic head - Google Patents

Magnetoresistance effect type magnetic head

Info

Publication number
JPS6258411A
JPS6258411A JP19900885A JP19900885A JPS6258411A JP S6258411 A JPS6258411 A JP S6258411A JP 19900885 A JP19900885 A JP 19900885A JP 19900885 A JP19900885 A JP 19900885A JP S6258411 A JPS6258411 A JP S6258411A
Authority
JP
Japan
Prior art keywords
magnetic
magnetoresistive
magnetic field
permeability
bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19900885A
Other languages
Japanese (ja)
Inventor
Shigemi Imakoshi
今越 茂美
Hideo Suyama
英夫 陶山
Kenichiro Tsunewaki
常脇 謙一郎
Munekatsu Fukuyama
宗克 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP19900885A priority Critical patent/JPS6258411A/en
Publication of JPS6258411A publication Critical patent/JPS6258411A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures

Abstract

PURPOSE:To give a required magnetic bias to a magnetoresistance effect magneto-sensitive part and reduce effectively a bias magnetic field leaked to the front of a face facing a magnetic medium by making the distance between the magnetoresistance effect magneto-sensitive part and one high-permeability magnetic body different between the front side and the rear side and providing a means which excites this magnetic circuit. CONSTITUTION:The face facing a magnetoresistance effect magneto-sensitive part 3 of the second high-permeability magnetic body 2 is so worked that a distance L between the second high-permeability magnetic body 2 and the magnetoresistance effect magneto-sensitive part 3 is different between the front side and the rear side in a magnetic gap 4 though that between the first high-permeability magnetic body 1 and the magnetoresistance effect magneto-sensitive part 3 is uniform. The face facing the magnetoresistance effect magneto-sensitive part 3 of the high-permeability magnetic body 1 is formed flat so that the distance between this magnetic body 1 and the magnetoresistance effect magneto-sensitive part 3 is uniform. A means 5 which excites the magnetic circuit including high-permeability magnetic bodies 1 and 2 is provided, and the direction of a sense current flowed to the magnetoresistance effect magneto-sensitive part 3 is so selected that a magnetic field leaked to the front of the face facing the magnetic medium out of the bias magnetic field due to the exciting means 5 is cancelled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気抵抗効果型磁気ヘッドに関わる。[Detailed description of the invention] [Industrial application field] The present invention relates to a magnetoresistive magnetic head.

〔発明の概要〕[Summary of the invention]

本発明は、磁気抵抗効果感磁部が対のIgi透磁率磁性
体間に挟み込まれた構成によるいわゆるシールド型の磁
気抵抗効果型磁気ヘッドにおいて、その磁気抵抗効果感
磁部と一方の凸透磁率磁性体とのl/l!離を前方側、
後方側とで異なるようにすると共に、この磁気抵抗効果
感磁部と両画透磁率磁性体とを含む磁気回路を励磁する
手段を設けて磁気抵抗効果感磁部に所要の磁気バイアス
をji、えると共に、更に、磁気媒体との対向面前方に
漏洩するバイアス磁界を効果的に減じるものである。
The present invention relates to a so-called shield type magnetoresistive magnetic head having a structure in which a magnetoresistive magnetic sensing part is sandwiched between a pair of Igi magnetic permeability magnetic bodies, and the present invention provides a magnetoresistive magnetic sensing part and one convex magnetic permeability magnetic head. L/L with magnetic materials! The distance is on the front side,
In addition, a means for exciting a magnetic circuit including the magnetoresistive magnetic sensing part and the magnetic permeability material on both sides is provided to apply a required magnetic bias to the magnetoresistive magnetic sensing part. In addition to this, it also effectively reduces the bias magnetic field leaking forward of the surface facing the magnetic medium.

〔従来の技術〕[Conventional technology]

磁気媒体との対接ないしは対向する面に臨んでPe−N
i+Fe−Co等の帯状の磁気抵抗効果を有する怖磁性
金属薄膜を有して成る磁気抵抗効果感磁部が対の高透磁
率磁性体間に挟み込まれたいわゆるシールド型の磁気抵
抗効果型磁気ヘッドは、磁気媒体との摺接によってその
再生を行う通常のテープレコーダにあっζは、金属蒸着
テープが使用不能であるとか耐磨耗性の点で(、n t
fl性に欠けるなどの問題があるが、磁気媒体が、例え
ばハードディスクであってこれと直接接触せずにその再
生を行ういわゆる浮上型の磁気ヘッドとして用いる場合
には、上述した問題は生ぜず、むしろ、種々の利点をも
たらす。例えば、その出力波形が、電磁誘導型のいわゆ
るリング型磁気ヘッドと共通であるために、信号処理が
共通化できるとか、大きな信号磁束が磁気抵抗効果感磁
部に作用し得るので、感度が高いとか、分解能が磁気抵
抗効果感磁部が配置された磁気ギャップで決るので、周
波数特性が良くなるなどの利点をもたらしめ得る。
Pe-N facing the surface facing or facing the magnetic medium
A so-called shield type magnetoresistive magnetic head in which a magnetoresistive magnetic sensing part comprising a thin film of a magnetically frightening metal having a band-like magnetoresistive effect such as i+Fe-Co is sandwiched between a pair of high permeability magnetic materials. is used in ordinary tape recorders, which reproduce data by sliding contact with magnetic media.
However, when the magnetic medium is a hard disk, for example, and it is used as a so-called floating magnetic head that reproduces data without making direct contact with it, the above-mentioned problems do not occur. Rather, it offers various advantages. For example, the output waveform is the same as that of an electromagnetic induction type so-called ring-shaped magnetic head, so signal processing can be shared, and a large signal magnetic flux can act on the magnetoresistive magnetic part, so the sensitivity is high. In other words, since the resolution is determined by the magnetic gap in which the magnetoresistive magnetic sensing part is placed, it can bring about advantages such as improved frequency characteristics.

ところが2、このシールド型の磁気抵抗効果型磁気ヘッ
ドは、信号磁束の分布が悪いので、ダイナミックレンジ
が狭く非線形が多い。そしてこのことは、信号磁束分布
と、バイアス磁界による磁化分布が異なっていると余計
に大きくなる。また、特に、信号磁束の分布が先端部に
片寄っていることと、磁気抵抗効果感磁部が商運磁率磁
性体によっζ挟み込まれていることによってバイアス磁
界を与える手段を設けるに色々の問題点がある。
However, 2, this shield type magnetoresistive magnetic head has a poor distribution of signal magnetic flux, so the dynamic range is narrow and there are many nonlinearities. This becomes even more significant if the signal magnetic flux distribution and the magnetization distribution due to the bias magnetic field are different. In addition, there are various problems when providing a means for applying a bias magnetic field, especially because the distribution of the signal magnetic flux is biased toward the tip and the magnetoresistive magnetic sensing part is sandwiched between two magnetic materials with a constant magnetic flux. There is a point.

この磁気抵抗効果感磁部に対し、バイアス磁界を与える
ための手段とし°Cは、各種のものが提案されている0
例えば、磁気抵抗効果感磁部を挟み込んでその両側に配
される商運磁率磁性体の一方を導電薄賎によって構成し
、これに通電するごとによってバイアス磁界を得るとか
、高透磁率磁性体間の磁気ギャップ内に磁気抵抗効果感
磁部と共にバイアス磁界発生用の薄膜永久磁石を配置す
るとか、磁気抵抗効果感磁部に絶縁層を介して導体薄膜
を甫ね合わせてこれに通電することによって所要のバイ
アス磁界を与えることが知られζいる。
Various methods have been proposed for applying a bias magnetic field to this magnetoresistive magnetic sensing part.
For example, one of the high permeability magnetic materials placed on both sides of the magnetoresistive magnetic sensing part may be made of a conductive thin film, and a bias magnetic field can be obtained each time an electric current is applied to the conductive thin film. By arranging a thin film permanent magnet for generating a bias magnetic field together with a magnetoresistive magnetic sensing part in the magnetic gap of It is known to provide the required bias magnetic field.

しかしながら、このように磁気ギャップ内に絶縁層を介
して導体薄膜を設けるとか、永久磁石を設けるような構
成とする場合は、磁気ギャップを充分狭小にできない、
そごで、磁気抵抗効果感磁部に磁気抵抗効果を有する強
磁性金属薄膜にバイアス磁界発生用の通電導体薄膜を絶
縁層を介在させることなく重ね合わせるいわゆるシャン
トバイアスの方法も考えられた。この場合、抵抗変化が
犠牲になり多少の出力低トは来すものの磁気ギャップの
狭小化が図られる。また、他の方法としては、磁気抵抗
効果感磁部の磁気異方性を斜めに選定して反磁界と外部
磁界とによって所定方向の磁化が得られるようにした異
方性を利用する方法とか、更に、他の方法として磁気a
t抗効果感磁部の磁気抵抗効果を有する強磁性金属薄膜
自体に、良電気伝導性のストライプ状の^uJ@を斜め
に所要のピッチをもって平行に配列被着したいわゆるバ
ーバーポールパターンを設け、磁化の方向を選定せずに
磁気抵抗効果感磁部におけるセンス電流の通電方向を傾
むけるようにした方法の提案もなされているが、いずれ
のものも製造方法が面倒であるとかバーバーポール型の
ものにおいては、狭トランク化に不利であるなどの問題
点がある。
However, if a conductor thin film is provided within the magnetic gap via an insulating layer, or if a permanent magnet is provided, the magnetic gap cannot be made sufficiently narrow.
Therefore, a so-called shunt bias method was also considered, in which a thin ferromagnetic metal film having a magnetoresistive effect is superimposed on a thin ferromagnetic metal film having a magnetoresistive effect without an intervening insulating layer. In this case, the magnetic gap can be narrowed, although the resistance change is sacrificed and the output is slightly lowered. Another method is to use the anisotropy in which the magnetic anisotropy of the magnetoresistive magnetic sensing part is selected obliquely so that magnetization in a predetermined direction is obtained by a demagnetizing field and an external magnetic field. , Furthermore, as another method, magnetic a
A so-called barber pole pattern is provided on the ferromagnetic metal thin film itself which has a magnetoresistive effect in the magneto-resistance effect of the magneto-sensitive part, in which striped ^uJ@ with good electrical conductivity are arranged diagonally and in parallel at the required pitch. A method has been proposed in which the direction of the sense current in the magnetoresistive magnetic sensing section is tilted without selecting the direction of magnetization, but all of these methods are complicated to manufacture or require a barber-pole type. However, there are problems such as being disadvantageous in making the trunk narrower.

更に、この種の磁気抵抗効果型磁気ヘッドにおいてその
バイアス磁界が、磁気媒体との対向前方側に漏洩するこ
とは、再生時に媒体の残留磁化に悪い影雷を与えてしま
い抗磁力の小さい磁気媒体が使用できなくなるので、こ
のような漏洩磁界は極力回避されることが望まれる。
Furthermore, in this type of magnetoresistive magnetic head, the leakage of the bias magnetic field to the front side facing the magnetic medium has a negative effect on the residual magnetization of the medium during playback, and the magnetic medium has a low coercive force. Since it becomes unusable, it is desirable to avoid such leakage magnetic fields as much as possible.

〔発明が解決しようとする問題点j 本発明は、上述のシールド型の磁気ヘッドにおける磁気
抵抗効果感磁部に対するバイアス磁界の印加に関する諸
問題を解消し、簡潔な構成によって狭磁気ギャップ、狭
トラツク幅でしかも磁気媒体との対向前方部への磁束の
漏洩を効果的に回避することのできるようにした磁気抵
抗効果型磁気ヘッドを提供するものである。
[Problems to be Solved by the Invention] The present invention solves the various problems related to the application of a bias magnetic field to the magnetoresistive magnetic sensing part in the above-mentioned shield type magnetic head, and achieves narrow magnetic gaps and narrow tracks with a simple configuration. An object of the present invention is to provide a magnetoresistive magnetic head which is wide enough to effectively avoid leakage of magnetic flux to a front portion facing a magnetic medium.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、第1図及び第2図にそれぞれその拡大断面図
をボずように、互いに対向する対の高透磁率磁性体、す
なわち第1及び第2の高透磁率磁性体(,1)及び(2
)の、互いに対向し磁気ギャップ(4)を構成する前方
端間に、磁気抵抗効果感磁部(3)を挟み込んだ配置構
成をとる。
The present invention comprises a pair of high magnetic permeability magnetic bodies facing each other, that is, a first and a second high magnetic permeability magnetic body (, 1), as shown in FIGS. and (2
), the magnetoresistive effect magnetic sensing part (3) is sandwiched between the front ends facing each other and forming a magnetic gap (4).

そして、この磁気ギャップにおい°ζ一方のl1II透
磁率磁性体+11と磁気抵抗効果感磁部(3)との磁気
的比!111Lは一定とするが、他方の第2の高透磁率
磁性体(2)と磁気抵抗効果感磁部(3)との距離が前
方側と後方側とで異なるようにこの第2のIIII透磁
率磁性体(2)の磁気抵抗効果感磁部(3)との対向面
を加]ユする。
In this magnetic gap, the magnetic ratio between one l1II permeability magnetic body +11 and the magnetoresistive magnetic sensing part (3)! 111L is constant, but this second III permeability is set so that the distance between the other second high permeability magnetic body (2) and the magnetoresistive effect magnetic part (3) is different between the front side and the rear side. The surface of the magnetic material (2) facing the magnetoresistive magnetic sensing part (3) is applied.

第1図の例では前方の距1i11Lfと後方の距離Lb
を、IJ< Lbとし、第2図の例ではLb< IJと
した場合である。
In the example of Fig. 1, the front distance 1i11Lf and the rear distance Lb
, IJ<Lb, and in the example of FIG. 2, Lb<IJ.

他方の高透磁率磁性体(1)は、磁気抵抗効果感磁部(
3)との距離が均一になるようにこの磁気抵抗効果感磁
部(3)との対向面が平坦に形成される。
The other high permeability magnetic body (1) has a magnetoresistive effect magnetic sensing part (
The surface facing the magnetoresistive magnetic sensing part (3) is formed flat so that the distance from the magnetoresistive part (3) is uniform.

一方、高透磁率磁性体(11及び(2)を含む磁気回路
を励磁する手FIt(51を設ける。
On the other hand, a hand FIt (51) is provided that excites the magnetic circuit including the high permeability magnetic materials (11 and (2)).

この構成による磁気抵抗効果型磁気へ、ラドは、その磁
気ギャップ(4)内に配置された磁気抵抗効果感磁部(
3)の前号端縁が臨む前面(8)が磁気媒体(6)例え
ばハードディスクに対向されこの磁気媒体(6)との相
対的移行によって磁気媒体(6)上の磁気的記録の読み
出しを行う。
Due to this configuration of magnetoresistive magnetism, the RAD has a magnetoresistive magnetic sensing part (
The front surface (8) facing the edge of 3) faces a magnetic medium (6), for example, a hard disk, and the magnetic recording on the magnetic medium (6) is read by relative movement with this magnetic medium (6). .

この場合、磁気抵抗効果感磁部(3)に通ずるセンス電
流を励磁手段(5)によるバイアス磁界の磁気媒体との
対向面前方への漏洩磁界を打ち消す方向となるように選
定する。
In this case, the sense current flowing through the magnetoresistive magnetic sensing section (3) is selected in such a direction as to cancel out the leakage magnetic field of the bias magnetic field generated by the excitation means (5) toward the front of the surface facing the magnetic medium.

或いは、上述の構成におい゛(、その磁気抵抗効果感磁
部(3)を磁気抵抗効果を有する強磁性金属薄19に導
体を重ね合わせたシャント型の構成とする。
Alternatively, in the above structure, the magnetoresistive magnetic sensing part (3) is of a shunt type structure in which a conductor is superimposed on a thin ferromagnetic metal 19 having a magnetoresistive effect.

そして、この導体への通電によって、励磁手鎖によるバ
イアス磁界と同方向の磁界が磁気抵抗効果感磁部(3)
の磁気抵抗効果を有する強磁性金属薄膜に生じ、且つ励
磁手段(5)によるバイアス磁界の、磁気媒体との対向
向(8)の前方への漏洩磁界を打ち消す方向の磁界が発
生ずるようにする。
By energizing this conductor, a magnetic field in the same direction as the bias magnetic field due to the excitation hand chain is applied to the magnetoresistive magnetic sensing part (3).
A magnetic field is generated in the ferromagnetic metal thin film having a magnetoresistance effect and in a direction that cancels out the leakage magnetic field of the bias magnetic field by the excitation means (5) in the forward direction facing the magnetic medium (8). .

〔作用〕[Effect]

上述したように、本発明においては、磁気抵抗効果感磁
部(3)を挟み込む第1及び第2の高透磁率磁性体(1
1及び(2)の一方の高透磁率磁性体(2)の磁気抵抗
効果感磁部(3)と対向する而の前方側と後方側とで磁
気抵抗効果感磁部(3)との距離を変えたことによって
磁気ギャップ(4)内に励磁手段(5)を設けずにこれ
にバイアス磁界を5えることができる。
As described above, in the present invention, the first and second high magnetic permeability magnetic bodies (1
Distance between the front side and the rear side of the high permeability magnetic body (2) of one of 1 and (2), which are opposite to the magnetoresistive part (3), and the magnetoresistive part (3) By changing the magnetic field, a bias magnetic field can be applied to the magnetic gap (4) without providing an excitation means (5) in the magnetic gap (4).

第3図は、第1図に示した例において、その第1及び第
2の高透磁率磁性体(1)及び(2)と磁気抵抗効果感
磁部(3)とを含む磁気回路に、励磁手段によって磁束
を印加した状態におけるその磁気ギャップ(4)の近傍
における磁界分布を細線で示したものである。これを見
て明らかなように、この構造における磁気ギャップ(4
)では、磁気抵抗効果感磁部(3)との距離が異なる第
2の高透磁率磁性体(2)側においζは、小なる距離を
有する部分、この例では前方側での分布が大となり、対
向向が平坦な第1の18+透磁率磁性体(1)側におい
ては、殆ど一様な磁界分布を不ず、これは、磁気抵抗効
果感磁部(3)の磁気抵抗効果を有する強磁性金属薄膜
が、1lllii3磁率を有するためにその静磁気的ポ
テンシャルが均一となるためである。このようにして磁
気抵抗効果感磁部(3)の磁気抵抗効果を有する強磁性
金属W#膜にその面方向の磁束が生ずることになり、こ
れによって磁気抵抗効果感磁部(3)に矢印aのバイア
ス磁界を与えることができるものである。
FIG. 3 shows, in the example shown in FIG. 1, a magnetic circuit including the first and second high permeability magnetic bodies (1) and (2) and a magnetoresistive magnetic sensing part (3). The thin line shows the magnetic field distribution in the vicinity of the magnetic gap (4) in a state where magnetic flux is applied by the excitation means. As is clear from this, the magnetic gap (4
), the distribution of ζ on the second high permeability magnetic body (2) side, which is at a different distance from the magnetoresistive magnetic sensing part (3), is large in the part with a small distance, in this example, on the front side. Therefore, on the side of the first 18+ magnetic permeability magnetic body (1) whose opposing sides are flat, there is almost uniform magnetic field distribution, which has the magnetoresistive effect of the magnetoresistive magnetic sensing part (3). This is because the ferromagnetic metal thin film has a magnetic constant of 1llii3, so its magnetostatic potential becomes uniform. In this way, a magnetic flux is generated in the plane direction of the ferromagnetic metal W# film having the magnetoresistive effect of the magnetoresistive effect magnetic sensing part (3), and this causes the magnetoresistive effect magnetic sensing part (3) to appear as shown in the arrow. It is possible to provide a bias magnetic field of a.

このようにして、磁気ギャップ内にバイアス磁界をり、
えるための手段の配置を回避できる。
In this way, a bias magnetic field is placed in the magnetic gap,
It is possible to avoid the arrangement of means for obtaining

そして、第2図にボしたように、磁気ギャップの後方側
で第2の高透磁率磁性体(2)と磁気抵抗効果感磁部(
3)との距離1.bを前方側のそれLfより小にしたも
のにおいては、励磁手段(5)による1#磁方向を同方
向とした場合磁気抵抗効果感磁部(3)における磁化の
方向は逆向きとなる。
As shown in Fig. 2, the second high permeability magnetic body (2) and the magnetoresistive magnetic sensing part (
3) Distance from 1. In the case where b is smaller than that Lf on the front side, when the 1# magnetic direction by the excitation means (5) is set in the same direction, the direction of magnetization in the magnetoresistive magnetic sensing part (3) is opposite.

そして、この場合、磁気ギャップ(4)からその前方に
磁界の漏洩が生じるとこれが磁気媒体(6)に111(
い影響を及ぼす、ところが、本発明においては、上述し
たようにセンス電流の方向、或いはシャント導体を含ん
でセンス電流の通電方向の選定によってこの磁界の漏洩
をキャンセルする手段がとられていることによってこの
ような磁界の漏洩の回避が図られている。
In this case, when a magnetic field leaks from the magnetic gap (4) in front of it, this leaks to the magnetic medium (6) at 111 (
However, in the present invention, as described above, a means is taken to cancel this leakage of the magnetic field by selecting the direction of the sense current or the direction of the sense current including the shunt conductor. Efforts are made to avoid such magnetic field leakage.

〔実施例〕〔Example〕

第1図に示した本発明による磁気抵1に効果型磁気ヘッ
ドの一例を詳細に説明する。
An example of an effect type magnetic head based on the magnetoresistive 1 according to the present invention shown in FIG. 1 will be explained in detail.

その理解を容易にするために、第4図を参照してそのI
!!造方法と共に説明する。
To facilitate understanding, please refer to Figure 4.
! ! This will be explained along with the manufacturing method.

第1の高透磁率磁性体+1)は、そのl1向が平坦な血
とされた例えばNi−Znフェライト基板上り成り、こ
れの上に厚さが例えば 0.6μmのSiO2より成る
絶縁層(7)を被着し、これの上に磁気抵抗効果感磁部
(3)を形成してこの絶縁層(7)によっ′(第1の高
透磁率磁性体(1)との磁気的距1i1it、が均一と
なされた磁気抵抗効果感磁部(3)を形成する。この磁
気抵抗効果感磁部(3)は、例えば厚さ300〜500
人の厚さにNi−Fe金属股をスパッタリング或いは蒸
着等によって被着し、選択的エツチングするごとによっ
て所定の形状に形成する。すなわち、同図において紙面
と直交する方向に伸びる帯状に形成する。
The first high permeability magnetic material (+1) is made of, for example, a Ni-Zn ferrite substrate whose l1 direction is flat, and on top of this is an insulating layer (7) made of SiO2 with a thickness of, for example, 0.6 μm. ), a magnetoresistive magnetic sensing part (3) is formed thereon, and this insulating layer (7) provides a magnetic distance of 1i1it from the first high permeability magnetic body (1). , forms a magnetoresistive magnetic sensing part (3) having a uniform thickness.
A Ni--Fe metal layer is deposited to the same thickness by sputtering or vapor deposition, and formed into a predetermined shape by selective etching. That is, in the figure, it is formed into a band shape extending in a direction perpendicular to the paper surface.

一方この磁気抵抗効果感磁部(3)の後方に、励磁手段
−(5)を形成する。この励磁手段(5)は、例えば、
Mo[(5a)と、Au層(5b)と、更に、No層(
5c)との多層構造より成る導電層の1層構造とするか
、もしくは図示しないが、例えばこの導電層を夫々絶縁
層を介して複数の1−に積層することによっ′C構成す
ることもできるなど種々の構成をとり得る。
On the other hand, an excitation means (5) is formed behind the magnetoresistive magnetic sensing part (3). This excitation means (5) is, for example,
Mo [(5a), Au layer (5b), and No layer (
5c), or by laminating a plurality of conductive layers with insulating layers interposed therebetween, although not shown. Various configurations are possible, such as:

この励磁手段(5)の形成に関してもスパッタリング或
いは蒸着等によって被着し、選択的エツチングによって
不要部分を除去することによっ°ζ形成し得る。
The excitation means (5) can also be formed by depositing by sputtering or vapor deposition, and removing unnecessary portions by selective etching.

そして、これら磁気抵抗効果感磁部(3)と励磁手段(
5)を覆って5i02等の非磁性絶縁層(18)を被着
し、これを部分的にエツチングする。この例では、最終
的に磁気ギャップ(4)を形成する部分のうちの前方を
所定の幅Wにわたってエツチングする。
These magnetoresistive magnetic sensing parts (3) and excitation means (
5), deposit a non-magnetic insulating layer (18) such as 5i02 and partially etch it. In this example, the front portion of the portion that will eventually form the magnetic gap (4) is etched over a predetermined width W.

次にこれら磁気抵抗効果感磁部(3)及び励磁手段(5
)上を横切るように、第2のlG]iJ磁率磁性体(2
)を構成する磁性材を被着する。この場合、予め絶縁層
(7)の励磁手段(5)より後方において、窓(7a)
を穿設しておき、この窓(7a)を通じて画商透磁率磁
性体(1)及び(2)とがその後端におい゛(、磁気的
に密に結合して磁気ギャップ(4)を含んで両箱1及び
第2のIGJ透磁率磁性体Ill及び(2)によって磁
気回路を構成する。
Next, these magnetoresistive magnetic sensing parts (3) and excitation means (5
) across the top of the second lG]iJ magnetic material (2
) is coated with a magnetic material. In this case, a window (7a) is placed in advance behind the excitation means (5) of the insulating layer (7).
Through this window (7a), the permeable magnetic materials (1) and (2) are magnetically tightly coupled to each other at the rear end thereof, including the magnetic gap (4). A magnetic circuit is constructed by the box 1 and the second IGJ permeability magnetic body Ill and (2).

そして、内向透磁率磁性体(11及び(2)に差し渡っ
て前方側を鎖線にでポず第1の高透磁率磁性体(1)ま
で切削vF磨して磁気媒体との対向向(8)を形成する
Then, cross over the inward magnetic permeability magnetic bodies (11 and (2) and cut the front side along the chain line to the first high permeability magnetic body (1) and polish it by vF, and then polish the first high permeability magnetic body (1) facing the magnetic medium (8). ) to form.

このようにすれば第1及び第2の^透磁率磁性体If)
及び(2)間の前方側に磁気抵抗効果感磁部(3)を挟
んで磁気ギャップ(4)が構成され、この磁気ギャップ
(4)の第1の高透磁率磁性体11)が磁気抵抗効果感
磁部(3)と対向する側の曲には段部が形成されて、磁
気抵抗効果感磁部(3)との距離が前方側と後方側とで
異なるLf< Lbの磁気抵抗効果型磁気ヘッドが構成
される。
In this way, the first and second magnetic permeability If)
A magnetic gap (4) is formed on the front side between and (2) with a magnetoresistance effect magnetic sensing part (3) in between, and the first high permeability magnetic body 11) of this magnetic gap (4) has a magnetoresistance effect. A stepped part is formed on the curve on the side facing the magnetically effective magnetically sensitive part (3), and the distance from the magnetically effective magnetically sensitive part (3) is different between the front side and the rear side, and the magnetoresistive effect is such that Lf<Lb. type magnetic head is constructed.

第5図はこのような構成による磁気抵抗効果型磁気ヘッ
ドを模式的に示したもので、第5図において第4図と対
応する部分には同一符号を付す。
FIG. 5 schematically shows a magnetoresistive magnetic head having such a configuration, and parts in FIG. 5 that correspond to those in FIG. 4 are given the same reference numerals.

第5図においてはセンス電流を流さない状態で、励磁手
段(5)に通電してバイアス磁界を与えた場合をボした
もので、この場合、同図に鎖線矢印すで示すように、磁
気媒体との対向面(8)の前方に漏洩磁束が発生する。
Figure 5 shows the case where the excitation means (5) is energized and a bias magnetic field is applied without any sense current flowing; in this case, as shown by the chain line arrow in the figure, the magnetic medium Leakage magnetic flux is generated in front of the facing surface (8).

この構成において、本発明においては、磁気抵抗効果感
磁部(3)に特定の方向のセンス電流を通ずる。すなわ
ち、令弟5図の構成において、励磁手段(5)に紙面の
下方から」二方に向かう電流を通ずる場合においては、
励磁手段(5)への通電方向とは逆向きの通電、すなわ
ち第6図に示すように、紙面の上方から上方に向かう通
電を行う、このようにすると、センス電流によって対向
面(8)の前方には、第6図に実線矢印Cでボずように
、第5図における漏洩電流すとは逆向きの磁束が発生す
るので、このセンス電流を適当に選定することによって
、漏洩電流すを実質的に打ち消すか減少させることがで
きる。なお、この場合、磁気ギャップ(4)の形状の特
殊性から、磁気抵抗効果感磁部(3)に励磁手段(5)
によるバイアス磁界とは逆向きの磁界が第6図に矢印d
でネオように生ずるが、この磁界dは、実際上きわめて
小さいのでこれによる影響は殆どない。例えば、第5図
における励磁子′flt(5)への通電によるバイアス
効率(励磁手段(5)への通電電流1mA当たりの磁気
抵抗効果感磁部(3)の磁気抵抗効果を有する強磁性金
属薄膜の磁化Myの、飽和磁化Msに対する割合、すな
わち、(My/ Ms) X 100 )が2.6%/
IIIAである場合、磁気抵抗効果感磁部(3)へのセ
ンス電流によって、−0,37%/mAというわずかな
逆向きのバイアス磁界が生ずるに過ぎない。
In this configuration, in the present invention, a sense current in a specific direction is passed through the magnetoresistive magnetic sensing part (3). That is, in the configuration shown in Figure 5, when a current is passed through the excitation means (5) in two directions from the bottom of the page,
The current is applied in the opposite direction to the excitation means (5), that is, the current is applied upward from the top of the paper as shown in FIG. 6. In this way, the sense current causes the opposing surface (8) to In the front, magnetic flux is generated in the opposite direction to the leakage current in Figure 5, as indicated by the solid arrow C in Figure 6, so by appropriately selecting this sense current, the leakage current can be reduced. can be substantially canceled or reduced. In this case, due to the special shape of the magnetic gap (4), the magnetoresistive effect magnetic sensing part (3) is provided with an excitation means (5).
The magnetic field in the opposite direction to the bias magnetic field is shown by the arrow d in Figure 6.
However, since this magnetic field d is actually extremely small, it has almost no effect. For example, in FIG. The ratio of magnetization My of the thin film to saturation magnetization Ms, that is, (My/Ms) x 100) is 2.6%/
In the case of IIIA, the sense current to the magnetoresistive magnetic sensing part (3) produces only a slight bias magnetic field in the opposite direction of -0.37%/mA.

具体的には、励磁子vIt(5) ニ36〜45a+A
T 例、t ハ36+wATの通電を行った場合、セン
ス電流を−33〜−40■^例えば−33■^とすると
き、対向面(8)の前方への漏洩電流は殆どキャンセル
されて実質的に生じなかった。
Specifically, exciter vIt(5) D36-45a+A
For example, when 36+wAT is energized and the sense current is set to -33 to -40, for example, -33, the leakage current to the front of the opposing surface (8) is almost canceled and substantially did not occur.

尚、第4図で説明した例では、磁気抵抗効果感磁部(3
)を磁気抵抗効果を有する強磁性金属Wt151!のみ
によって構成した場合であるが、この磁気抵抗効果感磁
部(3)を、第7図に示すように、第2の高透磁率磁性
体(2)側において磁気抵抗効果ををする強磁性金属薄
膜(3八)に導体(3B)霜ね合わせた構造としたいわ
ばシャント構造とすることができる。この場合において
は、導体(3B)に第5図で説明した励磁手段(5)へ
の通電方向とは逆向き、すなわち励磁子[It(5)へ
の通電方向が図示のように紙面の上方から上方に向かう
向きであるとすると、導体(3B)への通電方向は、紙
面の上方から下方に向かう方向とする。
In the example explained in FIG. 4, the magnetoresistive effect magnetic sensing part (3
) is a ferromagnetic metal Wt151 with magnetoresistive effect! However, as shown in FIG. A structure in which the conductor (3B) is bonded to the metal thin film (38) can be used as a so-called shunt structure. In this case, the conductor (3B) is energized in the direction opposite to the direction of energization to the excitation means (5) explained in FIG. Assuming that the current direction is from the top to the top, the direction of energization to the conductor (3B) is from the top to the bottom of the page.

このような導体(3B)への通電態様によっても、対向
面(8)の前方には、第7図に矢印eで示すように、第
5図の矢印すでボす漏洩磁界を打ち消す方向の磁界が生
じる。そしてこの場合においては、この導体(3B)へ
の上述した通電によって磁気抵抗効果を有する強磁性金
属薄膜(3A)には、励磁手段(5)によるバイアス磁
界と同方向の磁界fが生じる。具体的には、励磁手段(
5)に20〜25+mAT例えば20mATの通電を行
った場合、導体(3B)を含む磁気抵抗効果感磁部り3
)への通電電流を−18〜−22■^例えば−18■^
とするとき、対向面(8)の前方への漏洩磁界は殆どキ
ャンセルされて実質的に生じなかった。更に、上述した
例では、磁気ギャップ(4)の第2の高透磁率磁性体(
2)と磁気抵抗効果感磁部(3)との距離を前方側にお
いて狭小とした場合であるが、第2図にボした例のよう
に、後方側で狭小とした、つまり、Lb< Lfとした
構成とする場合を、第8図〜第10図を参照して説明す
る。尚、第8図〜第10図において、第5図〜第7図と
対応する部分には、同一符号を付して重複説明を省略す
るが、この場合においては、例えば、第8図に示すよう
に励磁手段(5)に紙面の下方から上方に向かう通電を
行うときにおいては、磁気抵抗効果感磁部(3)には、
第5図で説明したとは逆向きのバイアス磁界が同図中矢
印!で示すようにす、えられる。
Even with this type of energization to the conductor (3B), there is a magnetic field in front of the opposing surface (8), as shown by arrow e in FIG. A magnetic field is generated. In this case, the above-described energization of the conductor (3B) generates a magnetic field f in the same direction as the bias magnetic field produced by the excitation means (5) in the ferromagnetic metal thin film (3A) having a magnetoresistive effect. Specifically, the excitation means (
5) When a current of 20 to 25+ mAT, for example 20 mAT, is applied to the magnetoresistive effect magnetic part 3 including the conductor (3B)
) -18 to -22■^ For example, -18■^
When this was done, the leakage magnetic field toward the front of the opposing surface (8) was almost canceled and was not substantially generated. Furthermore, in the example described above, the second high permeability magnetic body (
2) and the magnetoresistive magnetic sensing part (3) is narrowed on the front side, but as in the example shown in Fig. 2, it is narrowed on the rear side, that is, Lb<Lf. A case where the configuration is as follows will be explained with reference to FIGS. 8 to 10. In FIGS. 8 to 10, parts corresponding to those in FIGS. 5 to 7 are given the same reference numerals and redundant explanations will be omitted. When the excitation means (5) is energized from the bottom to the top of the paper as shown in FIG.
The bias magnetic field in the opposite direction to that explained in Figure 5 is indicated by the arrow in the figure! As shown in , it can be obtained.

この構成においても、本発明においては、磁気抵抗効果
感磁部(3)の磁気抵抗効果を有する強磁性金属薄膜(
3^)に特定の方向のセンス電流を通ずる。
Even in this configuration, in the present invention, the ferromagnetic metal thin film (
A sense current in a specific direction is passed through 3^).

すなわち、このセンス電流は、励磁手段(5)への通電
方向とは逆向きの通電、すなわち令弟8図の構成におい
て、励磁手段(5)に紙面の下方から上方に向かう電流
を通ずる場合においては、第9図に不ずように、紙面の
上方から下方に向かう通電を行う、このようにすると、
センス電流によって対向面(8)の前方には、第9図に
実線矢印gで示すように、第8図における漏洩磁界すと
は逆向きの磁界が発生ずるので、このセンス電流を適当
に選定することによっ°ζ、漏洩磁界すを実質的に打ち
消すか減少させることができる。なお、この場合、磁気
ギャップ(4)の形状の特殊性から、磁気抵抗効果感磁
部(3)に励磁手段(5)によるバイアス磁界とは逆向
きの磁界が第9図に矢印りで不ずように生ずるが、この
磁界りは、実際上きわめて小さいのでこれによる影響は
殆どない。例えば、第8図における励磁率Yl&(5)
への通電によるバイアス効率が、−3,1%/mAであ
る場合、磁気抵抗効果感磁部(3)へのセンス電流によ
って、+0.7%/n+Aというわずかな逆向きのバイ
アス磁界11が生ずるに過ぎない。
That is, this sense current is energized in the opposite direction to the direction of energization to the excitation means (5), that is, when the current is passed through the excitation means (5) from the bottom to the top of the page in the configuration shown in Figure 8. As shown in Fig. 9, the current is applied from the top to the bottom of the page.In this way,
The sense current generates a magnetic field in front of the opposing surface (8) in the opposite direction to the leakage magnetic field in Fig. 8, as shown by the solid arrow g in Fig. 9, so this sense current should be selected appropriately. By doing so, the leakage magnetic field can be substantially canceled or reduced. In this case, due to the special shape of the magnetic gap (4), a magnetic field in the opposite direction to the bias magnetic field by the excitation means (5) is applied to the magnetoresistive magnetic sensing part (3) as shown by the arrow in FIG. However, this magnetic field is actually extremely small, so it has almost no effect. For example, the excitation rate Yl&(5) in FIG.
When the bias efficiency due to energization is -3.1%/mA, a slight reverse bias magnetic field 11 of +0.7%/n+A is generated by the sense current to the magnetoresistive magnetic sensing part (3). It just happens.

具体的には、励磁手段(5)に32〜40mAT例えば
32mATの通電を行った場合、センス電流を2B〜3
4mA例えば28−八とするとき、対向向(8)の前方
への漏洩電界は殆どキャンセルされて実質的に生じなか
った。
Specifically, when the excitation means (5) is energized with a current of 32 to 40 mAT, for example, 32 mAT, the sense current is increased to 2B to 3
At 4 mA, for example, 28-8, the leakage electric field to the front of the opposing (8) was almost canceled and was not substantially generated.

また、この場合においても、第1θ図に不ずように、こ
の磁気抵抗効果感磁部(3)を、磁気抵抗効果を有する
強磁性金属!IQ(3^)に、第2のβi透磁率磁性体
(2)側において導体(3B)を市ね合わせたいわばシ
ャント構造とすることができる。この場合においては、
導体(3B)に第8図で説明した励磁手段(5)への通
電方向とは逆向き、すなわち励磁手段(5)への通電方
向が図示のように紙面の上方から上方に向かう向きであ
るとすると、導体(3B)への通電方向は、紙面の上方
から上方に向かう方向とする。
Also, in this case, as shown in Fig. 1θ, the magnetoresistive magnetic sensing portion (3) is made of a ferromagnetic metal having a magnetoresistive effect. IQ (3^) can be combined with a conductor (3B) on the second βi permeability magnetic body (2) side to form a so-called shunt structure. In this case,
The conductor (3B) is energized in the opposite direction to the direction of energization to the excitation means (5) explained in FIG. In this case, the direction in which the conductor (3B) is energized is from the top of the page to the top.

このような導体(3B)への通電態様によっても、対向
面(8)の前方には、第10図に矢印iで不すように、
第8図の矢印すで丞す漏洩磁界を打ち消1一方向の磁束
が生じる。そしてこの場合においては、この導体(3B
)への上述した通電によって磁気抵抗効果を有する強磁
性金属B膜(3A)には、励磁手段(5)によるバイア
ス磁界と同方向の矢印jでボず磁界が生ずる。具体的に
は、励磁手段(5)に15〜18−A丁例えば15−八
Tの通電を行った場合、導体(3B)を含む磁気抵抗効
果感磁部(3)への通電電流を−13〜−16−^例え
ば15−八とするとき、対向向(8)の前方への漏洩磁
界は殆どキャンセルされて実質的に生じなかった。
Even with this manner of energizing the conductor (3B), there is a gap in front of the opposing surface (8) as indicated by arrow i in FIG.
The leakage magnetic field indicated by the arrow in FIG. 8 is canceled out, and magnetic flux in one direction is generated. And in this case, this conductor (3B
) by the above-mentioned energization, a blob magnetic field is generated in the ferromagnetic metal B film (3A) having a magnetoresistive effect in the same direction as the bias magnetic field by the excitation means (5), as indicated by the arrow j. Specifically, when the excitation means (5) is energized with a current of 15 to 18 T, for example, 15-8 T, the current applied to the magnetoresistive magnetic sensing part (3) including the conductor (3B) is - 13 to -16-^For example, when it is set to 15-8, the leakage magnetic field toward the front of the opposing side (8) is almost canceled and is not substantially generated.

〔発明の効果〕〔Effect of the invention〕

上述したように、本発明によれば、磁気抵抗効果感磁部
(3)を配置する磁気ギャップ(4)の構成を特殊の構
成としたことによって、磁気ギャップ+41内にこれに
バイアス磁界を与えるための手段を設けることなく磁気
抵抗効果感磁部(3)に所要のバイアス磁界を与えるこ
とができるので、構成の簡潔化と共に狭トラツク、狭ギ
ャップ化が図られ、製造の簡略化が図られるものである
As described above, according to the present invention, the magnetic gap (4) in which the magnetoresistive effect magnetic sensing part (3) is arranged has a special configuration, so that a bias magnetic field is applied to the magnetic gap +41. Since the required bias magnetic field can be applied to the magnetoresistive magnetic sensing part (3) without providing any means for this purpose, the structure can be simplified, the track and gap can be narrowed, and manufacturing can be simplified. It is something.

そして、特に本発明においては、通′tIi態様を特殊
としたことによって、磁気媒体との対向面前方への漏洩
磁界を効果的に解消ないしは減少することができるよう
にしたので漏洩電流による磁気媒体への影響を回避でき
、比較的抵抗磁力を有する磁気媒体の使用が可能になる
など多くの利益をもたらすものである。
In particular, in the present invention, by making the communication mode special, it is possible to effectively eliminate or reduce the leakage magnetic field forward of the surface facing the magnetic medium. This brings about many benefits, such as avoiding the influence on the magnetic field and making it possible to use a magnetic medium with a relatively resistive magnetic force.

図面ノffi 単すvQIJIJ 第1図及び第2図は本発明による磁気抵抗効果型磁気ヘ
ッドの各側の路線的拡大断面図、第3図はその磁界分布
を示す図、第4図は本発明による磁気抵抗効果型磁気ヘ
ッドの一例の一製造−[稈における拡大断面図、第5図
〜第10図は本発明の説明に供する路線図である。
Figures 1 and 2 are enlarged linear sectional views of each side of the magnetoresistive magnetic head according to the present invention, Figure 3 is a diagram showing the magnetic field distribution, and Figure 4 is a diagram according to the present invention. Manufacture of an example of a magnetoresistive magnetic head by [Expanded sectional view of the culm] FIGS. 5 to 10 are route diagrams for explaining the present invention.

Claims (1)

【特許請求の範囲】 1、対の高透磁率磁性体間に磁気抵抗効果感磁部が挟み
込まれ、一方の高透磁率磁性体は、上記磁気抵抗効果感
磁部と対向する面が、上記磁気抵抗効果感磁部との距離
が前方側と後方側とで異なるように加工され、他方の高
透磁率磁性体は、上記磁気抵抗効果感磁部と対向する面
が平坦に形成されて上記磁気抵抗効果感磁部との距離が
均一に構成されると共に、磁気回路を励磁して上記磁気
抵抗効果感磁部にバイアス磁界を与える励磁手段が設け
られ、上記磁気抵抗効果感磁部に通ずるセンス電流を、
これによって発生する磁界が、上記励磁手段によって発
生する磁気媒体との対向面前方への漏洩磁界を打ち消す
方向となるように選定することを特徴とする磁気抵抗効
果型磁気ヘッド。 2、対の高透磁率磁性体間に磁気抵抗効果を有する強磁
性金属薄膜と導体とが重ね合わされて成る磁気抵抗効果
感磁部が挟み込まれ、一方の高透磁率磁性体は、上記磁
気抵抗効果感磁部と対向する面が、上記磁気抵抗効果感
磁部との距離が前方側と後方側とで異なるように加工さ
れ、他方の高透磁率磁性体は、上記磁気抵抗効果感磁部
と対向する面が平坦に形成されて上記磁気抵抗効果感磁
部との距離が均一に構成されると共に、磁気回路を励磁
して上記磁気抵抗効果感磁部にバイアス磁界を与える励
磁手段が設けられ、上記磁気抵抗効果感磁部の上記導体
に通ずる電流を、これによって発生する磁界が、上記励
磁手段によるバイアス磁界と同方向の磁界が磁気抵抗効
果感磁部の磁気抵抗効果を有する強磁性金属薄膜に生じ
、且つ上記励磁手段によって発生する磁気媒体との対向
面前方への漏洩磁界を打ち消す方向となるように選定す
ることを特徴とする磁気抵抗効果型磁気ヘッド。
[Claims] 1. A magnetoresistive magnetic body is sandwiched between a pair of high magnetic permeability magnetic bodies, and one of the high magnetic permeability magnetic bodies has a surface facing the magnetoresistive magnetic body that is The distance from the magnetoresistive effect magnetically sensitive part is processed to be different between the front side and the rear side, and the other high magnetic permeability magnetic body is formed so that the surface facing the magnetoresistive effect magnetically sensitive part is formed flat. The distance from the magnetoresistive magnetic sensing section is uniform, and excitation means for exciting a magnetic circuit to apply a bias magnetic field to the magnetoresistive magnetic sensing section is provided, which communicates with the magnetoresistive magnetic sensing section. sense current,
A magnetoresistive magnetic head, characterized in that the magnetic field generated by this is selected in a direction so as to cancel out the leakage magnetic field generated by the excitation means in front of the surface facing the magnetic medium. 2. A magnetoresistive magnetically sensitive part consisting of a superimposed ferromagnetic metal thin film having a magnetoresistive effect and a conductor is sandwiched between a pair of high magnetic permeability magnetic materials, and one of the high magnetic permeability magnetic materials is sandwiched between the pair of high magnetic permeability magnetic materials. The surface facing the magnetoresistive magnetic sensing part is processed so that the distance from the magnetoresistive magnetic sensing part is different between the front side and the rear side, and the other high magnetic permeability magnetic body is The surface facing the magnetoresistive magnetosensitive section is formed flat so that the distance from the magnetoresistive magnetosensitive section is uniform, and excitation means is provided for exciting a magnetic circuit to apply a bias magnetic field to the magnetoresistive magnetosensitive section. The magnetic field generated by the current flowing through the conductor of the magnetoresistive magnetic sensing part in the same direction as the bias magnetic field by the excitation means is a ferromagnetic material having a magnetoresistive effect of the magnetoresistive magnetic sensing part. A magnetoresistive magnetic head characterized in that the magnetic head is selected so as to cancel out a leakage magnetic field generated in the metal thin film and generated by the excitation means in the forward direction of the surface facing the magnetic medium.
JP19900885A 1985-09-09 1985-09-09 Magnetoresistance effect type magnetic head Pending JPS6258411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19900885A JPS6258411A (en) 1985-09-09 1985-09-09 Magnetoresistance effect type magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19900885A JPS6258411A (en) 1985-09-09 1985-09-09 Magnetoresistance effect type magnetic head

Publications (1)

Publication Number Publication Date
JPS6258411A true JPS6258411A (en) 1987-03-14

Family

ID=16400571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19900885A Pending JPS6258411A (en) 1985-09-09 1985-09-09 Magnetoresistance effect type magnetic head

Country Status (1)

Country Link
JP (1) JPS6258411A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0325365A2 (en) * 1988-01-19 1989-07-26 Hewlett-Packard Company Compensated magneto-resistive read head
WO1992004639A1 (en) * 1990-08-31 1992-03-19 Kabushiki Kaisha Komatsu Seisakusho Ferromagnetic thin film magnetic sensor
EP0482642A2 (en) * 1990-10-24 1992-04-29 Sony Corporation Composite magnetoresistive thin-film magnetic head
JPH05114122A (en) * 1991-10-22 1993-05-07 Victor Co Of Japan Ltd Magnetoresistance effect head
EP0669609A2 (en) * 1994-02-28 1995-08-30 Commissariat A L'energie Atomique Magnetic read head with magnetoresistive element and improved biasing means

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0325365A2 (en) * 1988-01-19 1989-07-26 Hewlett-Packard Company Compensated magneto-resistive read head
WO1992004639A1 (en) * 1990-08-31 1992-03-19 Kabushiki Kaisha Komatsu Seisakusho Ferromagnetic thin film magnetic sensor
EP0482642A2 (en) * 1990-10-24 1992-04-29 Sony Corporation Composite magnetoresistive thin-film magnetic head
EP0482642A3 (en) * 1990-10-24 1994-06-08 Sony Corp Composite magnetoresistive thin-film magnetic head
JPH05114122A (en) * 1991-10-22 1993-05-07 Victor Co Of Japan Ltd Magnetoresistance effect head
EP0669609A2 (en) * 1994-02-28 1995-08-30 Commissariat A L'energie Atomique Magnetic read head with magnetoresistive element and improved biasing means
FR2716741A1 (en) * 1994-02-28 1995-09-01 Commissariat Energie Atomique Magnetic reading head with magnetoresistive element and advanced polarization means.
EP0669609A3 (en) * 1994-02-28 1995-10-18 Commissariat Energie Atomique Magnetic read head with magnetoresistive element and improved biasing means.

Similar Documents

Publication Publication Date Title
US4734644A (en) Flux cancelling yoke type magnetic transducer head
JP2001176028A (en) Thin film magnetic head and method of producing the same
JPH0473201B2 (en)
JP2001155313A (en) Thin film magnetic head and its manufacturing method
US5491606A (en) Planar magnetoresistive head with an improved gap structure
JPS6258411A (en) Magnetoresistance effect type magnetic head
GB2091025A (en) Magnetic transducer heads utilizing magneto-resistance effect
JPH1091920A (en) Magneto-resistance effect type head
JP2505465B2 (en) Yoke type thin film magnetic head
JPH0845030A (en) Magneto-resistive magnetic head
JPS60157712A (en) Magneto-resistance effect type magnetic head
JPS6258410A (en) Magnetoresistance effect type magnetic head
JPH0473210B2 (en)
JPH1125425A (en) Magnetic head
JP2001250205A (en) Thin film magnetic head and of its manufacturing method
JPS61134913A (en) Magnetoresistance type thin film head
JP2701748B2 (en) Magnetoresistive element and bias applying method thereof
JPS61177616A (en) Thin film magnetic head
JPS63138515A (en) Thin film magnetic head and its reproduction system
JPH026490Y2 (en)
JPS58220240A (en) Magneto-resistance effect type magnetic head
JPS6154012A (en) Magneto-resistance effect head
US6064551A (en) Magnetoresistance effect type magnetic head
JPS59231728A (en) Thin film magnetic head
JP2863543B2 (en) Magnetic head