JPS6257263A - Manufacture of josephson integrated circuit - Google Patents

Manufacture of josephson integrated circuit

Info

Publication number
JPS6257263A
JPS6257263A JP60195946A JP19594685A JPS6257263A JP S6257263 A JPS6257263 A JP S6257263A JP 60195946 A JP60195946 A JP 60195946A JP 19594685 A JP19594685 A JP 19594685A JP S6257263 A JPS6257263 A JP S6257263A
Authority
JP
Japan
Prior art keywords
layer
etching mask
junction
bonding
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60195946A
Other languages
Japanese (ja)
Other versions
JPH0322711B2 (en
Inventor
Mutsuo Hidaka
睦夫 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60195946A priority Critical patent/JPS6257263A/en
Publication of JPS6257263A publication Critical patent/JPS6257263A/en
Publication of JPH0322711B2 publication Critical patent/JPH0322711B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N69/00Integrated devices, or assemblies of multiple devices, comprising at least one superconducting element covered by group H10N60/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0912Manufacture or treatment of Josephson-effect devices

Abstract

PURPOSE:To enable multiple classes of Josephson junctions having various characteristics to be formed on the same plane by removing a first junction forming layer through etching except the required portion, and thereafter forming a second junction forming layer which has a tunnel barrier layer consisting of different material or having a different thickness from the first junction forming layer. CONSTITUTION:Formed on the whole surface of a substrate 11 is a first junction forming layer 12 in which a lower electrode and an upper electrode consisting of superconducting material are coupled together through a tunnel barrier layer, a first etching mask 13 is formed on the required portion thereon, and the said first junction forming layer 12 which is no covered with the etching mask 13 is etched away. Thereafter, on the whole surface of the substrate 11, a second junction forming layer 14 is formed which has a tunnel barrier layer consisting of different material or having a different thickness from the said first junction forming layer, a second etching mask 15 is formed on the required portion thereon, and the said second junction forming layer 14 which is not covered with the second etching mask 15 is etched away. Thus, multiple classes of junction forming layers 12, 14 are formed on the same plane.

Description

【発明の詳細な説明】 (M業上の利用分野) 本発明は、ジョセフソン集積回路の製造方法に関し、よ
り詳しくは接合構成層をエツチングで加工することによ
りジョセフソン接合の形成を行うジョセフソン集積回路
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of application in M industry) The present invention relates to a method for manufacturing a Josephson integrated circuit, and more specifically to a method for manufacturing a Josephson integrated circuit, in which a Josephson junction is formed by etching a layer constituting a junction. The present invention relates to a method of manufacturing an integrated circuit.

(従来技術とその問題点) 接合構成層をエツチングで加工することにより形成を行
うジョセフソン接合の製造方法としては、アプライドフ
ィジックスレター第42巻5号1983年472ページ
(ガービッチ他)(Applied PhysicsL
etters、 Vol、42. NO,5’P472
(1983)M、Gurvitch et、al、)1
にある5NEP(selective niobium
 etching process)と呼ばれる方法が
ある。
(Prior art and its problems) A method for manufacturing a Josephson junction, which is formed by etching the layers constituting the junction, is described in Applied Physics Letter, Vol. 42, No. 5, 1983, p. 472 (Gurvich et al.)
etters, Vol. 42. NO, 5'P472
(1983) M., Gurvitch et al.) 1
5NEP (selective niobium)
There is a method called etching process.

第3図に通常の5NEPによるジョセフソン接合の製造
方法を示す。まず基板21の全面にニオブ系金属からな
る下部電極22、トンネル障壁層23、ニオブ金属から
なる」二部電極24からなる接合構成層を形成する。次
に接合構成層の残すべき部分にフォトレジスト等で第1
のエツチングマスク25を形成する(第3図A)。第1
のエツチングマスクで覆われていない接合構成層をエツ
チングで除去する(第3図B)。
FIG. 3 shows a typical method for manufacturing a Josephson junction using 5NEP. First, a bonding layer consisting of a lower electrode 22 made of a niobium-based metal, a tunnel barrier layer 23, and a two-part electrode 24 made of a niobium metal is formed on the entire surface of the substrate 21. Next, apply a first layer of photoresist or the like to the portion of the bonding layer that is to be left.
An etching mask 25 is formed (FIG. 3A). 1st
The bonding constituent layer not covered by the etching mask is removed by etching (FIG. 3B).

第1のエツチングマスクを除去した後、フォトレジスト
等からなる接合領域規定用の第2のエツチングマスク2
6でジョセフソン接合領域を覆う(第3図C)。
After removing the first etching mask, a second etching mask 2 for defining the bonding area made of photoresist or the like is applied.
6 to cover the Josephson junction area (Figure 3C).

前記接合領域規定用の第2のエツチングマスク26で覆
われていない部分の接合構成層の上部電極24をエツチ
ングで除去し、ジョセフソン接合を形成する(第3図D
)。
The portion of the upper electrode 24 of the bonding layer that is not covered by the second etching mask 26 for defining the bonding region is removed by etching to form a Josephson junction (see FIG. 3D).
).

以」二説明した通常の5NEPによるジョセフソン接合
の製造方法を用いた場合、基板上に形成される接合構成
層の臨界電流密度は一定である。このためジョセフソン
接合の臨界電流は面積に比例する。一方、一般にジョセ
フソン集積回路では、臨界電流の異なる複数種類のジョ
セフソン接合を必要とする。これらのジョセフソン接合
のなかには最小の臨界電流を有するものに比べて著しく
太きな臨界電流を持つものがある。この大きな臨界電流
を得るために、従来の製造方法では大面積のジョセフソ
ン接合が必要であった。ジョセフソン接合の面積が大き
くなると、接合容量が大きくなすジョセフソン接合を縦
方向に積み上げた構造がある。この構造は、5NEPで
第1の接合31を形成した後、平坦化と絶縁のための第
1の絶縁層33を形成し、その上にもう一度5NEPで
第2の接合32を形成することによって得られる。この
ような構造にすると、第1の接合31と第2の接合32
は別々の接合構成層から作ることができ、上記欠点を克
服できる。
When the conventional Josephson junction manufacturing method using 5NEP described above is used, the critical current density of the junction constituent layer formed on the substrate is constant. Therefore, the critical current of a Josephson junction is proportional to its area. On the other hand, Josephson integrated circuits generally require multiple types of Josephson junctions with different critical currents. Some of these Josephson junctions have significantly larger critical currents than those with the smallest critical currents. In order to obtain this large critical current, conventional manufacturing methods require large-area Josephson junctions. As the area of the Josephson junction increases, the junction capacitance increases.There is a structure in which Josephson junctions are vertically stacked. This structure is obtained by forming a first junction 31 with 5NEP, then forming a first insulating layer 33 for planarization and insulation, and then forming a second junction 32 with 5NEP again. It will be done. With this structure, the first joint 31 and the second joint 32
can be made from separate bonding constituent layers and overcome the above drawbacks.

しかし、第4図に示す構造にすると、ジョセフソン接合
が同一平面上にないため、回路の立体化が進み、他の層
との接続や配線のための回路設計や製造方法が複雑にな
る。また、平坦化や絶縁のための第1.第2の絶縁層3
3.34が厚くなるため、このジョセフソン接合部分の
上に配置される配線のインダクタンスが増加する。配線
のインダクタンスが増加すると、信号の伝達時間が長く
なり回路の高速動作が阻害されるという欠点を有してい
た。
However, in the structure shown in FIG. 4, since the Josephson junctions are not on the same plane, the circuit becomes three-dimensional, and the circuit design and manufacturing method for connection with other layers and wiring become complicated. In addition, the first step for planarization and insulation. second insulating layer 3
3.34 becomes thicker, the inductance of the wiring placed above this Josephson junction increases. When the inductance of the wiring increases, the signal transmission time becomes longer and high-speed operation of the circuit is hindered.

(発明の目、的) 本発明は、接合構成層をエツチングで加工することによ
りジョセフソン接合の形成を行うジョセる。
(Object of the Invention) The present invention involves forming a Josephson junction by etching a layer constituting the junction.

(発明の構成) 本発明によれば、超伝導体からなる下部電極と上部電極
トンネル障壁層を介して結合した接合構成層をエツチン
グで加工する手法により形成されるジョセフソン接合を
有するジョセフソン集積回路の製造方法において、第1
0接合構成層を基板全面に形成する工程と、前記第1の
接合構成層上の必要部分に第1のエツチングマスクを形
成する工程と、前記第1のエツチングマスクで覆われて
いない前記第1の接合構成層をエツチングで除去する工
程と、前記第1の接合構成層と異なる月質もしくは異な
る厚さからなるトンネル障壁層を有する第2の接合構成
層を基板全面に形成する工程と、第2の接合構成層の必
要部分に第2のエツチングマスクを形成する工程と、前
記第2のエツチングマスクで覆われていない前記第2の
接合構成層をエツチングで除去する工程とを含み、同一
平面上に複数種類の接合構成層を形成することを特徴と
するジョセフソン集積回路の製造方法が得られる。
(Structure of the Invention) According to the present invention, a Josephson integrated structure having a Josephson junction formed by etching a junction constituent layer bonded to a lower electrode made of a superconductor and an upper electrode through a tunnel barrier layer. In the circuit manufacturing method, the first
a step of forming a zero bonding constituent layer on the entire surface of the substrate; a step of forming a first etching mask on necessary portions of the first bonding constituent layer; a step of removing the bonding constituent layer by etching; a step of forming a second bonding constituent layer having a tunnel barrier layer having a different texture or a different thickness than the first bonding constituent layer over the entire surface of the substrate; forming a second etching mask on necessary portions of the second bonding constituent layer; and removing by etching the second bonding constituent layer not covered by the second etching mask; A method for manufacturing a Josephson integrated circuit is obtained, which is characterized in that a plurality of types of junction constituent layers are formed thereon.

後、第1の接合構成層と異なる材質もしくは異なる厚さ
からなるトンネル障壁層を有する第2の接合構成層を基
板全面に成膜する。次に第2のエツチングマスクを形成
し、エツチングを行い必要部分以外の第2の接合構成層
を除去する。このとき第1の接合溝成層は、」二部に第
1のエツチングマスクがあるためエツチングの影響を受
けない。最後に第1.第2のエツチングマスクを除去す
ることによって同一平面上に二種類の接合構成層を形成
することができる。二種類以」二の接合構成層を同一平
面上に形成する場合には、第2の接合構成層を成膜する
工程以下を繰り返す。ジョセフソン接合は上記複数種類
の接合構成層をエツチングで加工することにより得られ
る。以」二のことから本発明による製造方法を用いれば
、同一平面」二にトンネル障壁層の材質もしくは厚さの
異なる複数種類のジョセフソン接合を形成できる。
Thereafter, a second junction constituent layer having a tunnel barrier layer made of a different material or a different thickness from the first junction constituent layer is formed over the entire surface of the substrate. Next, a second etching mask is formed and etching is performed to remove the second bonding layer other than necessary portions. At this time, the first junction trench layer is not affected by etching because the first etching mask is present in the second part. Finally, the first. By removing the second etching mask, two types of bonding constituent layers can be formed on the same plane. When forming two or more types of bonding constituent layers on the same plane, the steps starting from the step of forming the second bonding constituent layer are repeated. The Josephson junction is obtained by etching the plurality of types of junction constituent layers described above. From the above two points, if the manufacturing method according to the present invention is used, a plurality of types of Josephson junctions having different tunnel barrier layer materials or thicknesses can be formed on the same plane.

(実施例) 本発明の実施例として、臨界電流密度の異なるりまたは
蒸着により被着する。次にアルミニウムを5nmスパッ
タで被着し、酸素圧力0.05Torrで10分間酸化
を行いアルミニウムの酸化膜を成長させトンネル障壁層
とする。このトンネル障壁層上に上部電極としてニオブ
を300nmスパッタまたは蒸着で被着し、第1の接合
構成層12を得る(第1図A)。
(Example) As an example of the present invention, deposition is performed by different critical current densities or by vapor deposition. Next, aluminum is deposited to a thickness of 5 nm by sputtering, and oxidized for 10 minutes at an oxygen pressure of 0.05 Torr to grow an aluminum oxide film to form a tunnel barrier layer. On this tunnel barrier layer, 300 nm of niobium is deposited as an upper electrode by sputtering or vapor deposition to obtain a first junction forming layer 12 (FIG. 1A).

フォトレジストを用いたパターニングを行い、第1の接
合構成層12上にフォトレジストからなる第1のエツチ
ングマスク13を厚さ2pm形成する(第1図B)。C
F4を用いた反応性イオンエツチングで第1のエツチン
グマスク13によって覆われていない第1の接合形成層
を完全に除去する(第1図C)。次に第2の接合構成層
14を形成する。まず、下部電極としてニオブを300
nmスパッタまたは蒸着で被着する。
Patterning is performed using photoresist to form a first etching mask 13 made of photoresist to a thickness of 2 pm on the first bonding layer 12 (FIG. 1B). C
The first bond forming layer not covered by the first etching mask 13 is completely removed by reactive ion etching using F4 (FIG. 1C). Next, a second bonding layer 14 is formed. First, use 300% niobium as the lower electrode.
Deposited by nm sputtering or vapor deposition.

次にアルミニウム50nm被着し、酸素圧力1.0To
rrで10分間酸化を行いアルミニウムの酸化膜を成長
させトンネル障壁層とする。このトンネル障壁層上に上
部電極としてニオブを300nmスパッタまたは蒸着で
被着する(第1図D)。このとき第1の接合構成層上に
は第1のエツチングマスクがあるので第1.第2の接合
構成層が直接型なることはない。次にフォトレジストを
用いたパターニングを行い第2の接合構成層」二に第2
のエツチングマスク15を211m形成する(第1図E
)。CF4を用いた反応性イオンエツチングを行い、第
2のエツチングマスク15で覆われていない第2の接合
構成層14を完全に除去する(第1図F)。
Next, 50 nm of aluminum was deposited, and the oxygen pressure was 1.0 To.
Oxidation is performed at rr for 10 minutes to grow an aluminum oxide film to serve as a tunnel barrier layer. On this tunnel barrier layer, 300 nm of niobium is deposited as an upper electrode by sputtering or vapor deposition (FIG. 1D). At this time, since the first etching mask is on the first bonding layer, the first etching mask is placed on the first bonding layer. The second bonding component layer is never directly molded. Next, patterning is performed using photoresist to form a second bonding layer.
An etching mask 15 of 211 m is formed (Fig. 1E).
). Reactive ion etching using CF4 is performed to completely remove the second bonding layer 14 not covered by the second etching mask 15 (FIG. 1F).

このとき第1のエツチングマスク13がエツチングのス
トッパーとなり、第1の接合構成層12はエツチングさ
れない。第1.第2のエツチングマスクをアセトンで除
去することにより同一平面上にある第1.第2の接合構
成層を完成する(第1図G)。フォトレジストを用いた
パターニングを行い、第1.第2の接合構成層12.1
41に接合領域規定エツチングマスク16を500nm
形成する(第1図H)。CF4を用いた反応性イオンエ
ツチングを行い、接合領域規定エツチングマスク16で
覆われていない第1.第2の接合構成層の上部電極を除
去する(第1図■)。続いて接合領域規定エツチングマ
スク16をアセトンで除去し、第1.第2の接合17.
18を完成する(第1図J)。
At this time, the first etching mask 13 serves as an etching stopper, and the first bonding layer 12 is not etched. 1st. By removing the second etching mask with acetone, the first etching mask is coplanar. Complete the second bonding component layer (FIG. 1G). Patterning is performed using photoresist, and the first step is performed. Second bonding layer 12.1
41, a bonding region defining etching mask 16 of 500 nm is applied.
form (Figure 1H). Reactive ion etching using CF4 is performed to remove the first. The upper electrode of the second bonding layer is removed (FIG. 1). Subsequently, the bonding region defining etching mask 16 is removed with acetone, and the first. Second joint 17.
Complete 18 (Figure 1 J).

本実施例においては、エツチングマスクとして、形成の
容易なフォトレジストを用いたが、耐熱性等の必要に応
じて金属マスク等をエツチングマスクとすることができ
る。
In this embodiment, a photoresist which is easy to form is used as the etching mask, but a metal mask or the like may be used as the etching mask if heat resistance or the like is required.

第2図はニオブlアルミ酸化膜/ニオブジョセフソン接
合の臨界電流密度と酸化時酸化圧力との関係を示したも
のである。第1の接合構成層12の酸化待合17は第2
の接合18を同じ面積で形成した場合、第1の接合17
は第2の接合18の10倍の臨界電流値を持つ。また本
実施例において2種類以上の接合を製造するには、第1
図Gの工程を行う前に第1図D−Fの工程を繰り返せば
よい。
FIG. 2 shows the relationship between the critical current density of the niobium-l aluminum oxide film/niobium Josephson junction and the oxidation pressure during oxidation. The oxidation zone 17 of the first bonding layer 12 is
If the first joint 18 is formed with the same area, the first joint 17
has a critical current value ten times that of the second junction 18. In addition, in this example, in order to manufacture two or more types of joints, the first
The steps shown in FIGS. 1D to 1F may be repeated before performing the steps shown in FIG.

本実施例で示した本発明の製造方法を用いれば、臨界電
流密度の異なる複数種類のジョセフソン接合を同一平面
上にに形成することができる。
By using the manufacturing method of the present invention shown in this embodiment, multiple types of Josephson junctions having different critical current densities can be formed on the same plane.

それゆえ、所望の臨界電流を得るために、接合面積を大
きくする必要がなくなり回路の集積化が促進される。大
きな臨界電流を有するジョセフソン接合も小さな接合面
積で形成することができるため接合容量が下がり、回路
の高速動作が実現できる。また、上記特性の異なる複数
種類のジョセフソン接合は同一平面」二にあるため、他
の層との接続配線は一種類のジョセフソン接合だけがあ
る場合と同じにできる。
Therefore, it is no longer necessary to increase the junction area in order to obtain a desired critical current, thereby promoting circuit integration. Josephson junctions with large critical currents can also be formed with a small junction area, reducing junction capacitance and enabling high-speed circuit operation. Further, since the plurality of types of Josephson junctions having different characteristics are located on the same plane, the connection wiring with other layers can be the same as when there is only one type of Josephson junction.

(発明の効果) 以上説明したように本発明の製造方法を用いれ、有する
ジョセフソン接合を小さな臨界電流を有するジョセフソ
ン接合と同程度の接合面積で形成することができる。こ
れにより接合面積が小さくなり回路の集積度が向上する
こと、および接合面積の縮小にともない接合容量が減少
しジョセフソン接合のスイッチング時間が短縮されるた
め回路の高速動作が促進されること等の利点を有する。
(Effects of the Invention) As explained above, by using the manufacturing method of the present invention, a Josephson junction can be formed with a junction area comparable to that of a Josephson junction having a small critical current. This reduces the junction area and improves the degree of circuit integration.The reduction in the junction area also reduces the junction capacitance and shortens the switching time of the Josephson junction, promoting high-speed operation of the circuit. has advantages.

また上記複数種類のジョセフソン接合は同一平面上に形
成されるため、他の層との接続や配線のための特別な設
計、製造上の工夫をする必要がなく、第4図に示す従来
例に比べて、設計、製造の期間が短縮できる。また、信
頼性の高いジョセフソン集積回路が製造できる。さらに
ジョセフソン接合部分より」二部の配線のインダクタン
スが増加することがないので高速の動作が可能になる等
の利点を有する。
In addition, since the multiple types of Josephson junctions mentioned above are formed on the same plane, there is no need for special design or manufacturing measures for connection with other layers or wiring, and the conventional example shown in Fig. 4 The design and manufacturing period can be shortened compared to Furthermore, highly reliable Josephson integrated circuits can be manufactured. Furthermore, since the inductance of the wiring in the second part of the Josephson junction does not increase, it has the advantage that high-speed operation is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A−Jは本発明による製造方法を説明するための
素子断面図、第2図はジョセフソン接合の臨界電流密度
と酸化時の酸素圧力の関係を示すための13・・・第1
のエツチングマスク、 14・・・第2の接合構成層、 15・・・第2のエツチングマスク、 16・・・接合領域規定エツチングマスク、17・・・
第1の接合、     18・・・第2の接合、21・
・・基板、        22・・・下部電極、23
・・・トンネル障壁層、   24・・・」二部電極、
25・・・第1のエツチングマスク、 26・・・第2のエツチングマスク、  31第1の接
合、32・・・第2の接合、     33・・・第1
の絶縁層、34・・・第2の絶縁層、    35・・
・第1の上部配線、36・・・第2の上部配線 工業技術院 第1図 11・・・基 板 12 ・・・第1の接合構成層 13 ・・・第1のエツチングマスク 14・・・第2の接合構成層 15 ・・・第2のエツチングマスク 16 ・・・接合領域規定エツチングマスク17 ・・
・第1の接合 18・・・第2の接合 第2図 0.01          0.1        
   1.0酸化時の酸素圧力(Torr) 第3図 21・・・基 板 22 ・・・下部電極 23 ・・・ トンネル障壁層 24・・・上部電極
1A-J are cross-sectional views of the device for explaining the manufacturing method according to the present invention, and FIG. 2 is a diagram showing the relationship between the critical current density of the Josephson junction and oxygen pressure during oxidation.
etching mask, 14... second bonding constituent layer, 15... second etching mask, 16... bonding region defining etching mask, 17...
First joining, 18...Second joining, 21.
... Substrate, 22 ... Lower electrode, 23
... tunnel barrier layer, 24..." bipartite electrode,
25... First etching mask, 26... Second etching mask, 31 First bonding, 32... Second bonding, 33... First
insulating layer, 34... second insulating layer, 35...
・First upper wiring, 36... Second upper wiring Institute of Industrial Science and Technology Figure 1 11... Substrate 12... First bonding layer 13... First etching mask 14...・Second bonding constituent layer 15...Second etching mask 16...Bonding region defining etching mask 17...
・First joint 18...Second joint Fig. 2 0.01 0.1
1.0 Oxygen pressure during oxidation (Torr) Fig. 3 21...Substrate 22...Lower electrode 23...Tunnel barrier layer 24...Upper electrode

Claims (1)

【特許請求の範囲】[Claims] 超伝導体からなる下部電極と上部電極がトンネル障壁層
を介して結合した接合構成層をエッチングで加工する手
法により形成されるジョセフソン接合を有するジョセフ
ソン集積回路の製造方法において、第10接合構成層を
基板全面に形成する工程と、第1の接合構成層上の必要
部分に第1のエッチングマスクを形成する工程と、前記
第1のエッチングマスクで覆われていない前記第1の接
合構成層をエッチングで除去する工程と、前記第1の接
合構成層と異なる材質もしくは異なる厚さからなるトン
ネル障壁層を有する第2の接合構成層を基板全面に形成
する工程と、第2の接合構成層の必要部分に第2のエッ
チングマスクを形成する工程と、前記第2のエッチング
マスクで覆われていない前記第2の接合構成層をエッチ
ングで除去する工程とを含み、同一平面上に複数種類の
接合構成層を形成することを特徴とするジョセフソン集
積回路の製造方法。
In a method for manufacturing a Josephson integrated circuit having a Josephson junction formed by etching a junction constituent layer in which a lower electrode and an upper electrode made of a superconductor are coupled via a tunnel barrier layer, a tenth junction configuration is provided. a step of forming a layer on the entire surface of the substrate, a step of forming a first etching mask on a necessary portion on the first bonding constituent layer, and a step of forming the first bonding constituent layer not covered with the first etching mask. a step of removing by etching, a step of forming on the entire surface of the substrate a second bonding layer having a tunnel barrier layer made of a different material or a different thickness from the first bonding layer; a step of forming a second etching mask in a necessary portion of the etching mask, and a step of removing by etching the second bonding layer not covered by the second etching mask, A method of manufacturing a Josephson integrated circuit, comprising forming a junction component layer.
JP60195946A 1985-09-06 1985-09-06 Manufacture of josephson integrated circuit Granted JPS6257263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60195946A JPS6257263A (en) 1985-09-06 1985-09-06 Manufacture of josephson integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60195946A JPS6257263A (en) 1985-09-06 1985-09-06 Manufacture of josephson integrated circuit

Publications (2)

Publication Number Publication Date
JPS6257263A true JPS6257263A (en) 1987-03-12
JPH0322711B2 JPH0322711B2 (en) 1991-03-27

Family

ID=16349601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60195946A Granted JPS6257263A (en) 1985-09-06 1985-09-06 Manufacture of josephson integrated circuit

Country Status (1)

Country Link
JP (1) JPS6257263A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3422412A3 (en) * 2009-02-27 2019-05-01 D-Wave Systems Inc. Superconducting integrated circuit
US11856871B2 (en) 2018-11-13 2023-12-26 D-Wave Systems Inc. Quantum processors
US11930721B2 (en) 2012-03-08 2024-03-12 1372934 B.C. Ltd. Systems and methods for fabrication of superconducting integrated circuits
US11957065B2 (en) 2017-02-01 2024-04-09 1372934 B.C. Ltd. Systems and methods for fabrication of superconducting integrated circuits

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3422412A3 (en) * 2009-02-27 2019-05-01 D-Wave Systems Inc. Superconducting integrated circuit
US10991755B2 (en) 2009-02-27 2021-04-27 D-Wave Systems Inc. Systems and methods for fabrication of superconducting integrated circuits
US11930721B2 (en) 2012-03-08 2024-03-12 1372934 B.C. Ltd. Systems and methods for fabrication of superconducting integrated circuits
US11957065B2 (en) 2017-02-01 2024-04-09 1372934 B.C. Ltd. Systems and methods for fabrication of superconducting integrated circuits
US11856871B2 (en) 2018-11-13 2023-12-26 D-Wave Systems Inc. Quantum processors

Also Published As

Publication number Publication date
JPH0322711B2 (en) 1991-03-27

Similar Documents

Publication Publication Date Title
EP0063887B1 (en) Method of manufacturing josephson junction integrated circuit devices
JPS6257263A (en) Manufacture of josephson integrated circuit
JPS6146081A (en) Manufacture of josephson junction element
JPS6257264A (en) Manufacture of superconducting integrated circuit
JP2646440B2 (en) Method of manufacturing Josephson junction device
JPS61144892A (en) Production of josephson integrated circuit
JPS63224273A (en) Josephson junction element and its manufacture
JPS58125880A (en) Josephson junction element
JPH0511432B2 (en)
JPS61244078A (en) Manufacture of superconducting lines
JPH053754B2 (en)
JPH0234195B2 (en)
JPS63300579A (en) Manufacture of josephson circuit
JP2989943B2 (en) Superconducting integrated circuit manufacturing method
JPS58145177A (en) Manufacture of josephson junction element
JP2616745B2 (en) Contact structure between superconducting layers and method of manufacturing the same
JPS58168241A (en) Manufacture of integrated circuit device of thin film structure
JPH0260230B2 (en)
JPS59189687A (en) Manufacture of josephson junction element
JPH058596B2 (en)
JPS6377176A (en) Manufacture of josephson junction device
JPS63289880A (en) Manufacture of josephson junction device
JPH0149025B2 (en)
JPS61263180A (en) Manufacture of josephson junction element
JPS6164178A (en) Manufacture of superconductive circuit

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term