JPS6256588A - Method for decomposing water by visible radiation - Google Patents

Method for decomposing water by visible radiation

Info

Publication number
JPS6256588A
JPS6256588A JP60196467A JP19646785A JPS6256588A JP S6256588 A JPS6256588 A JP S6256588A JP 60196467 A JP60196467 A JP 60196467A JP 19646785 A JP19646785 A JP 19646785A JP S6256588 A JPS6256588 A JP S6256588A
Authority
JP
Japan
Prior art keywords
electrode
film
semiconductor
visible
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60196467A
Other languages
Japanese (ja)
Other versions
JPH0235037B2 (en
Inventor
Masao Kaneko
正夫 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP60196467A priority Critical patent/JPS6256588A/en
Publication of JPS6256588A publication Critical patent/JPS6256588A/en
Publication of JPH0235037B2 publication Critical patent/JPH0235037B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To decompose water by visible radiation by coating a visible-region n-type semiconductor with the film of a specified high molecular complex modified by allowing a specified medium and stabilizing the semiconductor in the title method wherein the semiconductor is used. CONSTITUTION:The film of a high molecular complex having tris(2,2'-bipyridine) ruthenium(II) complex as a pendant group is coated on the surface of a visible- region n-type semiconductor electrode. Group VIII metal in the periodic table or its salt is allowed to coexist in the film, the modified electrode is immersed in an aq. soln. of an electrolyte and visible radiation is irradiated on the electrode surface. Consequently, water is decomposed, O2 is generated on the semiconductor electrode and H2 is generated on the counter electrode. A complex shown by the formula (M is the monomer of styrene, acrylic acid, etc., x-z are the molar fraction of the repeating unit, x=0.01-0.98, y=0-0.9, z=0-0.98 and x+y+z=1) is exemplified as the high molecular complex.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水を可視光分解し、酸素と水素を得る方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of decomposing water with visible light to obtain oxygen and hydrogen.

〔従来の技術〕[Conventional technology]

従来n型の半導体電極に光照射して水を分解し、半導体
表面で酸素を、白金などの対極表面で水素を発生させる
ことは知られている。しかし、水中で安定に使用できる
半導体は酸化チタン、酸化亜鉛などのようにバンドギャ
ップ(Eg>の人き、)材料に限られ、有効な光は40
0nm以下の紫外光領域のみに限られていた。400〜
800n+nの可視光領域が利用できるn型半導体は全
て水中光照射条件下では不活性化してしまう。この理由
は人別して2つあり、1つはn−Cd5やn−GaAs
などのように界面に近いいわゆる欠乏層に生ずるホール
が半導体を酸化的に溶解してしまう場合であり、他はn
−3iのように、ホールが酸化物皮膜を作ってしまい、
不活性化する場合である。このような可視域n型半導体
を如何に安定イヒして使用するかは、この分野の重要な
課題であった。
It is conventionally known to irradiate an n-type semiconductor electrode with light to decompose water and generate oxygen on the semiconductor surface and hydrogen on the surface of a counter electrode such as platinum. However, semiconductors that can be stably used underwater are limited to bandgap (Eg>) materials such as titanium oxide and zinc oxide, and effective light is limited to 40
It was limited only to the ultraviolet light region of 0 nm or less. 400~
All n-type semiconductors that can utilize the visible light region of 800n+n are inactivated under underwater light irradiation conditions. There are two reasons for this, one being n-Cd5 and n-GaAs.
In other cases, holes generated in the so-called depletion layer near the interface dissolve the semiconductor in an oxidative manner;
- As in 3i, the holes form an oxide film,
This is a case of inactivation. How to stably use such a visible n-type semiconductor has been an important issue in this field.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

したかっ−C本発明の目的は、可視域n型半導体を用い
て水を可視光分解し、酸素と水素を得る方法を提供する
ことであ゛る。
An object of the present invention is to provide a method of decomposing water with visible light using a visible region n-type semiconductor to obtain oxygen and hydrogen.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明者は、トリス(2,2“−ビピリジン)ルテニウ
ム(II)錯体(以下Ru(bpY)a’+と略す)を
ペンダント基に持つような高分子錯体薄膜を、可視域n
型半導体表面に被覆すると、水中光照射条件下でも半導
体が安定化されることを見出した(参考文献としてラジ
ェシュウォー(Rajeshwar)、金子、山田、ジ
ャーナル・オブ・エレクトロケミカル・ソサエティ(J
、81ectrochem、Soc、 ) 、130巻
、38頁(1983年〉、ラジェシュウォー(Raje
shwar)、金子、山田、ナウフィ−(Noufi)
、ジャーナル・オブ・フィジカル・ケミストリー(、J
、 Phys、 Chem、 ) 、89巻、806頁
(1985年)。さらに、鋭意研究の結果、この膜中に
水を酸化するための触媒を共存させて用いると、水の可
視光分解が可能になることを見出し、本発明を完成する
に至った。
The present inventor has developed a polymer complex thin film having a tris(2,2"-bipyridine)ruthenium(II) complex (hereinafter abbreviated as Ru(bpY)a'+) as a pendant group in the visible range n
They found that when coated on the surface of a type semiconductor, the semiconductor was stabilized even under underwater light irradiation conditions (References: Rajeshwar, Kaneko, Yamada, Journal of Electrochemical Society (J.
, 81 electrochem, Soc, ), vol. 130, p. 38 (1983), Rajeshwar
shwar), Kaneko, Yamada, Noufi
, Journal of Physical Chemistry (,J
, Phys, Chem, ), vol. 89, p. 806 (1985). Further, as a result of extensive research, the inventors discovered that visible light decomposition of water becomes possible when a catalyst for oxidizing water is used in the membrane, and the present invention has been completed.

本発明は、可視域n型半導体電極の表面に、トリス(2
,2’−ビピリジン)ルテニウム(II)錯体をペンダ
ント基として有する高分子錯体の膜を被覆し、該膜内に
は媒質として周期律表第■族の金属または金属酸化物を
共存せしめ、この修飾した可視域n型半導体電極を電解
質水溶液に浸漬し、電極表面に可視光を照射することに
より水を分解し、半導体電極上で酸素を発生せしめ、対
極上で水素を発生せしめる方法である。
In the present invention, Tris (2
, 2'-bipyridine) ruthenium (II) complex as a pendant group is coated, a metal or metal oxide of Group I of the periodic table is allowed to coexist as a medium in the film, and this modification is performed. In this method, a visible region n-type semiconductor electrode is immersed in an aqueous electrolyte solution, and the electrode surface is irradiated with visible light to decompose water, generate oxygen on the semiconductor electrode, and generate hydrogen on the counter electrode.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

半導体を用いて水を可視光分解するためには、半導体の
Egは3eV以下でなければならず、かつその価電子帯
、伝導帯の位置が、水の酸化還元電位に適合している必
要がある。このような理由で、水の可視光分解が可能な
半導体は限られており、たとえばn型硫化カドミウム(
II−CdS。
In order to decompose water with visible light using a semiconductor, the Eg of the semiconductor must be 3 eV or less, and the positions of its valence band and conduction band must match the redox potential of water. be. For this reason, there are only a limited number of semiconductors that can decompose water with visible light; for example, n-type cadmium sulfide (
II-CdS.

Eg=2.4eV)、n型セレン化カドミウム(II−
CdSe、Eg=1.7 eV)、n型リン化ガリウム
(II−GaP、Eg=2.25 eV) 、n型リン
化インジウム(II−)nP)などに限定される。前述
のごとくこれらの可視域半導体は全て、水中、光照射条
件下では劣化してしまうので、安定化することが必須条
件である。
Eg=2.4eV), n-type cadmium selenide (II-
CdSe, Eg=1.7 eV), n-type gallium phosphide (II-GaP, Eg=2.25 eV), n-type indium phosphide (II-)nP), etc. As mentioned above, all of these visible range semiconductors deteriorate under water or under light irradiation conditions, so stabilization is an essential condition.

このような可視域n型半導体を安定化するために膜とし
て被覆する高分子錯体は、Ru (bpy) s ’ 
” S昔体構造をペンダント基に有するもので、その代
表的な例は構造式(I)で表わされる。
The polymer complex coated as a film to stabilize such a visible n-type semiconductor is Ru(bpy)s'
It has an S structure as a pendant group, and a typical example thereof is represented by the structural formula (I).

たゾしここでMはスチレン、アクリル酸又はその誘4 
体、N−ビニルピロリドン、4〜ビニルピリジンなどの
単量体、x、y、zはそれぞれの繰り返し単位のモル分
率で、Xは0.01〜0,98の′atm、、y Lk
 O〜0.9 (D範囲、z ハ0〜0.98 (7)
MW囲の値を表わし、x+y+ z= 1である。この
高分子錯体は、4−メチル−4′−ビニル−2,2゛−
ビピリジンの単独重合体(Z−0の場合)、または他の
単量体(M)との共重合体を、cis−Ru(bpy)
 2CR2と反応させることにより合成される。分子遣
は2000以上のものがよい。
Here M is styrene, acrylic acid or its derivative 4
monomer such as N-vinylpyrrolidone, 4-vinylpyridine, x, y, z are the mole fractions of the respective repeating units, X is 0.01 to 0.98'atm, y Lk
O~0.9 (D range, z ha0~0.98 (7)
It represents the value of MW range, and x+y+z=1. This polymer complex is 4-methyl-4'-vinyl-2,2'-
Bipyridine homopolymer (in the case of Z-0) or copolymer with other monomer (M), cis-Ru (bpy)
It is synthesized by reacting with 2CR2. The molecular weight is preferably 2000 or more.

Mがスチレンのように水と親和性がない方が、水中で安
定な膜として使えるので良好な結果を与える。Mが′r
アクリル酸その透導体、N−ビニルピロリドン、4〜ビ
ニルピリジンのような水と親和性の強い共重合体の場合
は、膜は水中で溶解し易いが、分子竜をio、 000
以上と高くすれば使用に耐える。Ru (bpy) 3
 ”+をペンダント基に持−)このほかの高分子錯体、
たとえばポリスチレンに2.2゛−ビピリジル基を導入
した後錯体化を行なって得られる、下記式(II)の組
成を持つ化合物なども膜材料として用いることができる
If M has no affinity for water, such as styrene, it can be used as a stable film in water, giving better results. M is 'r
In the case of copolymers with strong affinity for water such as acrylic acid, N-vinylpyrrolidone, and 4-vinylpyridine, the membrane is easily dissolved in water, but the molecular weight is io, 000
If it is higher than that, it can withstand use. Ru (bpy) 3
Other polymer complexes (having + as a pendant group -),
For example, a compound having the composition of formula (II) below, which is obtained by introducing a 2.2'-bipyridyl group into polystyrene and then complexing it, can also be used as the membrane material.

た5゛シここでx、’lx  Zs wは各繰り返し単
位のモル分率で、Xは0.01〜0.5、yは0〜0.
5.2(まO〜0.4、Wは0.5〜0.9の範囲で、
x十y十z+w=1である。
Here, x, 'lx Zs w is the mole fraction of each repeating unit, X is 0.01 to 0.5, and y is 0 to 0.
5.2 (Ma O ~ 0.4, W in the range of 0.5 ~ 0.9,
x10y1z+w=1.

上記高分子錯体は、特公昭59−8361号公報記載の
方法により合成することができる。
The above-mentioned polymer complex can be synthesized by the method described in Japanese Patent Publication No. 59-8361.

これらの高分子錯体膜を半導体に被覆するには、半導体
を常法によりエツチングした後、高分子錯体の溶液を塗
布I、て乾繰するいわゆるキャスト法によろか、あるい
はスピンコーティング法など、通常用いられる方法なら
何でもよい3.膜7はl Ll 00へ〜50μm程度
が適当である。本発明においては膜中のRu(bpy)
3J+錯体部は、?、導体の光励起により界面近くに生
ずるホールと反応することにより、ホールを半導体から
取り出しで水の酸化のための触媒に伝達する、いわゆる
lIt荷リレす体と[。
To coat semiconductors with these polymer complex films, there are conventional methods such as etching the semiconductor using a conventional method, applying a solution of the polymer complex, and drying by the so-called casting method, or spin coating. Any method that can be used is acceptable3. The appropriate thickness of the film 7 is approximately 50 μm. In the present invention, Ru(bpy) in the film
3J+ complex part? , a so-called lIt charge-releasing body [.

ての役割を有する。It has the role of

本発明において用いられる触媒としての、周期律表第■
族の金属または金属酸化物としては、Pt、、PtO2
、RuSRu (、)2、Ir、、I+02、Rh、R
hO2、Ni、NiO2、Fe2O:+などが挙げられ
る。この触媒は、光照射により半導体表面に生じたホー
ルを受けて、水を酸化して酸素を発生するために用いる
ものである。RuO2やPtO□などの酸化物が特に良
好な結末を与える。
As a catalyst used in the present invention, periodic table No.
Group metals or metal oxides include Pt, PtO2
, RuSRu (,)2, Ir, , I+02, Rh, R
Examples include hO2, Ni, NiO2, Fe2O:+, and the like. This catalyst is used to receive holes generated on the semiconductor surface by light irradiation and oxidize water to generate oxygen. Oxides such as RuO2 and PtO□ give particularly good results.

これらの触媒を高分子錯体膜中に共存させるには、予め
半導体表面に該触媒粉末をのせた後、高分子錯体膜を被
覆するか、あるいは高分子錯体溶液に触媒微粉末を懸濁
させて被覆膜を作ってもよい。
In order to coexist these catalysts in a polymer complex film, the catalyst powder is placed on the semiconductor surface in advance and then covered with the polymer complex film, or the fine catalyst powder is suspended in a polymer complex solution. A coating film may also be formed.

また、化学反応によってもこれらの触媒を膜中に共存せ
し狛ることができる。たとえば、高分子錯体膜を半導体
上に被覆した後に、Ru○4水溶液に、たとえば常温で
、2秒〜20分間浸漬すると、RuO2は膜中に吸着さ
れると同時に還元されてRuO2となり、微粒子として
膜中に分散する。
Further, these catalysts can also be made to coexist in the membrane through chemical reactions. For example, if a polymer complex film is coated on a semiconductor and then immersed in a Ru○4 aqueous solution for 2 seconds to 20 minutes at room temperature, RuO2 is adsorbed into the film and simultaneously reduced to RuO2, forming fine particles. Dispersed in the membrane.

触媒量は少量過ぎても効果が低いが、多過ぎると光を吸
収する結果半導体に到達する光量が低下するので、やは
り効率が落ちる。したがって触媒の量は高分子錯体膜中
0.05〜5重遣%が適当である。
If the amount of catalyst is too small, the effect will be low, but if it is too large, the amount of light reaching the semiconductor will decrease as a result of absorbing light, which will also reduce efficiency. Therefore, the appropriate amount of catalyst is 0.05 to 5% by weight in the polymer complex membrane.

本発明に用いられる電解質水溶液としては、電解質とし
て硝酸塩、硫酸塩、過塩泰酸塩等を0.o1〜2Ma度
で含む水溶液が挙げられる。ハロゲン化塩はハロゲンイ
オンが酸化されてしまうので、この場合には水の光分解
ではなく、ハロゲン化水素の光分解ということになる。
The electrolyte aqueous solution used in the present invention includes nitrate, sulfate, persalt salt, etc. as an electrolyte. Examples include aqueous solutions containing o1 to 2 Ma degrees. Since the halogen ions of halide salts are oxidized, in this case, the photolysis is not of water but of hydrogen halide.

上記のようにして作製した修飾半導体電極を、電解質水
溶液中に浸漬して作用極とし、対極としては通常白金を
用い、電極電位を制御するためにせコウ、銀−塩化銀な
どの参照上極を用い、いわゆる三極式で光反応を行なう
こよが望ましい。
The modified semiconductor electrode prepared as described above is immersed in an aqueous electrolyte solution to serve as a working electrode, the counter electrode is usually platinum, and a reference electrode such as silver or silver-silver chloride is used to control the electrode potential. It is preferable to carry out the photoreaction using a so-called triode system.

光源としては可視光なら何でもよく、太陽光、ケイ光灯
、白熱電灯、ハロゲンランプ、プロジェクタ−、キセノ
ンランプ、水渓支丁j、!、どが挙げられる。
Any visible light source can be used as a light source, such as sunlight, fluorescent lamps, incandescent lamps, halogen lamps, projectors, xenon lamps, water lamps, etc. , etc.

用いるセルも特に制限されないが、酸素上JkJ!f:
を別々に採取する場合は、作用極側と対極側を分離した
二室型セルを用いる。
The cell used is not particularly limited, but JkJ! on oxygen! f:
When collecting the cells separately, use a two-chamber cell with separate working and counter electrodes.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、可視域n型゛1ε導体を、水中゛・+
6照射条件下で安定に使用することができ、可視光を照
射して水を光分解し、酸素お水素を装造1−ることかで
きる。
According to the present invention, a visible range n-type 1ε conductor can be
It can be stably used under 6 irradiation conditions, and can photolyze water by irradiating it with visible light to produce oxygen and hydrogen.

〔実施例〕〔Example〕

以下実施例を以て本発明を説明する。 The present invention will be explained below with reference to Examples.

実施例1 n−CdS単結晶(表面積(102cnf )の裏面に
Ga−In合金を塗布し、ここに銅線を銀エポ手シで接
着i、てオーミックコンタクトをとる。電極表面以外は
絶縁性エポキシ樹脂で固め、C(iS表面は濃塩酸でエ
ツチングする。高分子錯体(1)において、Mがスチレ
ン、x=O1048、y−0、047、z=0.905
の組成の化合物をD M Fに溶解しくa度はRu錯体
単位で1mM>、この溶液を8μβ/ cJの割合でC
dS上に滴下し、拡げ−CFfA乾した後、温風にて乾
煙し、膜とする。この膜厚は約0゜28μ[ηとa1算
される。この被覆Cd、 Sを、51/mβ濃度のRu
 O4水溶液に浸すと、RuO+ が膜に吸着されると
同時に還元され、Ru O□微粉末とfsって膜中に分
肢される。2このようにして作製した修飾CdSを7室
型セルに装M(7、セルには0.5MKN○3 と0.
 I MHN Oj を含む水溶液を入れ、対極として
は白金線を、参照電極としてはせコウ電極を装着する。
Example 1 A Ga-In alloy is applied to the back side of an n-CdS single crystal (surface area (102 cnf)), and a copper wire is bonded here with a silver epoxy adhesive to make ohmic contact.Other than the electrode surface, insulating epoxy is applied. harden with resin, C (iS surface is etched with concentrated hydrochloric acid. In polymer complex (1), M is styrene, x = O1048, y-0, 047, z = 0.905
A compound with a composition of
Drop it onto dS, spread it, dry it, and dry it with hot air to form a film. This film thickness is calculated as approximately 0°28μ[η and a1. This coated Cd, S was treated with Ru at a concentration of 51/mβ.
When immersed in an O4 aqueous solution, RuO+ is adsorbed to the membrane and reduced at the same time, and is separated into the membrane as fine RuO□ powder. 2 The modified CdS prepared in this way was placed in a seven-chamber cell (7, the cell was filled with 0.5MKN○3 and 0.5MKN○3).
An aqueous solution containing I MHN Oj is introduced, a platinum wire is attached as a counter electrode, and a plaster electrode is attached as a reference electrode.

アルゴンガスを1時間吹き込んでから密閉した後に、電
極電位を−0,4V (v s、 5CE)に保ち、紫
外および赤外光カットフィルターを附した500〜Vキ
セノンランプからの可視光をCdS表面に照射し、反応
させた。光反応にともなってCdSおよび白金表面上に
気泡が発生ずるのが観察された。
After blowing in argon gas for 1 hour and sealing, the electrode potential was maintained at −0.4 V (v s, 5 CE) and visible light from a 500-V xenon lamp equipped with an ultraviolet and infrared light cut filter was applied to the CdS surface. was irradiated and reacted. It was observed that bubbles were generated on the CdS and platinum surfaces as a result of the photoreaction.

光電流は約400μΔ/ cMの定常値を保った。3時
間反応後に、約Tμβの水素と3.5μlの酸素が発生
した。流れた光電流に対する水分解の効率は70%であ
った。
The photocurrent maintained a steady value of approximately 400 μΔ/cM. After 3 hours of reaction, approximately Tμβ of hydrogen and 3.5 μl of oxygen were evolved. The efficiency of water splitting with respect to the applied photocurrent was 70%.

実施例2 実施例1において、n−Cd5の代りにn−CdSeを
用い、500Wキセノンランプの代りに直射太陽光を用
いた他は実施例1と全く同様に光反応を行ない、25時
間反応後に10μβの水素と5μRの酸素を(号だ。
Example 2 A photoreaction was carried out in the same manner as in Example 1, except that n-CdSe was used instead of n-Cd5 and direct sunlight was used instead of the 500W xenon lamp. After 25 hours of reaction, 10μβ of hydrogen and 5μR of oxygen (No.

実施例3 実施例1において、Ru○4水溶液の還元法による代り
にCdS電極の表面にRu O,粉末を強くこすりつけ
てのせ、その上に実施例1と同様に高分子錯体膜を被覆
した電極を用い、0.5M KNO3のみを含む水溶液
を用いたほかは実施例1と全く同様に光反応を行ない、
10時間反応後に16μβの水素と8μβの酸素を得た
Example 3 In Example 1, instead of using the Ru○4 aqueous reduction method, RuO powder was strongly rubbed onto the surface of the CdS electrode, and then a polymer complex film was coated on top of it in the same manner as in Example 1. The photoreaction was carried out in exactly the same manner as in Example 1, except that an aqueous solution containing only 0.5M KNO3 was used.
After 10 hours of reaction, 16 μβ of hydrogen and 8 μβ of oxygen were obtained.

実施例4 実施例1において、表面積0.5 cmのローGaPを
用い、Inにより銅線とオーミック接触をとり、エツチ
ングは塩酸−硝酸混液にて行ない、高分子錯体としでは
弐III)においてx = 0.04、y−0,01、
z=0.21、w=0.74の組成のものを用い、クロ
ロホルム溶液(a度はRu錯体単位でl mM)を16
μ!/ ciの割合で用いて被覆膜を作製した以外は実
施例1と全く同様に光反応させ、5時間後に水素10μ
β、酸素5μβを得た。
Example 4 In Example 1, low GaP with a surface area of 0.5 cm was used, ohmic contact was made with the copper wire by In, etching was performed with a hydrochloric acid-nitric acid mixture, and x = 0.04,y-0,01,
Using a composition with z = 0.21 and w = 0.74, a chloroform solution (a degree is 1 mM in Ru complex unit) was added to 16
μ! A photoreaction was carried out in the same manner as in Example 1 except that a coating film was prepared using hydrogen at a ratio of
β, oxygen 5μβ was obtained.

実施例5 実施例1に4.5いて、高分子錯体(1)としてMがメ
チルメタクリレート、x = 0.1、y=o、Z−0
,9のものを用い、電解質水溶液として1MK2S O
,と0.01M)12s○4を含む水溶液を用い、電極
電位をOV (vs、5CE)にして150Wハロゲン
ランプを用いたほかは実施例1と全く同様に光反応を行
ない、10時間反応後に水素18μβ、酸素IJμβを
得た。
Example 5 4.5 in Example 1, M is methyl methacrylate as the polymer complex (1), x = 0.1, y = o, Z-0
, 9 was used, and 1MK2SO was used as the electrolyte aqueous solution.
, and 0.01M) 12s○4, the photoreaction was carried out in the same manner as in Example 1, except that the electrode potential was set to OV (vs, 5CE) and a 150W halogen lamp was used. After 10 hours of reaction, 18μβ of hydrogen and IJμβ of oxygen were obtained.

実施例6 実施例3において、n−Cd5としてO12Cn?の表
面積のものを用い、RuO2の代りにPtO2粉末を用
いたほかは実施例3と同様に光反応を行ない、5時間反
応後に水素48μβと酸素24μβを得た。
Example 6 In Example 3, O12Cn? as n-Cd5? The photoreaction was carried out in the same manner as in Example 3, except that PtO2 powder was used instead of RuO2, and after 5 hours of reaction, 48 μβ of hydrogen and 24 μβ of oxygen were obtained.

Claims (1)

【特許請求の範囲】[Claims] 可視域n型半導体電極の表面に、トリス(2,2′−ビ
ピリジン)ルテニウム(II)錯体をペンダント基として
有する高分子錯体の膜を被覆し、該膜内には媒質として
周期律表第VIII族の金属または金属酸化物を共存せしめ
、この修飾した可視域n型半導体電極を電解質水溶液に
浸漬し、電極表面に可視光を照射することにより水を分
解し、半導体電極上で酸素を発生せしめ、対極上で水素
を発生せしめる方法。
The surface of an n-type semiconductor electrode in the visible range is coated with a film of a polymer complex having a tris(2,2'-bipyridine)ruthenium(II) complex as a pendant group. This modified visible-range n-type semiconductor electrode is immersed in an aqueous electrolyte solution, and the electrode surface is irradiated with visible light to decompose water and generate oxygen on the semiconductor electrode. , a method of generating hydrogen on the opposite electrode.
JP60196467A 1985-09-05 1985-09-05 Method for decomposing water by visible radiation Granted JPS6256588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60196467A JPS6256588A (en) 1985-09-05 1985-09-05 Method for decomposing water by visible radiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60196467A JPS6256588A (en) 1985-09-05 1985-09-05 Method for decomposing water by visible radiation

Publications (2)

Publication Number Publication Date
JPS6256588A true JPS6256588A (en) 1987-03-12
JPH0235037B2 JPH0235037B2 (en) 1990-08-08

Family

ID=16358285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60196467A Granted JPS6256588A (en) 1985-09-05 1985-09-05 Method for decomposing water by visible radiation

Country Status (1)

Country Link
JP (1) JPS6256588A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998005084A1 (en) * 1996-07-26 1998-02-05 The Broken Hill Proprietary Company Limited Photoelectrochemical cell
WO2006095916A1 (en) * 2005-03-10 2006-09-14 Ibaraki University Photophysicochemical cell
JP2009014605A (en) * 2007-07-06 2009-01-22 Ibaraki Univ Biophotochemistry cell and its application method
JP2011017545A (en) * 2009-07-07 2011-01-27 Institute Of Biophotochemonics Co Ltd Electrode for photo-electrochemical measurement
CN108588738A (en) * 2018-06-08 2018-09-28 东北石油大学 A method of being electrically coupled the efficient hydrogen manufacturing of degradation of polypropylene and lighter hydrocarbons using solar heat-
CN110628036A (en) * 2018-06-21 2019-12-31 潍坊学院 High-conductivity covalent-organic framework material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998005084A1 (en) * 1996-07-26 1998-02-05 The Broken Hill Proprietary Company Limited Photoelectrochemical cell
WO2006095916A1 (en) * 2005-03-10 2006-09-14 Ibaraki University Photophysicochemical cell
US8188362B2 (en) 2005-03-10 2012-05-29 Ibaraki University Photophysicochemical cell
JP5374704B2 (en) * 2005-03-10 2013-12-25 国立大学法人茨城大学 Photophysical chemical battery
JP2009014605A (en) * 2007-07-06 2009-01-22 Ibaraki Univ Biophotochemistry cell and its application method
JP2011017545A (en) * 2009-07-07 2011-01-27 Institute Of Biophotochemonics Co Ltd Electrode for photo-electrochemical measurement
CN108588738A (en) * 2018-06-08 2018-09-28 东北石油大学 A method of being electrically coupled the efficient hydrogen manufacturing of degradation of polypropylene and lighter hydrocarbons using solar heat-
CN108588738B (en) * 2018-06-08 2019-06-14 东北石油大学 A method of the efficient hydrogen manufacturing of degradation of polypropylene and lighter hydrocarbons are electrically coupled using solar heat-
CN110628036A (en) * 2018-06-21 2019-12-31 潍坊学院 High-conductivity covalent-organic framework material

Also Published As

Publication number Publication date
JPH0235037B2 (en) 1990-08-08

Similar Documents

Publication Publication Date Title
US4427749A (en) Product intended to be used as a photocatalyst, method for the preparation of such product and utilization of such product
Erbs et al. Visible-light-induced oxygen generation from aqueous dispersions of tungsten (VI) oxide
McKee Catalytic decomposition of hydrogen peroxide by metals and alloys of the platinum group
Leland et al. Photochemistry of colloidal semiconducting iron oxide polymorphs
JP5374704B2 (en) Photophysical chemical battery
JPS6111152A (en) Electrochemical photo-catalyst structure
CA1161785A (en) Use of electrocatalytic anodes in photolysis
Greenbaum Interfacial photoreactions at the photosynthetic membrane interface: an upper limit for the number of platinum atoms required to form a hydrogen-evolving platinum metal catalyst
Visscher et al. Anodic behavior of platinum electrodes in oxygen-saturated acid solutions
JP5803288B2 (en) Semiconductor material and photocatalyst, photoelectrode and solar cell using the same
JPS6256588A (en) Method for decomposing water by visible radiation
JP2005501177A (en) Electrochemical reaction electrode, manufacturing method, and application device thereof.
Frank et al. Polymer-modified electrodes, catalysis and water-splitting reactions
JPH01227361A (en) Manufacture of anode for fuel cell
Koudelka et al. Electrocatalysis of the cathodic reduction of carbon dioxide on platinized titanium dioxide film electrodes
EP0097218B1 (en) Photoassisted generation of hydrogen from water
Appleby Oxygen reduction at smooth pre-reduced gold and iridium electrodes in 85% orthophosphoric acid
JP3793800B2 (en) Method for producing hydrogen and oxygen using iodine compound and semiconductor photocatalyst
Chang et al. Preparation and characterization of selenide semiconductor particles in surfactant vesicles
Kamath et al. Halide adsorption and the anodic oxidation of chemisorbed methanol on platinum
Li et al. Involvement of coordination chemistry during electron transfer in the stabilization of the pyrite (FeS2) photoanode
JP2003200057A (en) High efficiency atmospheric nitrogen fixation compounded photocatalytic material composed of visible ray responsible titanium oxide/conductive polymer compounded material
JP2523283B2 (en) Photovoltaic battery composed of semiconductor electrode and polynuclear complex
JP6886655B2 (en) A metal complex and a fuel cell or solar cell to which the metal complex is applied.
Neumann‐Spallart et al. Photoredox reactions on semiconductors at open circuit: a single TiO2 electrode as a model for reactions in particle suspensions