JP2523283B2 - Photovoltaic battery composed of semiconductor electrode and polynuclear complex - Google Patents

Photovoltaic battery composed of semiconductor electrode and polynuclear complex

Info

Publication number
JP2523283B2
JP2523283B2 JP61162851A JP16285186A JP2523283B2 JP 2523283 B2 JP2523283 B2 JP 2523283B2 JP 61162851 A JP61162851 A JP 61162851A JP 16285186 A JP16285186 A JP 16285186A JP 2523283 B2 JP2523283 B2 JP 2523283B2
Authority
JP
Japan
Prior art keywords
electrode
semiconductor
film
complex
cds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61162851A
Other languages
Japanese (ja)
Other versions
JPS6319775A (en
Inventor
正夫 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP61162851A priority Critical patent/JP2523283B2/en
Publication of JPS6319775A publication Critical patent/JPS6319775A/en
Application granted granted Critical
Publication of JP2523283B2 publication Critical patent/JP2523283B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、太陽光や電燈などの光で充電可能な光蓄電
池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a photorechargeable battery that can be charged with light such as sunlight or electric lights.

〔従来の技術〕[Conventional technology]

光蓄電池は、太陽光エネルギーを電力に変換した後、
その電力を直接貯蔵する、太陽光エネルギー変換・貯蔵
システムとして有効に利用できる。石油・石炭に依存し
ない、永続的でクリーンなエネルギー資源の開発は急を
要する社会的課題で、この観点から太陽光エネルギーの
変換・有効利用が極めて注目される。しかしながら太陽
光エネルギーは非定常的な資源であるために、変換した
エネルギーの貯蔵が重要課題である。
Photovoltaic cells convert sunlight energy into electricity,
It can be effectively used as a solar energy conversion and storage system that directly stores the electric power. The development of permanent and clean energy resources that do not depend on oil and coal is an urgent social issue. From this viewpoint, the conversion and effective use of solar energy is attracting much attention. However, since solar energy is a non-stationary resource, storage of converted energy is an important issue.

〔発明の目的〕[Object of the invention]

従って本発明の目的は、光エネルギーの電力への変換
と貯蔵を一体化したシステムを提供することである。本
発明の他の目的は、光情報の記憶、再生にも利用でき、
光情報素子としての価値も極めて高い、光蓄電システム
を提供することである。
It is therefore an object of the present invention to provide a system that integrates the conversion and storage of light energy into electric power. Another object of the present invention can be used for storage and reproduction of optical information,
It is an object of the present invention to provide an optical power storage system that has a very high value as an optical information element.

〔発明の構成〕[Configuration of the invention]

本発明の目的は下記の光蓄電池により達成される。 The object of the present invention is achieved by the following photovoltaic cell.

一方の電極を半導体とし、他方の電極を半導体以外の
材料とし、組成式(1)で表される混合原子価または混
合金属多核錯体を同時に正・負両極の活物質として用
い、かつ半導体上の活物質の中又はこれと接する位置に
放電用のオーミック接触型の電極を設け、半導体電極上
に光を照射して光電流を発生させることにより充電を行
い、かつ暗時に放電用電極と対極をつないで放電電流を
得ることを特徴とする光蓄電池。
One electrode is a semiconductor, the other electrode is a material other than a semiconductor, and the mixed valence or mixed metal polynuclear complex represented by the composition formula (1) is simultaneously used as an active material for both positive and negative electrodes. An ohmic contact electrode for discharging is provided in or in contact with the active material, and the semiconductor electrode is irradiated with light to generate a photocurrent, thereby performing charging, and forming the discharge electrode and the counter electrode in the dark. A photorechargeable battery characterized in that a discharge current is obtained through connection.

(M Il+〔M IIm+(CN)・cH2O (1) ただし、M I、M IIは同じであることを妨げない周期
律表のVI A、VII A、VIII、I B、II B、III BおよびIV
B族から選ばれる金属イオン、l、mは金属イオンの価
数、a、bは1〜4の整数、cは0を含む任意の整数、
またa、b、l、mは(2)の関係式を満足する。
(MI l + ) a [M II m + (CN) 6 ] b · cH 2 O (1) However, MI and M II do not prevent being the same, VIA, VIIA, VIII, IB, II B, III B and IV
A metal ion selected from Group B, l and m are valences of the metal ion, a and b are integers of 1 to 4, c is any integer including 0,
A, b, l, and m satisfy the relational expression (2).

l×a=(6−m)×b (2) 本発明の特徴は、半導体に接合を形成させて光電池を
構成し、光照射により光電流を生ぜしめると同時に、半
導体電極および対極上で蓄電池の充電反応に相当する反
応を起させ、電力を電荷エネルギーとして蓄積すること
にあり、このときの蓄電体としては多核錯体を用いる。
半導体は通常はオーミック電極としては作動しないの
で、充電後に放電反応で電力を得るためには、半導体電
極に近接して放電用の電極を設ける必要がある。しか
し、半導体電極表面の一部にオーミック接触をとらせて
放電時の用に供することができれば、別に放電用の電極
を設ける必要はない。電池のセルは、多核錯体の溶液を
用いる溶液型、多核錯体の膜を固相で用いる全固体型、
多核錯体膜を電解質溶液中で用いる膜/湿式型、多核錯
体膜と多角錯体溶液を用いる膜/溶液型とに分けられ
る。
l × a = (6-m) × b (2) A feature of the present invention is that a photocell is formed by forming a junction in a semiconductor, a photocurrent is generated by light irradiation, and a storage battery is formed on the semiconductor electrode and the counter electrode. A reaction corresponding to the charging reaction is caused to accumulate electric power as charge energy. In this case, a polynuclear complex is used as a power storage unit.
Since a semiconductor does not normally operate as an ohmic electrode, it is necessary to provide a discharge electrode close to the semiconductor electrode in order to obtain power by a discharge reaction after charging. However, as long as ohmic contact can be made to a part of the surface of the semiconductor electrode to be used for discharge, it is not necessary to provide a separate electrode for discharge. The battery cell is a solution type using a solution of a polynuclear complex, an all solid type using a film of the polynuclear complex in a solid phase,
The polynuclear complex membrane is divided into a membrane / wet type using an electrolyte solution and a polynuclear complex membrane and a membrane / solution type using a polygonal complex solution.

半導体としては、無機半導体としてTiO2、ZnO、Sn
O2、SiC、SrTiO3、CdS、CdSe、Si、GaAs、GaP、InPなど
が挙げられる。これら半導体を溶液中に浸漬して用いる
場合には、無機半導体のうちではTiO2、ZnO、SnO2、Si
C、SrTiO3などのバンドギャップの大きい、従って紫外
光しか吸収利用できない半導体が安定に使用できる。し
かしながら、無機半導体のうち、バンドギャップの小さ
い、従って可視光も吸収利用できるCdS、CdSe、Si、GaA
s、GaP、InPなどは、特にそのn型は、水中光照射条件
下では劣化するため、高分子膜などを被覆して安定化す
ることを要する場合がある。しかしこのような半導体で
も、固相条件ならば安定に用いることができる。
As semiconductors, TiO 2 , ZnO, Sn as inorganic semiconductors
O 2 , SiC, SrTiO 3 , CdS, CdSe, Si, GaAs, GaP, InP and the like can be mentioned. When these semiconductors are immersed in a solution, TiO 2 , ZnO, SnO 2 , Si
Semiconductors such as C and SrTiO 3 which have a large band gap and can therefore absorb and use only ultraviolet light can be used stably. However, among the inorganic semiconductors, CdS, CdSe, Si, and GaAs, which have a small band gap and thus can utilize visible light, can be used.
Since s, GaP, InP, and the like, particularly the n-type thereof deteriorate under the light irradiation condition in water, it may be necessary to stabilize by coating a polymer film or the like. However, even such a semiconductor can be used stably under solid phase conditions.

本発明の光蓄電池の電極は一方が半導体であり、他方
すなわち、対極は半導体以外の材料である。このような
対極としてネサガラス(透明電極)、炭素、金属などの
電極を用いる。半導体電極は、単結晶や多結晶の材料を
そのまま用いるが、あるいは半導体を他の電極たとえば
ネサガラス、炭素、金属などの電極上に被覆して用いて
もよい。放電反応を行なうためには、半導体電極側に、
半導体表面と接触して、あるいは半導体から離れた位置
に、他の電極、たとえばネサガラス、炭素、金属などの
電極を設けるか、あるいは半導体表面の一部にオーミッ
ク接触的特性を持たせれば、半導体をそのまま放電用の
電極としても兼用できる。
One of the electrodes of the photovoltaic cell of the present invention is a semiconductor, and the other, that is, the counter electrode is a material other than a semiconductor. An electrode of Nesa glass (transparent electrode), carbon, metal, or the like is used as such a counter electrode. As the semiconductor electrode, a single crystal or polycrystalline material is used as it is, or a semiconductor may be used by coating it on another electrode, for example, an electrode of Nesa glass, carbon, metal, or the like. In order to perform a discharge reaction,
If another electrode, for example, an electrode such as Nesa glass, carbon, or a metal is provided in contact with or away from the semiconductor surface, or if a part of the semiconductor surface has ohmic contact characteristics, the semiconductor is It can also be used as a discharge electrode as it is.

たとえば半導体表面の一部に金属あるいは金属酸化物
を被覆することにより一部オーミック接触的性質を持た
せることができる場合がある。
For example, in some cases, a part of the semiconductor surface can be provided with ohmic contact properties by coating a metal or a metal oxide.

光照射を半導体裏面より行なう場合には、半導体表面
に充分光が届くように半導体またはこれを被覆する電極
は光透過性でなければならない。
When light irradiation is performed from the back surface of the semiconductor, the semiconductor or the electrode covering the semiconductor must be light-transmitting so that light reaches the semiconductor surface sufficiently.

一方、半導体表面より光を照射するためには、半導体
表面に充分光が当たるように電池の構成を工夫すべきで
あることは言うまでもない。
On the other hand, in order to irradiate light from the semiconductor surface, it is needless to say that the configuration of the battery must be devised so that the semiconductor surface is sufficiently irradiated with light.

本発明においては蓄電用の活物質として多核型金属錯
体を用いる。これは通常の二次電池でいえば、正負両極
の活物質に相当する。多核型金属錯体の組成は(1)式
で表わされる。
In the present invention, a polynuclear metal complex is used as an active material for power storage. This corresponds to both positive and negative active materials in a normal secondary battery. The composition of the polynuclear metal complex is represented by formula (1).

(M Il+〔M IIm+(CN)・cH2O (1) ただしここでM I、M IIは同じであることを防げな
い、周期律表のVI A、VII A、VIII、I B、II B、III B
およびIV B族から選ばれる金属イオン、l、mは金属イ
オンの価数、a、bは1〜4の整数、cは0を含む任意
の整数を表わし、またa、b、l、mは式(2)の関係
式を満足する。
(MI l + ) a [M II m + (CN) 6 ] b · cH 2 O (1) Here, MI and M II cannot be the same. IB, II B, III B
And l and m are valences of the metal ion, a and b are integers of 1 to 4, c is any integer including 0, and a, b, l and m are The relational expression (2) is satisfied.

l×a=(6−m)×b (2) 式(2)の条件は、錯体中の負電荷と陽電荷の数が等
しくなければならない理由に基づく。
l × a = (6-m) × b (2) The condition in equation (2) is based on the reason that the number of negative and positive charges in the complex must be equal.

M Il+、M IIm+としては、たとえばFe2+、 Fe3+、Ru2+、Ru3+、Os2+、Os3+、 Mn2+、Mn3+、Cr2+、Cr3+、Cu2+、 Ag1+、Sn2+、Sn4+、Mo5+、Mo6+、 Al3+、Pb2+、Pb4+などが挙げられる。MI l + and M II m + include, for example, Fe 2+ , Fe 3+ , Ru 2+ , Ru 3+ , Os 2+ , Os 3+ , Mn 2+ , Mn 3+ , Cr 2+ , Cr 3+ , Cu 2+ , Ag 1+ , Sn 2+ , Sn 4+ , Mo 5+ , Mo 6+ , Al 3+ , Pb 2+ , Pb 4+ and the like.

混合原子価錯体としてはたとえば代表例としてプルシ
アンブルー(以下PBと略す)が挙げられ、その組成は式
(3)で表わされ。
A typical example of the mixed valence complex is Prussian blue (hereinafter abbreviated as PB) as a typical example, and its composition is represented by the formula (3).

(Fe3+〔Fe(II)(CN)4-・cH2O (3) このような多核錯体は可逆的に三種のレドックス状態
をとりうる。たとえばPBを例にとると、PB自身はFe2+
Fe3+の混合原子価状態であるが、これを酸化するとFe3+
−Fe3+のいわゆるベルリングリーン(以下BGと略する)
と呼ばれる酸化状態をとり、またPBを還元するとFe2+
Fe2+のいわゆるプルシアンホワイト(PWと略する)と呼
ばれる還元状態をとる。しかもこれら三種のレドックス
状態を可逆的にとり得るため、中間レドックス状態(こ
の例ではPB)の化合物を原料とすると、これは正・負両
電荷を蓄積する活物質として用いることができ、蓄電池
としての構成は極めて簡単になる。
(Fe 3+ ) 4 [Fe (II) (CN) 6 ] 4- · cH 2 O (3) Such a polynuclear complex can reversibly assume three redox states. For example, taking PB as an example, PB itself is Fe 2+
It is a mixed-valence state of Fe 3+, when oxidized to Fe 3+
-Fe 3+ so-called Berlin Green (hereinafter abbreviated as BG)
It takes an oxidation state called, and when PB is reduced, Fe 2+
Fe 2+ assumes a reduced state called Prussian white (abbreviated as PW). Moreover, since these three redox states can be reversibly taken, when a compound in an intermediate redox state (PB in this example) is used as a raw material, it can be used as an active material for accumulating both positive and negative charges, and as a storage battery. The construction becomes very simple.

本発明で用いる多核錯体のもう一つの特徴は、高分子
量型の錯体であるために、容易に電極上に膜として固定
したり、あるいはコロイド粒子として用いることができ
ることにある。活物質を電極に固定できるということ
は、溶液を用いるよりはるかに高い濃度で用いることが
できる、あるいは陽極活物質と陰極活物質の接触を極め
て容易に防ぐことができる、固体型の素子として用いら
れる、などの重要な利点を生ずる。
Another feature of the polynuclear complex used in the present invention is that since it is a high molecular weight complex, it can be easily fixed as a film on an electrode or used as colloid particles. The fact that the active material can be fixed to the electrode means that it can be used at a much higher concentration than using a solution, or it can be used as a solid-state device that can very easily prevent contact between the anode active material and the cathode active material. Significant advantages.

混合金属錯体としては(4)で表わされる、いわゆる
ルテニウムパープル(RPと略記する)が挙げられる。
As the mixed metal complex, there is a so-called ruthenium purple (abbreviated as RP) represented by (4).

PBのコロイド溶液を調製するには、フェリシアン化カ
リウムと第一鉄塩の水溶液を混合するか、あるいはフェ
ロシアン化カリウムと第二鉄塩の水溶液を混合すればよ
い。混合後直ちにPBのコロイド溶液が生成する。あるい
はフェロシアン化カリウムと第一鉄塩の混合水溶液を、
空気や他の酸化剤で酸化するか、あるいはフェリシアン
化カリウムと第二鉄塩の混合水溶液を還元することによ
り、PBのコロイド水溶液が得られる。このようなコロイ
ド水溶液は、コロイドが凝集しないような条件では透明
青色の水溶液であるが、農尾が高いとコロイドの凝集が
容易に起るので、深青色の不透明液となる。前述の場
合、酸化剤や還元剤を用いる代りに、電気化学的な酸化
または還元によりPBを生成せしめることも可能で、この
ときPBは膜として電極面に付着する。他の錯体の溶液や
皮膜もほぼ同様にして調製される。たとえばRPは、ヘキ
サシアノルテニウム(II)塩を第二鉄塩水溶液と混合す
ることにより、紫色のコロイド溶液として得られる。
To prepare a colloidal solution of PB, an aqueous solution of potassium ferricyanide and a ferrous salt may be mixed, or an aqueous solution of potassium ferricyanide and a ferric salt may be mixed. Immediately after mixing, a colloidal solution of PB is formed. Or a mixed aqueous solution of potassium ferrocyanide and ferrous salt,
By oxidizing with air or another oxidizing agent, or by reducing a mixed aqueous solution of potassium ferricyanide and ferric salt, a colloidal aqueous solution of PB is obtained. Such a colloid aqueous solution is a clear blue aqueous solution under the condition that the colloid does not agglomerate. However, when the size of the colloid is high, the colloid agglomeration easily occurs, so that it becomes a deep blue opaque liquid. In the case described above, instead of using an oxidizing agent or a reducing agent, PB can be generated by electrochemical oxidation or reduction. At this time, PB adheres to the electrode surface as a film. Solutions and films of other complexes are prepared in substantially the same manner. For example, RP is obtained as a purple colloidal solution by mixing a hexacyanoruthenium (II) salt with a ferric salt aqueous solution.

その他の混合金属錯体の例としては、Fe3+−Co2+系錯
体、Fe3+−Cu2+系錯体、Fe3+−Mn2+系錯体等が挙げられ
る。
Examples of other mixed metal complexes of, Fe 3+ -Co 2+ based complex, Fe 3+ -Cu 2+ based complex, Fe 3+ -Mn 2+ based complexes.

多核錯体膜を電極に被覆するためには、たとえば電解
還元法による場合は、まず酸化型の多核錯体は水溶液を
調製する。PBの例ではフェリシアン化カリウムと第二鉄
塩水溶液を等モルずつ混合するとBG水溶液ができる。こ
れにカリウム、ルビジウム、セシウムあるいはアンモニ
ウムなどのカチオンを含む電解質(たとえば塩化カリウ
ム、硫酸ルビジウム、塩化アンモニウムなど)を共存さ
せ、電極に0〜−10V(vs・NHE(標準水素電極基準))
の範囲の電圧を印加すると還元が起るとともに多核錯体
(たとえばPB)が電極上に析出して皮膜を形成する。
In order to coat the electrode with the polynuclear complex film, for example, by the electrolytic reduction method, first, an aqueous solution of the oxidized polynuclear complex is prepared. In the case of PB, an aqueous solution of BG is formed by mixing potassium ferricyanide and an aqueous solution of ferric salt in equimolar amounts. An electrolyte containing a cation such as potassium, rubidium, cesium or ammonium (for example, potassium chloride, rubidium sulfate, ammonium chloride, etc.) is allowed to coexist, and 0 to -10 V is applied to the electrode (vs. NHE (standard hydrogen electrode standard)).
When a voltage in the range is applied, reduction occurs and a polynuclear complex (eg, PB) precipitates on the electrode to form a film.

光蓄電池の活物質としての多角錯体は、溶液(コロイ
ド溶液)または膜として固定化した形で用いられ、これ
らを適宜組み合せてもよい。膜として用いるばあいの膜
厚は1000Å〜10μmが適当であり、また溶液として用い
るばあいの濃度は0.1mM〜1Mが適当である。媒体として
は通常水が用いられる。両極の活物質の中間には通常隔
膜を設けて、両活物質が接触しないようにする。しかし
ながら、両活物質とも固定化した形態で用い、かつこれ
らを電解質水溶液に浸漬して用いる場合には、両活物質
は直接接触しないので、隔膜は必要ない。多核錯体を膜
として用いる場合には、直接電極上に前述の方法に従っ
て析出、膜化させてもよいし、あるいは合成、天然高分
子の膜中に多核錯体を分散させて用いてもよい。この場
合、この膜中にはカリウム、ルビジウム、セシウムある
いはアンモニウムなどのカチオンを含む電解質塩が共存
していることが望ましい。全固体型素子で用いられる隔
膜も、あるいは溶液型で用いる場合の溶液も、これらカ
リウム、ルビジウム、セシウムあるいはアンモニウムな
どのカチオンを共存させて用いることが望ましい。これ
ら電極質塩、カチオンの濃度は0.1mM〜1Mが適当であ
る。
The polygonal complex as the active material of the photovoltaic battery is used in the form of a solution (colloidal solution) or a film immobilized, and these may be appropriately combined. When used as a film, the film thickness is suitably from 1000 to 10 μm, and when used as a solution, the concentration is from 0.1 mM to 1M. Water is usually used as the medium. Usually, a diaphragm is provided between the two active materials so that the active materials do not come into contact with each other. However, when both active materials are used in a fixed form, and when they are immersed in an aqueous electrolyte solution, the active materials do not come into direct contact with each other, so that a diaphragm is not necessary. When a polynuclear complex is used as a film, it may be deposited and formed into a film directly on the electrode according to the above-described method, or may be used by dispersing the polynuclear complex in a synthetic or natural polymer film. In this case, it is desirable that an electrolyte salt containing a cation such as potassium, rubidium, cesium or ammonium coexist in this film. It is preferable that the cations such as potassium, rubidium, cesium and ammonium coexist both in the diaphragm used in the all solid type device and in the solution used in the solution type. The concentration of these electrode salts and cations is suitably from 0.1 mM to 1M.

前述したように、無機半導体のうちn型でバンドギャ
ップの小さい可視域半導体は、水中光照射下では劣化し
てしまうので、水中で用いる場合には安定化するために
高分子膜を被覆する。高分子膜としてはポリピロール、
ポリチエニレン、ポリアニリンなどのほか、トリス(2,
2′−ビピリジン)ルテニウム(II)錯体(▲Ru(bpy)
2+ 3▼と略す)をペンダント基として有する高分子など
が用いられる。このような高分子の一例を式(5)に示
す。
As described above, an n-type semiconductor having a small band gap in the visible region among inorganic semiconductors is deteriorated under light irradiation in water, and is coated with a polymer film for stabilization when used in water. Polypyrrole,
In addition to polythienylene and polyaniline, tris (2,
2'-bipyridine) ruthenium (II) complex (▲ Ru (bpy)
2+ 3 ▼) as a pendant group. An example of such a polymer is shown in formula (5).

(ただし、 は2,2′−ビピリジルを表わす。更にx、y、zはそれ
ぞれの繰り返し単位のモル分率で、x+y+z=1を満
足し、xは0〜0.99、yは0〜0.5、zは0.01〜0.90の
範囲の値をとる。) 半導体に被覆した高分子膜中又は膜表面で光照射下で
レドックス反応を行なわせて多核錯体に充電することに
なるが、この場合膜中に白金、ルテニウム、パラジウ
ム、ロジウムなどの貴金属やその酸化物のような触媒を
膜成分に対して0.01〜10重量%の割合で分散させておく
と、水中光照射下での半導体の安定化および光充電反応
の効果が高い。
(However, Represents 2,2'-bipyridyl. Further, x, y, and z are mole fractions of the respective repeating units, satisfying x + y + z = 1, x is in the range of 0 to 0.99, y is in the range of 0 to 0.5, and z is in the range of 0.01 to 0.90. The polynuclear complex is charged by performing a redox reaction in a polymer film coated on a semiconductor or on the film surface under light irradiation under light irradiation. In this case, a noble metal such as platinum, ruthenium, palladium, and rhodium is contained in the film. When a catalyst such as an oxide is dispersed in a proportion of 0.01 to 10% by weight with respect to the film component, the effect of stabilizing the semiconductor under light irradiation in water and the effect of photocharge reaction is high.

光源としては太陽光、タングステンランプ、ケイ光
灯、プロジェクターランプ、水銀灯、ハロゲンランプな
ど何でもよい。
The light source may be any of sunlight, a tungsten lamp, a fluorescent lamp, a projector lamp, a mercury lamp, a halogen lamp, and the like.

以上のようにして構成した光蓄電池の一例を第1図に
示す。
FIG. 1 shows an example of the photovoltaic cell configured as described above.

以下実施例を以て本発明を説明する。 Hereinafter, the present invention will be described with reference to examples.

実施例1 n−CdS単結晶(表面積7.3mm2)の表面に、安定化の
ため高分子ペンダント型▲Ru(bys)2+ 3▼(式(5)に
おいてx=0.905、y=0.047、z=0.048のもの)のジ
メチルホルムアミド溶液からキャスト法により約1μm
の厚さの膜を形成し、さらに触媒としてRuO2を膜中に分
散させるために、該被覆CdSをRuO4水溶液に浸漬せしめ
ることにより、RuO2として析出分散させた。
Example 1 On the surface of an n-CdS single crystal (surface area: 7.3 mm 2 ), a polymer pendant type RRu (bys) 2+ 3 ▼ (x = 0.905, y = 0.047, z in formula (5)) for stabilization = 0.048) from a dimethylformamide solution by casting
Film is formed thickness of, further in order to disperse the RuO 2 in the film as a catalyst, by immersing the coated CdS in RuO 4 aqueous solution to precipitate dispersed as RuO 2.

カチオン交換膜(ナフィオン(登録商標)膜使用)と
隔膜とする二室型セルの夫々に、PBの1mM(鉄単位の濃
度)溶液を夫々0.8mlずつ入れ、セルの片方に上記CdS電
極を浸漬し、その表面は光入射側の近くにおいて充分光
が照射されるようにし、セルの片方には白金(1cm2)を
浸漬して対極とした。被覆CdS表面に、500Wキセノンラ
ンプからの光を照射するとアノード光電流を初期には約
180μA/cm2の大きさで生じ、23時間後には14μA/cm2
なった。このとき流れた電荷量は0.13Cで、この光電流
にともない、CdS極側のPBは酸化されてBGに、対極側のP
Bは還元されてPWとなり、これらは溶液の可視吸収スペ
クトルから確かめられた。光蓄電後に、CdS極室側に浸
漬した白金極と対極との間に起電力250mVを生じ、短絡
により放電が起った。このような光蓄電、放電は可逆的
に繰り返し行なわれた。
0.8 ml each of a 1 mM (concentration in iron unit) solution of PB is placed in each of the two-chamber cell used as a cation exchange membrane (using Nafion (registered trademark) membrane) and a diaphragm, and the above CdS electrode is immersed in one of the cells. The surface was sufficiently irradiated with light near the light incident side, and platinum (1 cm 2 ) was immersed in one side of the cell to serve as a counter electrode. When the surface of the coated CdS is irradiated with light from a 500 W xenon lamp, the anode photocurrent initially increases by about
It occurs in the magnitude of 180μA / cm 2, after 23 hours became 14 .mu.A / cm 2. At this time, the amount of electric charge flowing was 0.13 C. With this photocurrent, PB on the CdS pole side was oxidized to BG and P on the counter electrode side.
B was reduced to PW, which was confirmed by the visible absorption spectrum of the solution. After photo-electric storage, an electromotive force of 250 mV was generated between the platinum electrode immersed in the CdS electrode room and the counter electrode, and a short circuit caused discharge. Such photo-charging and discharging were reversibly repeated.

実施例2 実施例1において、対極の白金にPBを約2μmの厚さ
に電着法で被覆せしめた電極を用い、かつ対極側室の水
溶液中にはPBの代りにKClを0.5M、HClを0.01M含むもの
を用いたほかは実施例1と同様にして光蓄電を行なった
ところ、CdS極側室では水中のPBが酸化されてBGとな
り、対極上のPB膜は還元されてPW膜となり、両室間の開
放起電力として約300mVを与えた。このような光蓄電、
放電は可逆的に繰り返し行なわれた。
Example 2 In Example 1, an electrode was used in which PB was coated on the platinum of the counter electrode to a thickness of about 2 μm by the electrodeposition method, and 0.5 M of KCl and HCl were used instead of PB in the aqueous solution of the counter electrode side chamber. Photoelectric storage was performed in the same manner as in Example 1 except that the one containing 0.01M was used.In the CdS pole side chamber, PB in water was oxidized to BG, and the PB film on the counter electrode was reduced to a PW film, About 300 mV was applied as an open electromotive force between both rooms. Such a light storage,
The discharge was repeated reversibly.

実施例3 n−CdS単結晶上にRuO2微粉末を乗せ、スパーテルで
こすった後、実施例1と同様にして高分子▲Ru(bpy)
2+ 3▼錯体膜を被覆し、これを0.01MのBG水溶液に浸漬し
て−1.5V(vs・SCE)をかけることにより、PBの膜を析
出せしめて被膜とした。別にPBを被覆したネサガラスを
作製し、KCl水溶液をしみ込ませたオフィオン膜にそれ
ぞれPB表面が接触するようにはさみ込んで固定し、固定
型光蓄電池とした。ネサガラス側からCdS素面に向けて
太陽光を照射すると、アノード光電流が生じ、同時にCd
S上のPBはBGに酸化され、ネサガラス上のPBは還元され
てPWとなった。CdS上に接触させたRuO2はオーミック接
触特性を持つので、CdSは放電用の電極としても機能
し、光蓄電後に対極との間に開放起電力約250mVを生
じ、電池として作動した。
Example 3 RuO 2 fine powder was placed on an n-CdS single crystal and rubbed with a spatula, and then polymer ▲ Ru (bpy) was obtained in the same manner as in Example 1.
The 2 + 3 ▼ complex film was coated, and this was immersed in a 0.01 M BG aqueous solution and subjected to −1.5 V (vs. SCE) to deposit a PB film to form a film. Separately, a Nesa glass coated with PB was prepared, and the PB surface was in contact with and fixed to an ophion film impregnated with a KCl aqueous solution, thereby obtaining a fixed photovoltaic cell. When sunlight is irradiated from the Nesa glass side toward the CdS bare surface, an anode photocurrent is generated, and at the same time, CdS
PB on S was oxidized to BG, and PB on Nesa glass was reduced to PW. Since RuO 2 contacted on CdS had ohmic contact characteristics, CdS also functioned as a discharge electrode, generating an open electromotive force of about 250 mV between the counter electrode and the photoelectrode, and operated as a battery.

実施例4 1 M CdSO4水溶液、2Mアンモニア水溶液、および1Mチ
オ尿素水溶液を1:5:1(容積比)の割合で混合し、この
混合水溶液にネサガラスを浸漬して溶液を80〜90℃に加
熱することにより、CdS膜をネサガラスの導電性膜上に
析出させた後、取り出して水洗した。このCdS膜上に、
放電用の電極として白金網をのせた後、BG水溶液に浸漬
し、CdS極に−1V(vs・SCE)をかけることによりCdSと
白金網上にPB膜を被覆せしめた。この電極を用いて、実
施例3と同様にして固体型光蓄電池とし、CdSを被覆し
たネサガラスの裏側からプロジェクターよりの光を照射
するとアノード光電流が生ずるとともに、CdS上のPBはB
Gとなり、対極上のPBはPWとなった。光蓄電後、白金網
と対極の間に起電力約250mVを生じ、蓄電池として機能
した。
Example 4 A 1 M CdSO 4 aqueous solution, a 2 M ammonia aqueous solution, and a 1 M thiourea aqueous solution were mixed at a ratio of 1: 5: 1 (volume ratio), and Nesa glass was immersed in the mixed aqueous solution to bring the solution to 80 to 90 ° C. After heating, the CdS film was deposited on the conductive film of Nesa glass, and then taken out and washed with water. On this CdS film,
After placing a platinum net as a discharge electrode, it was immersed in an aqueous BG solution, and -1 V (vs. SCE) was applied to the CdS electrode to coat a PB film on the CdS and the platinum net. Using this electrode, a solid-state photovoltaic cell was produced in the same manner as in Example 3. When light from a projector was irradiated from the back side of the CdS-coated nesa glass, an anode photocurrent was generated, and PB on CdS became B
G and PB on the opposite pole became PW. After photovoltaic storage, an electromotive force of about 250 mV was generated between the platinum network and the counter electrode, and it functioned as a storage battery.

実施例5 p−InP電極をBG水溶液に浸漬し、−0.3V(vs・SCE)
をかけて表面に光照射すると、BGが光電気化学的に還元
されてPBとなり、同時にPB膜として析出する。このPB被
膜p−InP電極と、PBを被覆した白金対極とを0.5 M K2S
O4と0.001M H2SO4とを含む水溶液に浸漬し、両極間に隔
壁を設けることなく、p−InP上に500Wキセノンランプ
からの光を照射すると、カソード光電流起が流れてp−
InP上のPBは還元されてPWに、対極上のPBは酸化されてB
Gとなった。光蓄電後に、p−InP上のPWに接触させた白
金線と対極との間の開放起電力は200mVとなり、光蓄電
池として機能した。
Example 5 A p-InP electrode was immersed in a BG aqueous solution, and was then −0.3 V (vs. SCE).
When the surface is irradiated with light, the BG is photoelectrochemically reduced to PB, and is simultaneously deposited as a PB film. The PB-coated p-InP electrode and the PB-coated platinum counter electrode were 0.5 MK 2 S
When immersed in an aqueous solution containing O 4 and 0.001 MH 2 SO 4 and irradiated with light from a 500 W xenon lamp on p-InP without providing a partition wall between the two electrodes, a cathode photocurrent flows and p-
PB on InP is reduced to PW, and PB on the opposite electrode is oxidized to BW
G. After the photovoltaic storage, the open electromotive force between the platinum wire in contact with the PW on p-InP and the counter electrode was 200 mV, and functioned as a photovoltaic battery.

実施例6 イオン交換膜の隔壁で仕切った二室型セルの一方にPB
の10mM水溶液を入れてこれにn−TiO2電極を浸漬し、片
方にはK2SO4水溶液を入れてこれにPB膜を被覆したグラ
ファイト対極を浸漬した。TiO2表面に水銀灯からの紫外
光を照射するとアノード光電流が生じ、TiO2極室のPBは
酸化されてBGとなり、対極グラファイト上のPBは還元さ
れてPWになった。光蓄電後、TiO2側溶液中に浸漬したグ
ラファイト極と対極との間に開放起電力約300mVを生
じ、畜電池として機能した。
Example 6 PB was added to one of the two-chamber cells separated by the partition walls of the ion exchange membrane.
Of this was immersed n-TiO 2 electrodes put 10mM aqueous solution, the one was immersed graphite counter electrode coated with PB film to put the K 2 SO 4 solution. When the surface of TiO 2 was irradiated with ultraviolet light from a mercury lamp, an anode photocurrent was generated, PB in the TiO 2 electrode room was oxidized to BG, and PB on the counter electrode graphite was reduced to PW. After photo-electric storage, an open electromotive force of about 300 mV was generated between the graphite electrode immersed in the TiO 2 side solution and the counter electrode, and functioned as a storage battery.

実施例7 実施例1において、PBの代りにRPを用いたほかは実施
例1と同様に光蓄電池を構成して光照射したところ、Cd
S極側のRPは酸化されてFe3+−Ru3+型錯体となり、対極
側RPは還元されてFe2+−Ru2+型錯体となり、光蓄電後に
同様にして起電力を取り出したところ、開放起電力約27
0mVが得らえた。
Example 7 A light storage battery was constructed and irradiated with light in the same manner as in Example 1 except that RP was used instead of PB.
The RP on the S electrode side is oxidized to form a Fe 3+ -Ru 3+ type complex, and the RP on the counter electrode side is reduced to become a Fe 2+ -Ru 2+ type complex. , Open electromotive force about 27
0mV was obtained.

実施例8 n−GaAs単結晶電極上に放電用の白金網電極を置いた
上にPB膜を被覆させた電極と、PB膜を被覆したネサガラ
ス対極とで、塩化アンモニウム水溶液をしみ込ませたナ
フィオン膜をはさんで固体型光蓄電池とし、ネサガラス
側から500Wキセノンランプからの光を照射するとアノー
ド光電流が生じ、同時にn−GaAs上のPBはBGに酸化さ
れ、ネサガラス上のPBはPWに還元された。光蓄電後、白
金網電極と対極間に開放起電力約290mVを生じ、光蓄電
池として繰り返し作動した。
Example 8 A Nafion film impregnated with an ammonium chloride aqueous solution between an electrode in which a platinum network electrode for discharge was placed on an n-GaAs single crystal electrode and a PB film was coated, and a Nesa glass counter electrode in which the PB film was coated. When a 500 W xenon lamp irradiates light from the Nesa glass side, an anode photocurrent is generated.At the same time, PB on n-GaAs is oxidized to BG, and PB on Nesa glass is reduced to PW. Was. After photovoltaic storage, an open electromotive force of about 290 mV was generated between the platinum mesh electrode and the counter electrode, and the photovoltaic battery was repeatedly operated.

実施例9 実施例4のようにして調製したCdS膜被覆電極上に放
電用の白金網電極をのせた後、ゼラチンとPBを溶解した
水溶液を流して乾燥することにより、PBを分散したゼラ
チン膜を被覆し、一方ネサガラス上に同様にしてPBを分
散したゼラチン膜を被覆し、両電極で、K2SO4水溶液を
しみ込ませたゼラチン膜をはさんで固体型光蓄電池を構
成した。CdS極のネサガラス側から太陽光を照射すると
アノード光電流が生じ、CdS上のPBはBGに、ネサガラス
上のPBはPWになった。光蓄電後、白金鋼と対極ネサガラ
ス間に開放起電力約300mVを生じ、繰り返し光蓄電池と
して作動した。
Example 9 A platinum film electrode for discharging was placed on the CdS film-coated electrode prepared as in Example 4, and then an aqueous solution in which gelatin and PB were dissolved was flowed and dried to obtain a gelatin film in which PB was dispersed. On the other hand, a gelatin film in which PB was dispersed was similarly coated on Nesa glass, and a solid-state photovoltaic battery was formed by sandwiching a gelatin film impregnated with a K 2 SO 4 aqueous solution between both electrodes. When sunlight was irradiated from the Nesa glass side of the CdS pole, anode photocurrent was generated, and PB on CdS became BG and PB on Nesa glass became PW. After photovoltaic storage, an open electromotive force of about 300 mV was generated between platinum steel and the counter electrode Nesa glass, and it repeatedly operated as a photovoltaic battery.

実施例10 実施例9において、ゼラチンの代りにポリビニルアル
コールを用いた他は、実施例9と全く同様に光蓄電池を
構成し、ほぼ同様の結果を得た。
Example 10 A photovoltaic cell was constructed in exactly the same manner as in Example 9 except that polyvinyl alcohol was used instead of gelatin, and almost the same results were obtained.

〔発明の効果〕〔The invention's effect〕

本発明は、光エネルギーの電力への変換と貯蔵を一体
化した全く新しいシステムを提供するものであり、その
社会的、経済的意義は極めて大きい。本発明の光蓄電池
は、光蓄電、放電を可逆的に繰り返し行うことができ
る。したがって、本発明の光蓄電システムは光情報の記
憶、再生にも利用でき、光情報素子としての価値も極め
て高い。
The present invention provides a completely new system integrating the conversion and storage of light energy into electric power, and its social and economic significance is extremely large. INDUSTRIAL APPLICABILITY The photovoltaic battery of the present invention can repeatedly and reversibly perform photocharge and discharge. Therefore, the photovoltaic storage system of the present invention can be used for storing and reproducing optical information, and has a very high value as an optical information element.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の光蓄電池の一具体例を示す概念図であ
る。
FIG. 1 is a conceptual diagram showing a specific example of the photo-storage battery of the present invention.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一方の電極を半導体とし、他方の電極を半
導体以外の材料とし、組成式(1)で表される混合原子
価または混合金属多核錯体を同時に正・負両極の活物質
として用い、かつ半導体上の活物質の中又はこれと接す
る位置に放電用のオーミック接触型の電極を設け、半導
体電極上に光を照射して光電流を発生させることにより
充電を行い、かつ暗時に放電用電極と対極をつないで放
電電流を得ることを特徴とする光蓄電池。 (M I1+[M IIm+(CN)・cH2O (1) ただし、M I及びM IIは同じであることを妨げない、周
期律表のVI A、VII A、VIII、I B、II B、III B及びIV
B族から選ばれる金属イオン、l及びmは金属イオンの
価数、a及びbは1〜4の整数、cは0を含む任意の整
数であり、a、b、l及びmは(2)の関係式を満足す
る。 l×a=(6−m)×b (2)
An electrode is made of a semiconductor, the other electrode is made of a material other than a semiconductor, and a mixed valence or mixed metal polynuclear complex represented by the composition formula (1) is simultaneously used as an active material for both positive and negative electrodes. In addition, an ohmic contact electrode for discharging is provided in or in contact with the active material on the semiconductor, and the semiconductor electrode is charged by irradiating light to generate a photocurrent and discharging in the dark. A photovoltaic battery characterized in that a discharge current is obtained by connecting an electrode for use with a counter electrode. (MI 1+ ) a [M II m + (CN) 6 ] b · cH 2 O (1) However, MI and M II do not prevent being the same. IB, II B, III B and IV
A metal ion selected from Group B, l and m are valences of the metal ion, a and b are integers from 1 to 4, c is any integer including 0, and a, b, l and m are (2) Satisfies the relation. 1 × a = (6-m) × b (2)
JP61162851A 1986-07-10 1986-07-10 Photovoltaic battery composed of semiconductor electrode and polynuclear complex Expired - Lifetime JP2523283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61162851A JP2523283B2 (en) 1986-07-10 1986-07-10 Photovoltaic battery composed of semiconductor electrode and polynuclear complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61162851A JP2523283B2 (en) 1986-07-10 1986-07-10 Photovoltaic battery composed of semiconductor electrode and polynuclear complex

Publications (2)

Publication Number Publication Date
JPS6319775A JPS6319775A (en) 1988-01-27
JP2523283B2 true JP2523283B2 (en) 1996-08-07

Family

ID=15762449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61162851A Expired - Lifetime JP2523283B2 (en) 1986-07-10 1986-07-10 Photovoltaic battery composed of semiconductor electrode and polynuclear complex

Country Status (1)

Country Link
JP (1) JP2523283B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4773086B2 (en) * 2004-12-28 2011-09-14 住友大阪セメント株式会社 Dye-sensitized photoelectric conversion element, method for producing dye-sensitized photoelectric conversion element, and paint for dye-sensitized photoelectric conversion element
JP6004540B2 (en) * 2011-03-18 2016-10-12 国立大学法人 筑波大学 Binder-free battery
WO2014148016A1 (en) 2013-03-22 2014-09-25 パナソニック株式会社 Photoelectric conversion element
JP6459582B2 (en) * 2015-02-09 2019-01-30 株式会社デンソー Light energy conversion storage system
CN105139912A (en) * 2015-07-31 2015-12-09 苏州宏展信息科技有限公司 Photoelectric nuclear battery fluorescent layer preparation method
US10529471B2 (en) 2016-09-20 2020-01-07 Japan Science And Technology Agency Dielectric material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175566A (en) * 1983-03-24 1984-10-04 Rikagaku Kenkyusho Semiconductor electrode covered by film of high molecular compound
JPS60189877A (en) * 1984-03-09 1985-09-27 Rikagaku Kenkyusho Polymer metal complex film covered photo response electrode
JPS61211965A (en) * 1985-03-15 1986-09-20 Matsushita Electric Ind Co Ltd Photo-secondary cell

Also Published As

Publication number Publication date
JPS6319775A (en) 1988-01-27

Similar Documents

Publication Publication Date Title
Rajeshwar et al. Energy conversion in photoelectrochemical systems—a review
Licht Electrolyte modified photoelectrochemical solar cells
US4427749A (en) Product intended to be used as a photocatalyst, method for the preparation of such product and utilization of such product
US7037414B2 (en) Photoelectrolysis of water using proton exchange membranes
US4414080A (en) Photoelectrochemical electrodes
US3989542A (en) Photogalvanic device
JPS6214597Y2 (en)
Sharon et al. Solar rechargeable battery—principle and materials
Pandey et al. High conversion efficiency photoelectrochemical solar cells
Jin et al. Pulsed voltage deposited lead selenide thin film as efficient counter electrode for quantum-dot-sensitized solar cells
JP2523283B2 (en) Photovoltaic battery composed of semiconductor electrode and polynuclear complex
Lokhande et al. Electrochemical photovoltaic cells for solar energy conversion
Yang et al. Monolithic FAPbBr3 photoanode for photoelectrochemical water oxidation with low onset-potential and enhanced stability
Dhumure et al. Studies on photoelectrochemical storage cells formed with chemically deposited CdSe and Ag2S electrodes
US4242423A (en) Optical-charging type half-cell, and photochemical battery using the same
Licht et al. Multiple-bandgap photoelectrochemistry: Inverted semiconductor ohmic regenerative electrochemistry
Hada et al. Energy conversion and storage in solid-state photogalvanic cells.
Harriman The photodissociation of water
Inoue et al. Photoelectrochemical imaging processes using semiconductor electrodes
JPS6256588A (en) Method for decomposing water by visible radiation
Archer et al. Photogalvanic cells and effects
Chen et al. Light-assisted rechargeable zinc-air battery: mechanism, progress, and prospects
Kuzminskii et al. Electrochemical systems for converting solar energy
JP2019006741A (en) Metal complex, and fuel cell or solar cell employing the metal complex
JPS626311B2 (en)